首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Only a fraction of the theoretically predicted non-radial pulsation modes have so far been observed in δ Scuti stars. Nevertheless, the large number of frequencies detected in recent photometric studies of selected δ Scuti stars allow us to look for regularities in the frequency spacing of modes. Mode identifications are used to interpret these results.
Statistical analyses of several δ Scuti stars (FG Vir, 44 Tau, BL Cam and others) show that the photometrically observed frequencies are not distributed at random, but that the excited non-radial modes cluster around the frequencies of the radial modes over many radial orders.
The observed regularities can be partly explained by modes trapped in the stellar envelope. This mode selection mechanism was proposed by Dziembowski & Królikowska and shown to be efficient for  ℓ= 1  modes. New pulsation model calculations confirm the observed regularities.
We present the s – f diagram, which compares the average separation of the radial frequencies ( s ) with the frequency of the lowest frequency unstable radial mode ( f ). This provides an estimate for the  log  g   value of the observed star, if we assume that the centres of the observed frequency clusters correspond to the radial mode frequencies. This assumption is confirmed by examples of well-studied δ Scuti variables in which radial modes were definitely identified.  相似文献   

2.
We study the possibility of the excitation of non-radial oscillations in classical pulsating stars. The stability of an RR Lyrae model is examined through non-adiabatic non-radial calculations. We also explore stability in the presence of non-linear coupling between radial and non-radial modes of nearly identical frequency.   In our model, a large number of unstable low-degree (ℓ = 1,2) modes have frequencies in the vicinity of unstable radial mode frequencies. The growth rates of such modes, however, are considerably smaller than those of the radial modes. We also recover an earlier result that at higher degrees (ℓ = 6–12) there are modes trapped in the envelope with growth rates similar to those of radial modes.   Subsequently, monomode radial pulsation of this model is considered. The destabilizing effect of the 1:1 resonance between the radial mode and nearby non-radial modes of low degrees is studied, with the assumption that the excited radial mode saturates the linear instability of all other modes. The instability depends on the radial mode amplitude, the frequency difference, the damping rate of the non-radial mode, and the strength of the non-linear coupling between the modes considered. At the pulsation amplitudes typical for RR Lyrae stars, the instability of the monomode radial pulsation and the concomitant resonant excitation of some non-radial oscillation modes is found to be very likely.  相似文献   

3.
We have carried out a three-site photometric campaign for the β Cephei star θ Oph from 2003 April to August. 245 h of differential photoelectric u v y photometry were obtained during 77 clear nights. The frequency analysis of our measurements has resulted in the detection of seven pulsation modes within a narrow frequency interval between 7.116 and 7.973 c d−1. No combination or harmonic frequencies have been found. We have performed a mode identification of the individual pulsations from our colour photometry that shows the presence of one radial mode, one rotationally split  ℓ= 1  triplet and possibly three components of a rotationally split  ℓ= 2  quintuplet. We discuss the implications of our findings and point out the similarity of the pulsation spectrum of θ Oph to that of another β Cephei star, V836 Cen.  相似文献   

4.
We have carried out single and multisite photometry of the three β Cephei stars β and 15 CMa as well as KZ Mus. For the two stars in CMa, we obtained 270 h of measurement in the Strömgren uvy and Johnson V filters, while 150 h of time-resolved Strömgren uvy photometry was acquired for KZ Mus. All three stars are multiperiodic variables, with three (β CMa) and four (15 CMa, KZ Mus) independent pulsation modes. Two of the mode frequencies of 15 CMa are new discoveries and one of the known modes showed amplitude variations over the last 33 yr. Taken together, this fully explains the diverse behaviour of the star reported in the literature.
Mode identification by means of the amplitude ratios in the different passbands suggests one radial mode for each star. In addition, β CMa has a dominant  ℓ= 2  mode while its third mode is non-radial with unknown ℓ. The non-radial modes of 15 CMa, which are  ℓ≤ 3  , form an almost equally split triplet that, if physical, would imply that we see the star under an inclination angle larger than 55°. The strongest non-radial mode of KZ Mus is  ℓ= 2  , followed by the radial mode and a dipole mode. Its weakest known mode is non-radial with unknown ℓ, confirming previous mode identifications for the pulsations of the star.
The phased light curve for the strongest mode of 15 CMa has a descending branch steeper than the rising branch. A stillstand phenomenon during the rise to maximum light is indicated. Given the low photometric amplitude of this non-radial mode this is at first sight surprising, but it can be explained by the aspect angle of the mode.  相似文献   

5.
We have used time-resolved spectroscopy to measure the colour dependence of pulsation amplitudes in the DAV white dwarf G29-38. Model atmospheres predict that mode amplitudes should change with wavelength in a manner that depends on the spherical harmonic degree ℓ of the mode. This dependence arises from the convolution of mode geometry with wavelength-dependent limb darkening. Our analysis of the six largest normal modes detected in Keck observations of G29-38 reveals one mode with a colour dependence different from the other five, permitting us to identify the ℓ-value of all six modes and to test the model predictions. The Keck observations also show pulsation amplitudes that are unexpectedly asymmetric within absorption lines. We show that these asymmetries arise from surface motions associated with the non-radial pulsations (which are discussed in detail in a companion paper). By incorporating surface velocity fields into line profile calculations, we are able to produce models that more closely resemble the observations.  相似文献   

6.
We present new high-dispersion spectroscopic data for the Be star ε Cap. The purpose of these data is to study the short-period line profile variations. By using a two-dimensional period-finding technique, we confirm that the photometric period of 0.99 d is present in the helium line profiles. We show that the variations are not easily explained by non-radial pulsation and suggest that corotating circumstellar material is responsible.  相似文献   

7.
We carried out a multicolour time-series photometric study of six stars claimed as 'hybrid' p and g mode pulsators in the literature. γ Peg was confirmed to show short-period oscillations of the β Cep type and simultaneous long-period pulsations typical of Slowly Pulsating B (SPB) stars. From the measured amplitude ratios in the Strömgren uvy passbands, the stronger of the two short period pulsation modes was identified as radial; the second is  ℓ= 1  . Three of the four SPB-type modes are most likely  ℓ= 1  or 2. Comparison with theoretical model calculations suggests that γ Peg is either a  ∼8.5 M  radial fundamental mode pulsator or a  ∼9.6 M  first radial overtone pulsator. HD 8801 was corroborated as a 'hybrid'δ Sct/γ Dor star; four pulsation modes of the γ Dor type were detected, and two modes of the δ Sct type were confirmed. Two pulsational signals between the frequency domains of these two known classes of variables were confirmed and another was newly detected. These are either previously unknown types of pulsation or do not originate from HD 8801. The O-type star HD 13745 showed small-amplitude slow variability on a time-scale of 3.2 d. This object may be related to the suspected new type of supergiant SPB stars, but a rotational origin of its light variations cannot be ruled out at this point. 53 Psc is an SPB star for which two pulsation frequencies were determined and identified with low spherical degree. Small-amplitude variability was formally detected for 53 Ari but is suspected not to be intrinsic. The behaviour of ι Her is consistent with non-variability during our observations, and we could not confirm light variations of the comparison star 34 Psc previously suspected. The use of signal-to-noise criteria in the analysis of data sets with strong aliasing is critically discussed.  相似文献   

8.
Time-series photometry of the Hipparcos variable stars HD 199434 and 21190 is reported. Both stars are pulsators of the δ Scuti type. Reclassifications of the MK types of the stars, based on new spectrograms, are given. HD 21190 is found to be F2III SrEuSi:, making it the most evolved Ap star known. Its Strömgren photometric indices support the peculiar spectral type. It is also one of the most evolved δ Scuti stars known. Its combined Ap– δ Scuti nature makes it an important test of models of pulsation in peculiar stars recently developed by Turcotte et al., although it is more extreme than any model they examined. Physical parameters of both stars are estimated from Strömgren and H β photometry, and Hipparcos absolute magnitudes. We attempt mode identifications based on amplitude ratios and phase differences from our photometry. The dominant pulsation of HD 21190 may be an overtone radial mode. The model fits for HD 199434 are even less satisfactory, but favour an ℓ=2 mode. Given the good quality and wavelength coverage of our data, the poor results from the application of the photometric theory of mode identification may call into question the use of that technique.  相似文献   

9.
A global analysis of the surface trapping of low-frequency non-radial g modes in rotating early-type stars is undertaken within the Cowling, adiabatic and traditional approximations. The dimensionless pulsation equations governing these modes are reviewed, and the boundary conditions necessary for solution of the equations are considered; in particular, an outer mechanical boundary condition, which does not enforce complete wave trapping at the stellar surface, is derived and discussed in detail. The pulsation equations are solved for a 7-M model star over a range of rotation rates, using a numerical approach.
The results of the calculations confirm the findings of the preceding paper in the series: modes with eigenfrequencies below a cut-off cannot be fully trapped within the star, and exhibit leakage in the form of outwardly propagating waves at the surface. The damping rates resulting from leakage are calculated for such 'virtual' modes, and found to be appreciably larger than typical growth rates associated with opacity-driven pulsation. Furthermore, it is demonstrated that the surface perturbations generated by virtual modes are significantly changed from those caused by fully trapped modes; the latter result suggests differences in the line-profile variations exhibited by these two types of mode.
The findings are discussed in the context of the 53 Per, SPB and pulsating Be classes of variable star. Whilst wave leakage will probably not occur for overstable g modes in the 53 Per and slowly rotating SPB stars, the adoption of the new outer mechanical boundary condition may still affect the pulsational stability of these systems. Wave leakage for overstable modes remains a possibility in Be stars and the more rapidly rotating SPB stars.  相似文献   

10.
We present optical time series spectroscopy of the pulsating white dwarf star G 29-38 taken at the Very Large Telescope (VLT). By measuring the variations in brightness, Doppler shift and line shape of each spectrum, we explore the physics of pulsation and measure the spherical degree (ℓ) of each stellar pulsation mode. We measure the physical motion of the g modes correlated with the brightness variations for three of the eight pulsation modes in this data set. The varying line shape reveals the spherical degree of the pulsations, an important quantity for properly modelling the interior of the star with asteroseismology. Performing fits to the Hβ, Hγ and Hδ lines, we quantify the changing shape of the line and compare them to models and previous time series spectroscopy of G 29-38. These VLT data confirm several ℓ identifications and add four new values, including an additional ℓ= 2 and a possible ℓ= 4. In total, from both sets of spectroscopy of G 29-38, eleven modes now have known spherical degrees.  相似文献   

11.
We apply for the first time the time-dependent convection (TDC) treatment of Gabriel and Grigahcène et al. to the photometric mode identification in γ Doradus (γ Dor) stars. We consider the influence of this treatment on the theoretical amplitude ratios and phase differences. Comparison with the observed amplitudes and phases of the stars γ Dor, 9 Aurigae, HD 207223 = HR 8330, HD 12901 and 48501 is presented and enables us to identify the degree ℓ of the pulsation modes for four of them. We also determine the mode stability for different models of these stars. We show that our TDC models agree better with observations than with frozen convection models. Finally, we compare the results obtained with different values of the mixing-length parameter α.  相似文献   

12.
HR 1217 is a prototypical rapidly oscillating Ap star that has presented a test to the theory of non-radial stellar pulsation. Prior observations showed a clear pattern of five modes with alternating frequency spacings of 33.3 and 34.6 μHz, with a sixth mode at a problematic spacing of 50.0 μHz (which equals  1.5×33.3 μHz)  to the high-frequency side. Asymptotic pulsation theory allowed for a frequency spacing of 34 μHz, but Hipparcos observations rule out such a spacing. Theoretical calculations of magnetoacoustic modes in Ap stars by Cunha predicted that there should be a previously undetected mode 34 μHz higher than the main group, with a smaller spacing between it and the highest one. In this Letter, we present preliminary results from a multisite photometric campaign on the rapidly oscillating Ap star HR 1217 using the 'Whole Earth Telescope'. While a complete analysis of the data will appear in a later paper, one outstanding result from this run is the discovery of a newly detected frequency in the pulsation spectrum of this star, at the frequency predicted by Cunha.  相似文献   

13.
HD 23194, a member of the Pleiades, was found to pulsate with a period of about 30 min. The literature on the star is reviewed, and it is concluded that it may be a marginal Am star in a binary system. HD 95321 is an evolved Am ( ρ Puppis) star with a 5.1-h periodicity. Mode identification of its pulsation, based on multicolour photometry, suggests that the oscillation is probably non-radial with ℓ=2. We also report on the discovery of six other new δ Scuti stars, some of which may be pulsating in gravity modes.  相似文献   

14.
We have detected pulsational radial velocity variations in the rapidly oscillating Ap star HR 3831 which are amplitude- and phase-modulated in the same manner as the photometric variations. In particular, the radial velocities show the same 180° phase reversal at magnetic quadrature as the photometric variations. This confirms the oblique pulsator model, and rules out the spotted pulsator model for these stars.  相似文献   

15.
We present new multicolour photometry and simultaneous high-dispersion spectroscopy for the δ Scuti star 1 Mon. The two main periodicities in the star are still present, but the third known period is not directly detected in the new radial velocities or light variations. However, it is detected in the periodogram of the second moment of the line profile variations. We use the cross-correlation function as an approximation for the line profile variations. By computing theoretical profiles for a given mode and comparing them with phased cross-correlation profiles, we are able to determine a goodness-of-fit criterion and estimate the most probable spherical harmonic degree,     the azimuthal order, m , of the pulsation and also the angle of inclination. We then compare the relative amplitudes and phases of the photometric variations in five wavebands and obtain the best estimates of     for the two visible periodicities. We confirm the earlier determinations that the main periodicity is a radial mode and that the other periodicity is probably         We show that the line profile variations and light variations give consistent results. We point out the importance of a long wavelength range when using the photometric mode identification technique. Finally, we attempt to match the two periods with unstable modes from linear, non-adiabatic calculations. We are able to show that the principal period is well matched by either the fundamental or first overtone radial mode, but could not find a satisfactory fit to the     mode. We discuss implications for mode identification of δ Scuti stars based on what we have learned from this star.  相似文献   

16.
We undertook two time-series photometric multisite campaigns for the rapidly oscillating Ap star HD 122970. The first one, conducted in 1998, resulted in 119 h of data and in the detection of three pulsation frequencies. The presence of possible further modes which held the promise of deriving a mode identification motivated a second worldwide campaign in the year 2001. This second campaign resulted in 203 h of measurement, but did not reveal further modes. Rather, one of the previously detected signals disappeared. The two modes common to both data sets have different spherical degree. They also showed slight frequency modulation, and one of them varied in amplitude as well. Possible causes of the latter behaviour include intrinsic instability of the pulsation spectrum or precession of the pulsational axis and orbital motion in a binary system. Frequency analysis of the Hipparcos observations of the star did not allow us to determine the stellar rotation period. The amplitude and phase behaviour of the two modes of HD 122970 in the Strömgren uvby bands is quite similar to that observed for other roAp stars.  相似文献   

17.
We present results of a comprehensive asteroseismic modelling of the β Cephei variable θ Ophiuchi. We call these studies complex asteroseismology because our goal is to reproduce both pulsational frequencies and corresponding values of a complex, non-adiabatic parameter, f , defined by the radiative flux perturbation. To this end, we apply the method of simultaneous determination of the spherical harmonic degree, ℓ, of excited pulsational mode and the corresponding non-adiabatic f parameter from combined multicolour photometry and radial velocity data. Using both the OP and OPAL opacity data, we find a family of seismic models which reproduce the radial and dipole centroid mode frequencies, as well as the f parameter associated with the radial mode. Adding the non-adiabatic parameter to seismic modelling of the B-type main-sequence pulsators yields very strong constraints on stellar opacities. In particular, only with one source of opacities it is possible to agree the empirical values of f with their theoretical counterparts. Our results for θ Oph point substantially to preference for the OPAL data.  相似文献   

18.
We undertook a time-series photometric multisite campaign for the rapidly oscillating Ap (roAp) star HD 99563 and also acquired mean light observations over four seasons. The pulsations of the star, which show flatter light maxima than minima, can be described with a frequency quintuplet centred on 1557.653 μHz and some first harmonics of it. The amplitude of the pulsation is modulated with the rotation period of the star that we determine with 2.91179 ± 0.00007 d from the analysis of the stellar pulsation spectrum and of the mean light data. We break up the distorted oscillation mode into its pure spherical harmonic components and find it is dominated by the ℓ= 1 pulsation, and also has a notable ℓ= 3 contribution, with weak ℓ= 0 and 2 components. The geometrical configuration of the star allows us to see both pulsation poles for about the same amount of time; HD 99563 is only the fourth roAp star for which both pulsation poles are seen and only the third where the distortion of the pulsation modes has been modelled. We point out that HD 99563 is very similar to the well-studied roAp star HR 3831. Finally, we note that the visual companion of HD 99563 is located in the δ Scuti instability strip and may thus show pulsation. We show that if the companion was physical, the roAp star would be a 2.03-M, object, seen at a rotational inclination of 44°, which then predicts a magnetic obliquity     .  相似文献   

19.
We present new intensive photometric observations of the Be star μ Cen for several seasons which support a period close to 1 d. We also present high‐resolution spectroscopic data consisting of 302 spectra in 1999 and 864 spectra in 2000, all obtained within a two‐week observing run in each season. We use stacked grey-scale plots of spectra, from which the mean line profile has been removed, to examine the profile variations. We find that most nights show one residual absorption feature, moving from blue to red, visible in all helium and metal lines and also clearly visible in H α and other lines formed in the circumstellar environment. We therefore conclude that this feature is of circumstellar origin. In addition, a residual absorption feature moving from red to blue is sometimes seen at irregular intervals. We find that the residual absorption feature frequently strays outside the projected rotational velocity limit and that on occasions it remains well within this limit. The radial velocity data reproduce only two of the six frequencies previously found in the star. We point out that this by no means implies that the star is a multiperiodic, non-radial pulsator. Photometric data obtained over several seasons indicate a period very close to 1 d and not the 0.5-d period found from the radial velocities. We describe an outburst which occurred during the run and which resulted in increased H α emission two nights later. It is clear that outbursts in Be stars are localized events and that the gas released by outbursts is probably responsible for localized increased absorption, resulting in periodic light and line profile variations.  相似文献   

20.
Low frequency oscillation, typical for γ Doradus g‐mode type stellar core sensitive pulsation, as well as higher frequency δ Scuti type pulsation typical for p ‐modes, sensitive to the envelope, make HD 8801 a remarkable hybrid pulsator with the potential to probe a stellar structure over a wide range of radius. In addition HD 8801 is a rare pulsating metallic line (Am) star. We determined the astro‐physical fundamental parameters to locate HD 8801 in the H‐R diagram. We analyzed the element abundances, paying close attention to the errors involved, and confirm the nature of HD 8801 as a metallic line (Am) star. We also determined an upper limit on the magnetic field strength. Our abundance analysis is based on classical techniques, but uses for the final step a model atmosphere calculated with the abundances determined by us. We also discuss spectropolarimetric observations obtained for HD 8801. This object is remarkable in several respects. It is a nonmagnetic metallic line (Am) star, pulsating simultaneously in p‐ and g‐modes, but also shows oscillations with periods in between these two domains, whose excitation requires explanation. Overall, the pulsational incidence in unevolved classical Am stars is believed to be quite low; HD 8801 does not conform to this picture. Finally, about 75 % of Am stars are located in short‐period binaries, but there is no evidence that HD 8801 has a companion. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号