首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT

In this study, we characterized the glacial meltwater flow through a proglacial area with a focus on proglacial lakes, their hydrological regime and their connection to the stream. The studied lakes – the Adygine ice-debris complex, northern Tien Shan – showed a distinct development throughout an ablation season: at Lake 2, the mean daily water-level fluctuation amplitude increased from 0.07 m to 0.18 m (June, August), then dropped to 0.07 m in September. Glacial meltwater flows through the lakes and further downstream through a rock glacier rather fast, moving at 0.085 m s?1. However, based on the low dye recovery in the stream (0.03%), only a small portion of water was routed efficiently. The complexity of the site’s drainage system was supported by varying isotopic composition of water in the tarns situated on the rock glacier, with Tarn a (δ2H: –36.08‰; δ18O: –6.25‰) being the most enriched and Tarn c (δ2H: 78.68‰; δ18O: 11.9‰) the most depleted in heavy isotopes.  相似文献   

2.
R. K. SAXENA 《水文研究》1996,10(10):1273-1281
Lake evaporation has been estimated for a shallow lake using a combination of water and isotope mass balance, accounting for the isotopic non-steady state of lake water. The main feature of the isotope method is that inflows need not be measured. Knowledge of their isotopic content is sufficient. Oxygen-18 content, i.e. (δ18O), of lake water, inflows and outflow was measured on a weekly basis, whereas for precipitation it was monitored daily. The discharge from the lake was also recorded daily. Lake water level, relative humidity, air, and lake water surface temperatures were recorded by a logger. The weather data were recorded on a small island in the lake. It was observed that the lake is isotopically well mixed. Furthermore, the atmospheric moisture was not always in isotopic equilibrium with the precipitation. Daily lake evaporation was estimated as an average of six to eight days depending upon the field logistics. Lake evaporation varied from 0.6 to about 5.4 mm/day during the experimental period. It was found that evaporation estimates are very sensitive to small variations in δ18O of lake evaporate. Induced changes of 10% in δ18O of lake evaporate caused errors in evaporation estimates of 9–31%, while similar induced changes in δ18O of inflows caused errors of 8–18%. Thus, an accurate experimental determination of δ18O of lake evaporate is relatively more important.  相似文献   

3.
Recharge areas of the Guarani Aquifer System (GAS) are particularly sensitive and vulnerable to climate variability; therefore, the understanding of infiltration mechanisms for aquifer recharge and surface run‐off generation represent a relevant issue for water resources management in the southeastern portion of the Brazilian territory, particularly in the Jacaré‐Pepira River watershed. The main purpose of this study is to understand the interactions between precipitation, surface water, and groundwater using stable isotopes during the strong 2014–2016 El Niño Southern Oscillation event. The large variation in the isotopic composition of precipitation (from ?9.26‰ to +0.02‰ for δ18O and from ?63.3‰ to +17.6‰ for δ2H), mainly associated with regional climatic features, was not reflected in the isotopic composition of surface water (from ?7.84‰ to ?5.83‰ for δ18O and from ?49.7‰ to +33.6‰ for δ2H), mainly due to the monthly sampling frequency, and groundwater (from ?7.04‰ to ?7.76‰ for δ18O and from ?49.5‰ to ?44.7‰ for δ2H), which exhibited less variation throughout the year. However, variations in deuterium excess (d‐excess) in groundwater and surface water suggest the occurrence of strong secondary evaporation during the infiltration process, corresponding with groundwater level recovery. Similar isotopic composition in groundwater and surface water, as well as the same temporal variations in d‐excess and line‐conditioned excess denote the strong connectivity between these two reservoirs during baseflow recession periods. Isotopic mass balance modelling and hydrograph separation estimate that the groundwater contribution varied between 70% and 80%, however, during peak flows, the isotopic mass balance tends to overestimate the groundwater contribution when compared with the other hydrograph separation methods. Our findings indicate that the application of isotopic mass balance methods for ungauged rivers draining large groundwater reservoirs, such as the GAS outcrop, could provide a powerful tool for hydrological studies in the future, helping in the identification of flow contributions to river discharge draining these areas.  相似文献   

4.
Williams Lake, Minnesota is a closed‐basin lake that is a flow‐through system with respect to ground water. Ground‐water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore‐water samplers (peepers) were used to characterize solute fluxes at the lake‐water–ground‐water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore‐water depth profiles of the stable isotopes δ18O and δ2H were non‐linear where ground water seeped into the lake, with a sharp transition from lake‐water values to ground‐water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from δ2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore‐water calcium profiles to pore‐water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40–50 % of the calcium in Williams Lake is retained, the pore‐water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore‐water depth profiles of calcium and δ18O and δ2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake‐water–ground‐water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

5.
Precisely dated high-resolution speleothems may record past typhoon events, however, the state of the art cave monitoring is a prerequisite to identify suitable stalagmites for the reconstruction of such events. With this motivation, we examined the isotopic composition (δ18O and d-excess values) of rainfall, outside river, cave drip water, and an underground river in the Xianyun cave system, located in southeastern China. Monthly to bi-monthly monitoring of environmental and isotopic conditions was conducted for 1 year, from December 2018 to December 2019, including a typhoon event (August 24, 2019 to August 26, 2019), called Bailu. The δ18O of rainfall samples over the cave and outside river water ranged from −9.7‰ to −1.9‰ and −8.2‰ to −6.3‰, respectively, while the δ18O of Typhoon Bailu rainfall and instantaneous outside river water ranged from −19.6‰ to −6.3‰ and −10.4‰ to −7.7‰, respectively. Typhoon Bailu-induced rainfall showed distinctly negative δ18O values as compared to those of the monthly and bi-monthly rainfall, exhibiting a three-stage inverted U-shaped variation characteristic. Four drip water monitoring sites inside the cave revealed low variations during the studied period with average values of −7.8‰, −8.0‰, −8.0‰, and −8.1‰. However, during the typhoon, the drip water δ18O values exhibited similar characteristic as outside rainfall but with just 0.2‰ negative deviation owing to precipitation amount and drip water source reservoir. The integration of rainfall amount with drip water source reservoir determines the degree to which a typhoon isotopic signature gets diluted during epikarst infiltration. This study provides the first instrumental evidence of typhoon signal in karst system in southeastern China. Our results imply that the δ18O of drip water in Xianyun cave can instantaneously respond to typhoon rainfall. However, the 0.2‰ shift in drip water δ18O is difficult to be recorded by speleothems. We suggest multi-year monitoring to ascertain fully if the stalagmites could be used as paleotyphoon proxy.  相似文献   

6.
Characterization of stable isotope compositions (δ2H and δ18O) of surface water and groundwater in a catchment is critical for refining moisture sources and establishing modern isotope–elevation relationships for paleoelevation reconstructions. There is no consensus on the moisture sources of precipitation in the Yellow River source region during summer season. This study presents δ2H and δ18O data from 111 water samples collected from tributaries, mainstream, lakes, and groundwater across the Yellow River source region during summertime. Measured δ18O values of the tributaries range from ?13.5‰ to ?5.8‰ with an average of ?11.0‰. Measured δ18O values of the groundwater samples range from ?12.7‰ to ?10.5‰ with an average of ?11.9‰. The δ18O data of tributary waters display a northward increase of 1.66‰ per degree latitude. The δ18O data and d‐excess values imply that moisture sources of the Yellow River source region during summertime are mainly from the mixing of the Indian Summer Monsoon and the Westerlies, local water recycling, and subcloud evaporation. Analysis of tributary δ18O data from the Yellow River source region and streamwater and precipitation δ18O data from its surrounding areas leads to a best‐fit second‐order polynomial relationship between δ18O and elevation over a 4,600 m elevation range. A δ18O elevation gradient of ?1.6‰/km is also established using these data, and the gradient is in consistence with the δ18O elevation gradient of north and eastern plateau. Such relationships can be used for paleoelevation reconstructions in the Yellow River source region.  相似文献   

7.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   

8.
Characterization of spatial and temporal variability of stable isotopes (δ18O and δ2H) of surface waters is essential to interpret hydrological processes and establish modern isotope–elevation gradients across mountainous terrains. Here, we present stable isotope data for river waters across Kyrgyzstan. River water isotopes exhibit substantial spatial heterogeneity among different watersheds in Kyrgyzstan. Higher river water isotope values were found mainly in the Issyk‐Kul Lake watershed, whereas waters in the Son‐Kul Lake watershed display lower values. Results show a close δ18O–δ2H relation between river water and the local meteoric water line, implying that river water experiences little evaporative enrichment. River water from the high‐elevation regions (e.g., Naryn and Son‐Kul Lake watershed) had the most negative isotope values, implying that river water is dominated by snowmelt. Higher deuterium excess (average d = 13.9‰) in river water probably represents the isotopic signature of combined contributions from direct precipitation and glacier melt in stream discharge across Kyrgyzstan. A significant relationship between river water δ18O and elevation was observed with a vertical lapse rate of 0.13‰/100 m. These findings provide crucial information about hydrological processes across Kyrgyzstan and contribute to a better understanding of the paleoclimate/elevation reconstruction of this region.  相似文献   

9.
Secondary calcite residing in open cavities in the unsaturated zone of Yucca Mountain has long been interpreted as the result of downward infiltration of meteoric water through open fractures. In order to obtain information on the isotopic composition (δD and δ18O) of the mineral-forming water we studied fluid inclusions from this calcite. Water was extracted from inclusions by heated crushing and the δD values were measured using a continuous-flow isotope-ratio mass spectrometry method. The δ18O values were calculated from the δ18O values of the host calcite assuming isotopic equilibrium at the temperature of formation determined by fluid-inclusion microthermometry.The δD values measured in all samples range between ? 110 and ? 90‰, similar to Holocene meteoric water. Coupled δ18O–δD values plot significantly, 2 to 8‰, to the right of the meteoric water line. Among the various processes operating at the topographic surface and/or in the unsaturated zone only two processes, evaporation and water–rock exchange, could alter the isotope composition of percolating water. Our analysis indicates, however, that none of these processes could produce the observed large positive δ18O-shifts. The latter require isotopic interaction between mineral-forming fluid and host rock at elevated temperature (>100 °C), which is only possible in the deep-seated hydrothermal environment. The stable isotope data are difficult to reconcile with a meteoric origin of the water from which the secondary minerals at Yucca Mountain precipitated; instead they point to the deep-seated provenance of the mineral-forming waters and their introduction into the unsaturated zone from below, i.e. a hypogene origin.  相似文献   

10.
Deciduous forest covers vast areas of permafrost under severe dry climate in eastern Siberia. Understanding the water cycle in this forest ecosystem is quite important for climate projection. In this study, diurnal variations in isotopic compositions of atmospheric water vapour were observed in eastern Siberia with isotope analyses of precipitation, sap water of larch trees, soil water, and water in surface organic layer during the late summer periods of 2006, 2007, and 2008. In these years, the soil moisture content was considerably high due to unusually large amounts of summer rainfall and winter snowfall. The observed sap water δ18O ranged from ?17.9‰ to ?13.3‰, which was close to that of summer precipitation and soil water in the shallow layer, and represents that of transpired water vapour. On sunny days, as the air temperature and mixing ratio rose from predawn to morning, the atmospheric water vapour δ18O increased by 1‰ to 5‰ and then decreased by about 2‰ from morning to afternoon with the mixing ratio. On cloudy days, by contrast, the afternoon decrease in δ18O and the mixing ratio was not observed. These results show that water vapour that transpired from plants, with higher δ18O than the atmospheric water vapour, contributes to the increase in δ18O in the morning, whereas water vapour in the free atmosphere, with lower δ18O, contributes to the decrease in the afternoon on sunny days. The observed results reveal the significance of transpired water vapour, with relatively high δ18O, in the water cycle on a short diurnal time scale and confirm the importance of the recycling of precipitation through transpiration in continental forest environments such as the eastern Siberian taiga. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

12.
This paper reports the first results on δ18O and δ2H analysis of precipitations, cave drip waters, and groundwaters from sites in Mallorca (Balearic Islands, western Mediterranean), a key region for paleoclimate studies. Understanding the isotopic variability and the sources of moisture in modern climate systems is required to develop speleothem isotope‐based climate reconstructions. The stable isotopic composition of precipitation was analysed in samples collected between March 2012 and March 2013. The values are in the range reported by GNIP Palma station. Based on these results, the local meteoric water line (LMWL) δ2H = 7.9 (±0.3) δ18O + 10.8 (±2.5) was derived, with slightly lower slope than Global Meteoric Water Line. The results help tracking two main sources of air masses affecting the study sites: rain events with the highest δ18O values (> ?5‰) originate over the Mediterranean Sea, whereas the more depleted samples (< ?8‰) are sourced in the North Atlantic region. The back trajectory analysis and deuterium excess values, ranging from 0.4 to 18.4‰, further support our findings. To assess the isotopic variation across the island, water samples from eight caves were collected. The δ18O values range between ?6.9 and ?1.6‰. With one exception (Artà), the isotopic composition of waters in caves located along the coast (Drac, Vallgornera, Cala Varques, Tancada, and Son Sant Martí) indicates Mediterranean‐sourced moisture masses. By contrast, the drip water δ18O values for inland caves (Campanet, ses Rates Pinyades) or developed under a thick (>50 m) limestone cap (Artà) exhibit more negative values. A well‐homogenized aquifer supplied by rainwaters of both origins is clearly indicated by groundwater δ18O values, which show to be within 2.4‰ of the unweighted arithmetic mean of ?7.4‰. Although limited, the isotopic data presented here constitute the baseline for future studies using speleothem δ18O records for western Mediterranean paleoclimate reconstructions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
δ18O values for 87 chert samples from the 3.4-b.y.-old Onverwacht Group, South Africa, range from +9.4 to +22.1‰. δ-values for cherts representing early silicified carbonates and evaporites, and possible primary precipitates range from +16 to +22‰ and are distinctly richer in18O than silicified volcaniclastic debris and cherts of problematical origin. The lower δ-values for the latter two chert types are caused by isotopic impurities such as sericite and feldspar, and/or late silicification at elevated temperature during burial. Cherts with δ-values below +16‰ are thus not likely to yield geochemical data relevant to earth surface conditions.Fine-grained chert is less than 0.7‰ depleted in18O relative to coexisting coarse drusy quartz. Because coarse quartz preserves its isotopic composition with time, the maximum amount of post-depositional lowering of the δ-values of cherts by long-term isotopic exchange with meteoric groundwaters does not exceed 0.7‰ in 3.4 b.y. In response to metamorphism the δ-values of Onverwacht cherts appear to remain unchanged or to have increased by as much as 4‰. Neither metamorphism nor long-term isotopic exchange with groundwaters can explain why Onverwacht cherts are depleted in18O relative to their Phanerozoic counterparts.Meteoric waters with a δ18O range of at least 3‰ appear to have been involved in Onverwacht chert diagenesis. δ-values for possible primary cherts or cherts representing silicified carbonates and evaporites are compatible with the depositional and diagenetic environments deduced from field and petrographic evidence. Onverwacht cherts appear to have formed with δ-values at least 8‰ lower than Phanerozoic cherts.The new Onverwacht data combined with all published oxygen isotope data for cherts suggest a secular trend similar to that initially suggested by Perry (1967) in which younger cherts are progressively enriched in18O. However, Precambrian cherts appear to be richer in18O than Perry's original samples and can be reasonably interpreted in terms of declining climatic temperatures from ~70°C at 3.4 b.y. to present-day values, as initially suggested by Knauth and Epstein (1976). This surface temperature history is compatible with existing geological, geochemical, and paleontological evidence.  相似文献   

14.
The major advantage of the oxygen in phosphate isotope paleothermometry is that it is a system which records temperatures with great sensitivity while bone (and teeth) building organisms are alive, and the record is nearly perfectly preserved after death. Fish from seven water bodies of different temperatures (3–23°C) and different δ18O (values ?16 to +3) of the water were analysed. The δ18O values of the analysed PO4 vary from 6 to 25. The system passed the following tests: (a) the temperatures deduced from isotopic analyses of the sequence of fish from Lake Baikal are in good agreement with the temperatures measured in the thermally stratified lake; (b) the isotopic composition of fish bone phosphate is not influenced by the isotopic composition of the phosphate which is fed to the fish, but only by temperature and water composition.Isotopic analysis of fossil fish in combination with analysis of mammal bones should be a useful tool in deciphering continental paleoclimates.  相似文献   

15.
The stable oxygen and hydrogen isotopic features of precipitation in Taiwan, an island located at the western Pacific monsoon area, are presented from nearly 3,500 samples collected during the past decade for 20 stations. Results demonstrate that moisture sources from diverse air masses with different isotopic signals are the main parameter in controlling the precipitation's isotope characteristics. The air mass from polar continental (Pc) region contributes the precipitation with high deuterium excess values (up to 23‰) and relatively enriched isotope compositions (e.g., ? 3.2‰ for δ18O) during the winter with prevailing northeasterly monsoon. By contrast, air masses from equatorial maritime (Em) and tropical maritime (Tm) supply the precipitation with low deuterium excess values (as low as about 7‰) and more depleted isotope values (e.g., ? 8.9‰ and ? 6.0‰ for δ18O of Tm and Em, respectively) during the summer with prevailing southwesterly monsoon. Thus seasonal differences in terms of δ18O, δD, and deuterium excess values are primarily influenced by the interactions among various precipitation sources. While these various air masses travel through Taiwan, secondary evaporation effects further modify the isotope characteristics of the inland precipitation, such as raindrop evaporation (reduces the deuterium excess of winter precipitation) and moisture recycling (increases the deuterium excess of summer precipitation). The semi-quantitative estimations in terms of evaluation for changes in the deuterium excess suggest that the raindrop evaporation fractions for winter precipitation range 7% to 15% and the proportions of recycling moisture in summer precipitation are less than 5%. Additionally, the isotopic altitude gradient in terms of δ18O for summer precipitation is ? 0.22‰/100 m, greater than ? 0.17‰/100 m of winter precipitation. The greater isotopic gradient in summer can be attributed to a higher temperature vs. altitude gradient relative to winter. The observed spatial and seasonal stable isotopic characteristics in Taiwan's precipitation not only contribute valuable information for regional monsoon research crossing the continent–ocean interface of East Asia, but also can serve as very useful database for local water resources management.  相似文献   

16.
The numerous lakes on the Tibetan Plateau play an important role in the regional hydrological cycle and water resources, but systematic observations of the lake water balance are scarce on the Tibetan Plateau. Here, we present a detailed study on the water cycle of Cona Lake, at the headwaters of the Nujiang‐Salween River, based on 3 years (2011–2013) of observations of δ18O and δ2H, including samples from precipitation, lake water, and outlet surface water. Short‐term atmospheric water vapor was also sampled for isotope analyses. The δ2H–δ18O relationship in lake water (δ2H = 6.67δ18O ? 20.37) differed from that of local precipitation (δ2H = 8.29δ18O + 12.50), and the deuterium excess (d‐excess) in the lake water (?7.5‰) was significantly lower than in local precipitation (10.7‰), indicating an evaporative isotope enrichment in lake water. The ratio of evaporation to inflow (E /I ) of the lake water was calculated using both d‐excess and δ18O. The E /I ratios of Cona lake ranged from 0.24 to 0.27 during the 3 years. Observations of atmospheric water vapor isotopic composition (δ A ) improved the accuracy in E /I ratio estimate over a simple precipitation equilibrium model, though a correction factor method provided nearly identical estimates of E /I ratio. The work demonstrates the feasibility of d‐excess in the study of the water cycle for lakes in other regions of the world and provides recommendations on sampling strategies for accurate calculations of E /I ratio.  相似文献   

17.
Rocks of the Miocene Macquarie Island ophiolite, south of New Zealand, have oxygen and carbon isotopic compositions comparable to those of seafloor rocks. Basalt glass and weathered basalts have δ18O values at 5.8–6.0‰ and 7.9–9.5‰, respectively, similar to drilled seafloor rocks including samples from the Leg 29 DSDP holes near Macquarie Island. Compared to the basalt glass, the greenschist to amphibolite facies metaintrusives are depleted in18O (δ18O=3.2–5.9‰) similar to dredged seafloor samples, whereas the metabasalts are enriched (δ18O=7.1–9.7‰). Although the gabbros are only slightly altered in thin-section they have exchanged oxygen with a hydrothermal fluid to a depth of at least 4.5 km. There is an approximate balance between18O depletion and enrichment in the exposed ophiolite section. The carbon isotopic composition of calcite in the weathered basalts (δ13C=1.0–2.0‰) is similar to those of drilled basalts, but the metamorphosed rocks have low δ13C values (?14.6 to 0.9‰).These data are compatible with two seawater circulation regimes. In the upper regime, basalts were weathered by cold seawater in a circulation system with high water/rock ratios (?1.0). Based on calcite compositions weathering temperatures were less than 20°C and the carbon was derived from a predominantly inorganic marine source. As previously suggested for the Samail ophiolite, it is postulated that the lower hydrothermal regime consisted of two coupled parts. At the deeper levels, seawater circulating at low water/rock ratios (0.2–0.3) and high temperatures (300–600°C) gave rise to18O-depleted gabbro and sheeted dikes via open system exchange reactions. During reaction the seawater underwent a shift in oxygen isotopic composition (δ18O=1.0–5.0‰) and subsequently caused18O enrichment of the overlying metabasalts. In the shallower part of the hydrothermal regime the metabasalts were altered at relatively high water/rock ratios (1.0–10.0) and temperatures in the range 200–300°C. The relatively low water/rock ratios in the hydrothermal regime are supported by the low δ13C values of calcite, interpreted as evidence of juvenile carbon in contrast to the inorganic marine carbon found in the weathered basalts.  相似文献   

18.
Data were acquired from 143 whole rock samples from 20 late orogenic, post-metamorphic, Hercynian-age granitic plutons from the Piedmont of the southern Appalachians, principally in Georgia and South Carolina. These plutons exhibit a regional gradient in oxygen isotopic compositions in which the granites confined to the Inner Piedmont to the northwest are18O-enriched (11.4 to 7.9) whereas those toward the southeast within the Charlotte-Slate and portions of the Kiokee belts have distinctly lower18O/16O compositions (8.2 to 5.5); one body that lies along the southeastern edge of the Piedmont in South Carolina, however, appears to be anomalously18O-enriched (8.9). Most plutons display18O/16O variations of <1‰ although two vary by as much as 3–4‰. The regional oxygen isotopic pattern among plutons appears to correlate directly with: (1) regional Bouguer gravity patterns, in which the18O-enriched plutons occupy areas characterized by negative anomalies, whereas low-18O bodies are invariably restricted to regions of positive anomalies; (2)87Sr/86Sr data, where granites with δ18O values <8‰ have low initial strontium ratios of ~0.703 to 0.705, while18O-enriched plutons (>9‰) have ratios >0.710; (3) contrasting chemical and accessory mineral compositions, in which many18O-depleted granites have a number of I-type characteristics, whereas several of the most18O-enriched plutons exhibit a number of S-type features. It can be inferred from these data that the18O-enriched granites were formed from continental crustal protoliths that underlie much of the Inner Piedmont and portions of the Kiokee belt, whereas the low-18O plutons were derived from more mafic sources beneath the Charlotte-Slate and portions of the Kiokee belt. The overall correspondence between the regional18O/16O patterns exhibited by the granites and gravity data implies that these grantes may be essentially rooted to their protoliths, in turn suggesting that the large-scale translational movement recently proposed for the Southern Piedmont may have occurred prior to intrusion of these granites ~320 m.y. ago.  相似文献   

19.
Calculated univariant equilibria and oxygen isotope compositions of silicates and carbonates support the proposal that the “Mottled Zone Event” is a low-pressure (1–25 atm), high-temperature (200° < T < 1300°C) metamorphism of calcareous siliceous sediments in which the thermal energy is provided by combustion of organic matter. δ18O of silicates decreases systematically with increasing metamorphic grade from averages of 18.1‰ in protolith shales, to 16.6‰ in grossular-diopside-zeolite rocks, 15.6‰ in wollastonite and anorthite-diopside-gehlenite-grossular fels, 14.1‰ in spurrite-brownmillerite marbles and 11.7‰ in the highest-grade larnite-gehlenite-brownmillerite assemblages. Decarbonation is the principal mechanism influencing the oxygen isotope compositions. The progressive decrease of δ18O in silicates can be modelled as a Rayleigh distillation of CO2 approximately 16‰ enriched in 18O relative to whole rock assemblages i.e., of initial isotopic composition 8.5‰ heavier than the parent carbonates. The mineral assemblage of one sample with an unusual granoblastic texture is in apparent isotopic equilibrium at a temperature of 540°C.  相似文献   

20.
P. Rodgers  C. Soulsby  S. Waldron 《水文研究》2005,19(11):2291-2307
δ18O measurements of precipitation and stream waters were used as a natural tracer to investigate hydrological pathways and residence times in the River Feshie, a complex mesoscale (231 km2) catchment in the Cairngorm Mountains of Scotland. Precipitation δ18O exhibited strong seasonal variation over the 2001–02 hydrological year, ranging from −6·9‰ in the summer, to −12·0‰ during winter snowfalls (mean δ18O −9·59‰). Although damped, this seasonality was reflected in stream water outputs at seven sampling sites in the catchment, allowing δ18O variations to be used to infer hydrological source areas. Thus, stream water δ18O was generally controlled by a seasonally variable storm flow end member, mixing with groundwater of more constant isotopic composition. Periodic regression analysis allowed the differences in this mixing process between monitoring subcatchments to be assessed more quantitatively to provide a preliminary estimate of mean stream water residence time. This demonstrated the importance of responsive hydrological pathways associated with peat and shallow alpine soils in the headwater subcatchments in producing seasonally variable runoff with short mean residence times (33–113 days). In contrast, other tributaries with more freely draining soils and larger groundwater storage in shallow aquifers provided more effective mixing of variable precipitation inputs, resulting in longer residence time estimates (178–445 days). The mean residence time of runoff leaving the Feshie catchment reflected an integration of these contrasting influences (110–200 days). These insights from δ18O measurements extend the hydrological understanding of the Feshie catchment gained from other hydrochemical tracers, and demonstrate the utility of isotope tracers in investigating hydrological processes at the mesoscale. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号