首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mineralogy and Petrology - In the southeast of Hamedan, in the Sanandaj-Sirjan Zone of Iran, metamorphic rocks display different metamorphic assemblages formed during dynamothermal and contact...  相似文献   

2.
In the Sanandaj-Sirjan zone of metamorphic belt of Iran, the area south of Hamadan city comprises of metamorphic rocks, granitic batholith with pegmatites and quartz veins. Alvand batholith is emplaced into metasediments of early Mesozoic age. Fluid inclusions have been studied using microthermometry to evaluate the source of fluids from which quartz veins and pegmatites formed to investigate the possible relation between host rocks of pegmatites and the fluid inclusion types. Host minerals of fluid inclusions in pegmatites are quartz, andalusite and tourmaline. Fluid inclusions can be classified into four types. Type 1 inclusions are high salinity aqueous fluids (NaCleq >12 wt%). Type 2 inclusions are low to moderate salinity (NaCleq <12 wt%) aqueous fluids. Type 3 and 4 inclusions are carbonic and mixed CO2-H2O fluid inclusions. The distribution of fluid inclusions indicate that type 1 and type 2 inclusions are present in the pegmatites and quartz veins respectively in the Alvand batholith. This would imply that aqueous magmatic fluids with no detectable CO2 were present during the crystallization of these pegmatites and quartz veins. Types 3 and 4 inclusions are common in quartz veins and pegmatites in metamorphic rocks and are more abundant in the hornfelses. The distribution of the different types of fluid inclusions suggests that CO2 fluids generated during metamorphism and metamorphic fluids might also contribute to the formation of quartz veins and pegmatites in metamorphic terrains.  相似文献   

3.
Quartz‐rich veins in metapelitic schists of the Sanandaj‐Sirjan belt, Hamadan region, Iran, commonly contain two Al2SiO5 polymorphs, and, more rarely, three coexisting Al2SiO5 polymorphs. In most andalusite and sillimanite schists, the types of polymorphs in veins correlate with Al2SiO5 polymorph(s) in the host rocks, although vein polymorphs are texturally and compositionally distinct from those in adjacent host rocks; e.g. vein andalusite is enriched in Fe2O3 relative to host rock andalusite. Low‐grade rocks contain andalusite + quartz veins, medium‐grade rocks contain andalusite + sillimanite + quartz ± plagioclase veins, and high‐grade rocks contain sillimanite + quartz + plagioclase veins/leucosomes. Although most andalusite and sillimanite‐bearing veins occur in host rocks that also contain Al2SiO5, kyanite‐quartz veins crosscut rocks that lack Al2SiO5 (e.g. staurolite schist, granite). A quartz vein containing andalusite + kyanite + sillimanite + staurolite + muscovite occurs in andalusite–sillimanite host rocks. Textural relationships in this vein indicate the crystallization sequence andalusite to kyanite to sillimanite. This crystallization sequence conflicts with the observation that kyanite‐quartz veins post‐date andalusite–sillimanite veins and at least one intrusive phase of a granite that produced a low‐pressure–high‐temperature contact aureole; these relationships imply a sequence of andalusite to sillimanite to kyanite. Varying crystallization sequences for rocks in a largely coherent metamorphic belt can be explained by P–T paths of different rocks passing near (slightly above, slightly below) the Al2SiO5 triple point, and by overprinting of multiple metamorphic events in a terrane that evolved from a continental arc to a collisional orogen.  相似文献   

4.
The metapelitic schists of the Golpayegan region can be divided into four groups based on their mineral assemblages: (1) garnet-chloritoid schists, (2) garnet schists, (3) garnet-staurolite schists, and (4) staurolite-kyanite schists. Paleozoic pelagic shales experienced progressive metamorphism and polymetamorphism from greenschist to amphibolite facies along the kyanite geotherm. Mylonitic granites are concentrated in the central part of the region more than in other areas, and formed during the dynamic metamorphic phase by activity on the NW-SE striking Varzaneh and Sfajerd faults. The presence of chloritoid in the metapelites demonstrates low-grade metamorphism in the greenschist facies. The textural and chemical zoning of garnets shows three stages of growth and syntectonic formation. With ongoing metamorphism, staurolite appeared, and the rocks reached amphibolite facies, but the degree of metamorphism did not increase past the kyanite zone. Thus, metamorphism of the pelitic sediments occurred at greenschist to lower amphibolite facies. Thermodynamic studies of these rocks indicate that the metapelites in the north Golpayegan region formed at 511?C618°C and 0.24?C4.1 kbar.  相似文献   

5.
The Neyriz region includes outcrops of metamorphic rocks that are thrust over the Neotethyan ophiolites. These rocks are affected by a major deformational event, the result of which includes a shearing polyphase foliation present in gneissic core domes, overprinted by a crenulation cleavage. These fundamental structures developed contemporaneously with a medium-pressure metamorphism which is characterized by the syn-kinematic crystallization of kyanite and the beginning of anatexis, followed by the development of retrometamorphic mineral parageneses. The major deformation phase in the area occurred during the Early-Cimmerian orogeny in the Late Triassic. Following the orogeny, the gneiss domes started to rise into the upper levels of the crust. From the geodynamic point of view, after the Mid-Permian the studied area was situated at southern passive margin of the Iranian plate; the central Iranian microcontinent at that time was separated by the Neotethys ocean from the Gondwanian supercontinent. After the Late Triassic the region became an active margin associated with an accretionary prism. The margin was finally involved in an orogenic wedge after the closure of the Neotethyan oceanic basin in the Late Mesozoic. Closure of the basin resulted in a major thrusting of the metamorphic rocks of the southern Iranian margin over the Neotethyan ophiolites.  相似文献   

6.
胡恭任 《铀矿地质》2001,17(2):97-100
本文根据矿物组合及特征变质矿物,将赣中变质岩带划分出5条变质带,由低到高依次为绢云母-绿泥石(Ser-Chl)带、黑云母(Bi)带、铁铝榴石(Gt)带、十字石(St)带、矽线石(Sil)带。其分布的总体趋势是由南向北呈渐进分布的特点,即变质地层在纵向上由新到老具有由弱而强的变化趋势,同时受构造的控制。区域断裂带,从断裂中心向两侧变质程度递减,并常伴随混合岩化作用。本文从矿物化学特征及P、T条件计算结果来讨论变质岩的演化特征及形成的构造环境。  相似文献   

7.
西南天山哈布腾苏河沿岸的含石墨的石榴石多硅白云母石英片岩中出露一套若干大小不等的布丁状变基性岩块,产状与区域面理一致。本文对其中保存完好的榴辉岩体进行了较为细致的岩石学研究和温压演化条件计算。根据主要矿物的含量,将该套榴辉岩大致分为两类一角闪榴辉岩和钠云母榴辉岩,二者的主要矿物均为Grt+Omp+Na—Ca-Amp+Pg+Dol/Cal+Rt±Qtz。石榴石变斑晶两阶段生长明显,从核部到边部XMn和XFe降低,XMg和XCa升高,指示了升温降压的变质过程。根据石榴石核部和边部的包体组合特征,确立了两期榴辉岩相变质作用:前一阶段经历了高压但较低温的硬柱石.硬绿泥石(仅见假象)榴辉岩相,变质温度为400~5000C,压力不低于1.8~1.9GPa,表明早期经历了快速俯冲过程;后一阶段的变质温度为570±300C,压力为2.0~2.5GPa。在退变质绿帘角闪岩相阶段,形成低压脉体(矿物组合为Ab4-Di+Na—Ca—Amp+Ep/Czo+Cal)和一系列退变质反应结构.如Dol的Cal增生边.Omp的Di+Ab后成合晶结构。利用Dol—Cal分溶温度计和Di的Jd分子含量得到该阶段的温度约500—530℃,压力小于0.9~1.1GPa,表明其退变质经历的是降温降压过程。这与利用Thermocale 3.1在NCFMASH体系下计算的PT视剖面图是一致的。  相似文献   

8.
Summary The magnetite-apatite deposits of Hamadan and Gole Gohar situated in the Sanandaj-Sirjan zone of Iran about 1200 km apart, show striking mineralogical and textural similarities. The orebodies are of magmatic origin and have intruded as ore magmas.The magnetite-apatite deposits are associated with ultramafic, calcalkaline and other rocks with a strong carbonate enrichment (magnesite, dolomite, ankerite, and calcite), more pronounced in Hamadan. Characteristics supporting the association with carbonatite are: multiple carbonate generations with differing compositions, breccias healed by carbonate, comb-texture of carbonate, amygdales of dolomite, the stable isotope composition of carbonate; metasomatic alteration, fenitization and carbonatization of the associated rocks; the occurrence of apatite, fluorite, phlogopite, valleriite and baddeleyite. An ultramafic environment is indicated by the exclusively Mg-rich nature of abundant chlorite and other Mg-rich minerals (e.g. phlogopite, brucite, forsterite and chondrodite). Hornblendite (type 1) consisting of Ca-rich and alkaline-bearing amphibole with minor phlogopite, apatite, and tourmaline (Gole Gohar) is the chief alkaline rock type. Hornblendite (type II) (fiole Gohar and Hamadan) is predominated by actinolite which may contain minor concentrations of sodium and originated from pyroxenite by late stage supereritical solutions. Other rocks are flow-textured hornblendite (type III) which contains plagioclase and biotite (Hamadan) and rocks which are strongly metasomatically altered. These are epidotisized diorite (Hamadan) and probably peridotite (fiole Gohar) which is chloritisized. The associated metamorphic rocks (gneiss, amphibolite and marble) belong to the Precambrian basement of the Sanandaj-Sirjan zone.Magnetite carries many inclusions such as apatite, amphiboles, chlorite, albite, carbonates, brucite and spinel exsolutions. Additionally, zoned magnetite crystals occur in which the core consists of a chromite-hercynite-magnetite solid solution which formed at a temperature higher than 900°C. The orebodies and the associated rocks (apart from those which belong to the Precambrian basement) do not show metamorphic textures. Magnetite crystallized from a melt and forms foam texture which resulted from triplejunction configuration. Brecciation of compact magnetite is common.A characteristic feature of the Iranian deposits is the presence of high P2O5 and volatile-concentrations (H2O, F, CO, and B2O3) in the original melt. These components are consistent with its pronounced capacity to differentiate and the separation of the mobile magnetite-apatite melt. Indications of this are cumulus textures (forsterite in magnetite, pyroxene in pyrrhotite, magnetite in pyrrhotite and vice versa).The iron deposits in the Bafq district of the central-east Iranian microplate probably have the saine origin. Among the deposits, drill core samples of the North Anomaly are composed of magnetite, actinolite, chlorite, calcite, apatite, and other minerals.
Magnetit-Apatitlagerstätten (Kiruna-Typ) entlang der Sanandaj-Sirjan Zone und im Bafq Gebiet, Iran und ihre Beziehung zu ultramafischen, alkalischen und karbonatitischen Gesteinen
Zusammenfassung Die iranischen Apatit-führenden Magnetitlagerstätten von Gole Gohar und Hamadan liegen in der Sanandaj-Sirjan Zone und sind etwa 1200 km von einander entfernt. Sie zeigen auffällige mineralogische und texturelle Gemeinsamkeiten. Die Erzkörper sind magmatischen Ursprungs und als Erzmagmen intrudiert.Im Magnetit eingeschlossen finden sich neben Apatit weitere Mineralien wie z. B. Amphibole, Chlorite, Serpentin, Albit, Karbonate, Fluorit, Sulfide (Pyrrhotin mit Pentlandit, Chalkopyrit und Sphalerit) und in orientierter Verwachsung mit Magnetit Brucit und Spinell sowie zonar aufgebaute Spinelle, deren Kern aus einem ChromitHercynit-Magnetit-Mischkristall besteht, der oberhalb von 900°C synthetisiert werden kann.Außer in Gesteinen, die zum präkambrischen Basement gehören (wie z. B. Gneis, Amphibolit und Marmor), fehlen in den Erzkörpern und den begleitenden Gesteinen metamorphe Gefügemerkmale.Für die iranischen Erzkörper sind der hohe P2O5-Gehalt (in Form von Apatit, Holtedahlit, Rockbridgeit und Lipscombit) sowie erhöhte Gehalte an Fluiden (H2O, F, CO2, und B2O3) charakteristisch. Diese Bestandteile, die mineralisiert in Form von Wasserbzw. Fluor-haltigen Mineralien (z. B. Chlorit, Amphibole, Brucit und Apatit), Fluoriden (Fluorit), Karbonaten (Magnesit, Dolomit, Ankerit und Calcit) und Boraten (Turmalin, Asharit und Vonsenit) vorliegen, sind vermutlich die Voraussetzung dafür, daß ungewöhnlich stark ausgeprägte Differentiationsvorgänge auftreten können. Diese führen zur Bildung und schließlich zur Abtrennung einer mobilen Magnetit schmelze von einem Magmenkörper unbekannter Zusammensetzung. Hinweise für eine derartige Trennung sind Kumulusgefüge von Forsterit im Magnetit, Pyroxen im Pyrrhotin, Magnetit im Pyrrhotin und umgekehrt.Die Erzkörper sind mit ultramafischen, calcalkalischen und anderen, meist stark metasomatisch alterierten Gesteinen sowie Karbonaten assoziiert. Hinweise, die für Karbonate auf einen karbonatitischen Ursprung schließen lassen, sind: verschiedene Karbonatgenerationen mit unterschiedlicher chemischer Zusammensetzung, Verheilung von brecciiertem Magnetit bzw. Nebengestein mit Karbonaten, Wabengefüge der Karbonate, Dolomit-Amygdales und die Zusammensetzung der stabilen Isotope von Karbonaten, metasomatische Alterationen, Fenitisierung und Karbonatisierung der Nebengesteine; das Auftreten von Apatit, Fluorit, Phlogopit, Valleriit und Baddeleyit.Ein ultramalisches environment wird durch häufig auftretende Chlorite angezeigt sowie durch andere vorwiegend Mg-reiche Mineralien wie z. B. Phlogopit, Brucit, Forsterit und Chondrodite. Hornblendite treten in drei Typen auf: Typ 1 besteht aus Ca-reichen, Alkali-führenden Hornblenden, Typ 11 aus Aktinolith, während Typ 111, für den ein Fließgefüge charakteristisch ist, ebenfalls aus Ca-reichen und Alkali-führenden Hornblenden besteht. Aktinolith-Hornblendit wird auf durch überkritische Lösungen veränderte Pyroxenite zurückgeführt, während Diorite epidotisiert und vermutlich ehemalige Peridotite chloritisiert oder auch teilweise serpentinisiert sind.Die Eisenerzlagerstätten des Bafq Distrikts der Zentraliranischen Mikroplate haben einen vergleichbaren Ursprung und sind daher ebenfalls dem Kiruna Typ zuzuordnen. Erstmals untersuchtes Bohrkernmaterial dieses Gebietes (von der Nord-Anomalie stammend) besteht aus vorwiegend Magnetit, Aktinolith, Chlorit, Calcit und Apatit.


With 11 Figures  相似文献   

9.
Sections and fusulinids of the Bolorian (presumably) and Kubergandian (lower part) stages in the Sanandaj-Sirjan tectonic zone are described. Two fusulinid assemblages are distinguished in a most complete section near Sirjan. The lower one is represented by Skinnerella, Paraleeina, and relatively primitive Misellina forms, whereas Armenina, Kubergandella, and Yangchienia species appear in the upper assemblage and suggest its early Kubergandian age. Accordingly, the lower assemblage is attributed to the Bolorian Stage, although it is lacking fusulinids typical of this stage except for the primitive Misellina morphotypes. Fusulinids from the Tange-Darchaleh section near Qomsheh (Shahreza) are typical of the Kubergandian Stage. The described three new species of the genus Skinnerella are close to morphotypes known from younger (Murgabian) deposits and represent their ancestral forms most likely.  相似文献   

10.
The Naqadeh mafic plutonic rocks are located on a plutonic assemblage and include different granitoid rocks related to ~40 Ma. U-Pb SHRIMP data shows different ages of 96?±?2.3 Ma for mafic rocks. Naqadeh mafic plutonic rocks consist of diorite to diorite-gabbros with relatively high contents of incompatible elements, low Na2O, and $ {\hbox{Mg\# }} = \left[ {{\hbox{molar}}\;{100} \times {\hbox{MgO/}}\left( {{\hbox{MgO}} + {\hbox{FeO}}} \right)} \right] > 44.0 $ . These features suggest that the Naqadeh mafic rocks originate from enriched lithospheric mantle above subducted slab during Neotethys subduction under Iranian plate.  相似文献   

11.
Kajan subvolcanic rocks in the Urumieh–Dokhtar magmatic arc (UDMA), Central Iran, form a Late Miocene-Pliocene shallow-level intrusion. These subvolcanics correspond to a variety of intermediate and felsic rocks, comprising quartz diorite, quartz monzodiorite, tonalite and granite. These lithologies are medium-K calc-alkaline, with SiO2 (wt.%) varying from 52% (wt.%) to 75 (wt.%). The major element chemical data also show that MgO, CaO, TiO2, P2O5, MnO, Al2O3 and Fe2O3 define linear trends with negative slopes against SiO2, whilst Na2O and K2O are positively correlated with silica. Contents of incompatible trace elements (e.g. Ba, Rb, Nb, La and Zr) become higher with increasing SiO2, whereas Sr shows an opposite behaviour. Chondrite-normalized multi-element patterns show enrichment in LILE relative to HFSE and troughs in Nb, P and Ti. These observations are typical of subduction related magmas that formed in an active continental margin. The Kajan rocks show a strong affinity with calc-alkaline arc magmas, confirmed by REE fractionation (LaN/YbN = 4.5–6.4) with moderate HREE fractionation (SmN/YbN = 1.08–1.57). The negative Eu anomaly (Eu/Eu* <1), the low to moderate Sr content (< 400 ppm) and the Dy/Yb values reflect plagioclase and hornblende (+- clinopyroxene) fractionation from a calc-alkaline melt Whole–rock Sr and Nd isotope analyses show that the 87Sr/86Sr initial ratios vary from 0.704432 to 0.705989, and the 143Nd/144Nd initial ratios go from 0.512722 to 0.512813. All the studied samples have similar Sr-Nd isotopes, indicating an origin from a similar source, with granite samples that has more radiogenic Sr and low radiogenic Nd isotopes, suggesting a minor interaction with upper crust during magma ascent. The Kajan subvolcanic rocks plot within the depleted mantle quadrant of the conventional Sr-Nd isotope diagram, a compositional region corresponding to mantle-derived igneous rocks.  相似文献   

12.
超高压变质杂岩成因模式的关键是折返机制的解释,笔者将天文事件作为一种地球动力学模式来解释超高压变质杂岩的成因,较好地阐明了这个关键问题。该“天文模式”认为超高压变质杂岩分形成、折返和剥露三个阶段形成。天体撞击陆壳所产生的高温高压形成超高压变质杂岩;撞击后新的动力平衡使陆壳重熔的片麻岩里携超高压变质杂岩沿撞击形成的压力薄弱部位向地表折返运移;后期表层的剥蚀使超高压变质杂岩剥露。  相似文献   

13.
黄长煌 《华东地质》2018,(3):169-176
福建南务里变质岩位于长乐—南澳断裂带北段,主要由矽线石二云母石英片岩和矽线石黑云母石英片岩组成,超覆于片麻状花岗岩之上.岩石学特征表明:南务里变质岩的原岩为陆源碎屑岩.LA-ICP-MS锆石U-Pb年龄谱出现2个峰值:第一峰值为189.6±5.7 Ma,206 pb/238 U年龄集中于199~182 Ma;第二峰值为1 899±4 Ma,207pb/206 Pb年龄集中于1 922~1 831 Ma.前者锆石自形晶较好,环带明显,Th/U值为0.4~0.96,稀土元素明显分异,属于岩浆锆石;后者锆石磨圆度较高,环带不明显,Th/U值为0.03~0.3,稀土元素分异不明显,属于变质锆石;部分为岩浆锆石,Th/U值>0.3,稀土元素分异明显.189.6±5.7 Ma代表该区变质岩原岩的沉积时代,原岩层位相当于早侏罗世梨山组.  相似文献   

14.
《International Geology Review》2012,54(12):1446-1461
ABSTRACT

Meta-pelitic rocks with interlayers of meta-psammites within the inner thermal aureole of the Alvand plutonic complex (Sanandaj-Sirjan Zone (SaSZ), western Iran) underwent partial melting; generating various types of migmatites. The mesosome of the Hamedan migmatites is classified into two groups: (1) cordierite-rich and Al-silicate-poor mesosomes and (2) cordierite-poor, Al-silicate-rich groups. Leucosomes are also variable, ranging from plagioclase-rich to K-feldspar-rich leucosomes. Mineral-chemical studies and thermobarometric estimations indicate temperature and pressure of 640–700°C and 3–5 kbar, respectively, for the formation of mesosomes. U–Pb zircon geochronology on 214 grains from the mesosome of migmatites indicates ages of 160–180 Ma (ca ~170 Ma) for zircon metamorphic rims and variable ages of 190–2590 Ma for the inherited detrital zircon cores. Inherited core ages show various age populations, but age populations at 200–600 Ma are more frequent. The age populations of the detrital zircons clarify that the provenance of the younger zircon grains (200–500 Ma) was more likely the Iranian plate, whereas the older grains (600 Ma to >2.5 Ga) may be sourced from both northern Gondwana (such as Arabian-Nubian Shield) and the neighbouring, old cratons like as Africa. We suggest that magmatic activities, especially mafic plutonism at ~167 Ma, are the main triggers for the heat source of metamorphism, partial melting, and migmatization. In contrast to a presumed idea for a Cretaceous regional metamorphic event in the NW parts of the SaSZ, this study attests that the metamorphism should be older and can be associated with Jurassic magmatic pulses.  相似文献   

15.
The Vazhnan Formation, formerly attributed to the Sakmarian is now shown to be of the Gzhelian-Asselian age. Accordingly it is correlative with the concurrent Zaladou Formation of Central Iran and Dorud Group of Alborz. This suggests a vast transgression that covered the greater part of the Iranian territory in the terminal Carboniferous-initial Permian. The work includes brief characterization of fusulinids found in the formation section.  相似文献   

16.
Eslamy peninsula, 360 km2 in area, is located in the eastern coast of Urmieh lake in the northwest of Iran. This peninsula is a complex stratovolcano with a collapsed center, which is elevated due to later intrusions of sub-volcanic masses with trachytic to microsyenitic composition. The composite cone consists of a sequence of leucite tephrite, tephrite, leucite basanite, basanite and related pyroclastic rocks. Magmatic activities in the Eslamy peninsula begin with potassic alkaline to ultrapotassic and basic, silica-undersaturated shoshonitic rocks and they are followed by intrusions of lamprophyric dykes and end with acidic magmatism including trachytic, microsyenitic, syenitic and phonolitic domes. The original magma of the Eslamy peninsula rocks has a potassic alkaline nature (Roman type) rich in LREE and LILE and depleted of HREE. These characteristics suggest that the origin of magma can be from deep mantle with a garnet lherzolite composition, a low partial melting rate which has been contaminated by crustal materials in its way up. Fractional crystallization of olivine, diopsidic clinopyroxene and leucite played an important role in the evolution of magmas. Scrutinizing the geodynamic environment of Eslamy peninsula rocks in discrimination diagrams indicates that these rocks must have been formed in a post-collision magmatic arc setting.  相似文献   

17.
Geochemical data indicate that the protoliths of the overwhelming majority of the metamorphic rocks composing the Fedorov Complex in the Aldan granulite megacomplex were volcanic rocks of three groups, which occur in different proportions in the complex: (i) volumetrically predominant (no less than 90%) continuous differentiated island-arc basalt-andesite-dacite-rhyolite series, (ii) within-plate basalts, whose composition was similar to that of low-Ti traps, and (iii) basalts of composition similar to that of continentalrift basalts. The U-Pb zircon crystallization age of the metamorphosed basaltic andesites of the Fedorov Complex was estimated at 2006 ± 3 Ma, which testifies, when considered together with preexisting geochronological data, that the complex was produced during a time span of no longer than 25 m.y. A model is proposed according to which the complex was produced within the geodynamic system of the active continental margin of the Olekma-Aldan continental microplate and the Fedorov island arc.  相似文献   

18.
李强  张立飞 《岩石学报》2004,20(3):583-594
本文首次报道在新疆西南天山木扎尔特一带发现了二辉石麻粒岩和麻粒岩相变质的堇青石榴矽线石片麻岩。二辉石麻粒岩的矿物组合为单斜辉石-斜方辉石-黑云母-角闪石-斜长石-石英。堇青石榴矽线石片麻岩矿物组合为堇青石-矽线石-石榴石-黑云母-斜长石-石英。岩石学和矿物学特征表明它们是典型的低压麻粒岩相变质岩石,其变质作用经历了两期演化:a.峰期麻粒岩相变质,T=681~705℃,P=5.4~5.8kbar;b.峰后角闪岩相退变阶段,T:571~637℃.P=4.7~5.3kbar。其变质作用P-T轨迹具有逆时针近等压降温(IBC)的特点,代表该地区可能为塔里木板块向伊犁.中天山板块俯冲过程中,在陆壳一侧所产生的陆源岩浆弧区域,由于受到下部岩浆热源的影响,在拉伸环境下出现低压麻粒岩相变质。通过分析低压麻粒岩相岩石与其南部高压一超高压变质带的大地构造位置和年代关系,我们认为该地区的低压麻粒岩相变质岩石可能与其南部的西天山高压一超高压变质带组成了双变质带。  相似文献   

19.
在南苏鲁东海地区,部分超高压榴辉岩中的变斑晶石榴石具有复杂的生长成分环带和多期矿物包体组合,它们记录了超高压变质岩的多阶段变质演化过程,即绿帘角闪岩相进变质、柯石英榴辉岩相峰期变质、石英榴辉岩相和角闪岩相退变质作用。运用相关的地质温、压计,使用代表最高变质温度的变斑晶石榴石慢部(具最低的Fe/Mg比值)和与其平衡的绿辉石包体成分,获得了〉900℃和4.1~4.5GPa的超高压变质务件。联合其他变质阶段的温、压条件,一个顺时针的变质作用P—T轨迹得以建立。它的特征是进变质与退变质路径近于平行,早期退变质作用为降温、降压过程.榴辉岩石榴石生长成分环带的保存说明超高压变质岩在峰期变质阶段有非常短暂的停留时间,并以很快的折返速率抬升到地壳浅部,超高压变质岩折返过程中的明显降温是石榴石生长环带得以保存的另一个有利条件,  相似文献   

20.
Granitoid orthogneisses and migmatites are widespread in the lower, deeply metamorphosed gneiss-migmatite complex of the pre-Alpine basement (infrastructure) exposed within northern part of the Greater Caucasus Main Range zone. Like the other rocks of the complex, they have been traditionally attributed to the Proterozoic, but the U-Pb dating revealed the Late Paleozoic age of migmatites and Devonian age of orthogneiss protolith. Bodies of blastomylonitic apogranite gneisses, which are confined to boundary between gneiss-migmatite complex and overlying Makera Complex of supracrustal rocks, turned out to be of the Late Paleozoic age as well. The dating results suggest synchronism and, apparently, genetic interrelations between the high-T/low-P metamorphism and granite formation in the Main Range zone of the Greater Caucasus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号