首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Fodongmiao-Hongyazi Fault is a Holocene active thrust fault, belonging to the middle segment of northern Qilianshan overthrust fault zone, located in the northeastern edge of the Tibet plateau. The Hongyapu M7(1/4) earthquake in 1609 AD occurred on it. A few paleo-seismology studies were carried out on this fault zone. It was considered that four paleoearthquakes occurred on the Fodongmiao-Hongyazi Fault between(6.3±0.6) ka BP and(7.4±0.4) ka BP, in(4.3±0.3) ka BP, in(2.1±0.1) ka BP and in 1609 AD. The occurrences of the earthquakes suggested the quasi-periodic characteristic with a quasi-periodic recurrence interval between 1 600~2 500a(Institute of Geology, State Seismological Bureau, Lanzhou Institute of Seismology, State Seismological Bureau. 1993; Liu et al., 2014). There was no direct evidence for the Hongyapu M7(1/4) earthquake in 1609 AD from trench research in the previous studies. Great uncertainty exists because of the small number of the chronology data, as a few TL and OSL measurement data and several14 C data, and it was insufficient to deduce the exact recurrence interval for the paleoearthquakes. Five trenches were excavated and cleared up respectively in the eastern segment, middle segment and western segment along the Fodongmiao-Hongyazi Fault. After detail study on the trench profiles, the sedimentary characteristics, sequence relationship of the stratigraphical units, and fault-cuts in different stratigraphical units were revealed in these five trenches. Four paleoearthquakes in Holocene were distinguished from the five trenches, and geology evidences of the Hongyapu M7(1/4) earthquake in 1609 AD were also found. More accurate constraint of the occurring time of the paleo-earthquakes since Holocene on the Fodongmiao-Hongyazi Fault is provided by the progressive constraining method(Mao and Zhang, 1995), according to amounts of 14 C measurement data and OLS measurement data of the chronology samples from different stratigraphical units in the trenches. The first paleoevent, E4 occurred 10.6ka BP. The next event, E3 occurred about 7.1ka BP. The E2 occurred about 3.4ka BP. The last event, E1 is the Hongyapu M7(1/4) earthquake in 1609 AD. Abounds of proofs for the occurrences of the events of E1, E2 and E3 were found in the trench Tc1, trench Tc2, trench Tc4 and trench Tc3, located in the eastern, middle and western segments of the Fodongmiao-Hongyazi Fault accordingly. It's considered that the events E1, E2 and E3 may cause whole segment rupturing according to the proofs for these three events found together in individual trenches. The event E4 was only found in the trench Tc5 profile in the west of the Xiaoquan village in the eastern segment of the Fodongmiao-Hongyazi Fault. The earthquake rupture characteristics of this event can't be revealed before more detailed subsequent research. The time intervals among the four paleoearthquakes are ca 3.5ka, ca 3.7ka, and ca 3.0ka. The four events are characterized by ca 3.4ka quasi-periodic recurrence interval.  相似文献   

2.
前人在山西交城断裂带上开挖过多个探槽,揭露出全新世3次古地震事件,但其研究结果尚不能确定该断裂带全新世活动段的北部边界.近期在该断裂带北端和中段又开挖了3个大型探槽,其中在阳曲县泥屯盆地西界开挖的龙王沟探槽,是一个由多个探槽组合成的大探槽,该探槽揭示的地层断错信息,将交城断裂带全新世活动的范围向北延伸了20km.另外2个大型探槽分别为交城断裂带中段瓦窑沟东侧台地前缘的瓦窑探槽与市儿口沟西侧T1阶地前缘的新民探槽.这3个大探槽均揭示出全新世中期(14C测年值为距今5 ~ 6ka)的垆土和淤泥层,以及多组平行分布的断面,所揭示的全新世3次古地震事件具有断错事件活动的同步性,可与前人探槽揭示的全新世断层活动事件相对比.3次断错活动时间分别距今3.06 ~3.53ka、5.32ka左右或6.14ka左右、8.36ka左右;3次事件的时间间隔分别为2.02 ~ 2.84ka和2.22 ~ 3.04ka.这些断错事件的同震垂直位移为1.5~4.7m,显示了7级以上地表破裂型的强震活动.最后讨论了探槽中14C测年样品的影响因素.  相似文献   

3.
Hexi Corridor is located at the northeastern margin of the Tibetan plateau. Series of late Quaternary active faults are developed in this area. Numerous strong earthquakes occurred in history and nowadays. Jinta Nanshan fault is one of the boundary faults between the Qinghai-Tibet block and the Alxa block. The fault starts from the northwest of Wutongdun in the west, passes through Changshan, Yuanyangchi reservoir, Dakouzi, and ends in the east of Hongdun. Because the Jinta Nanshan fault is a new active fault in this region, it is important to ascertain its paleoearthquakes since late Pleistocene for the earthquake risk study. Previous studies were carried out on the western part, such as field geomorphic investigation and trench excavation, which shows strong activity in Holocene on the western segment of Jinta Nanshan fault. On the basis of the above research, in this paper, we carried out satellite image interpretation, detailed investigation of faulted landforms and differential GPS survey for the whole fault. Focusing on the middle-eastern part, we studied paleoearthquakes through trench exploration on the Holocene alluvial fan and optical luminescence dating. The main results are as follows:Early Pleistocene to late Pleistocene alluvial strata are widely developed along the fault and Holocene sediment is only about tens of centimeters thick. The Jinta Nanshan fault shows long-lasting activity since late Quaternary and reveals tens of centimeters of the lowest scarp which illustrates new strong activity on the middle-east segment of this fault. Since late Pleistocene, 4 paleoearthquakes happened respectively before(15.16±1.29) ka, before(9.9±0.5) ka, about 6ka and after(3.5±0.4) ka, revealed by 4 trenches, of which 2 are laid on relatively thicker Holocene alluvial fan. Two events occurred since middle Holocene, and both ruptured the whole fault.  相似文献   

4.
The Xiaojiang fault zone is located in the southeastern margin of the Tibetan plateau, the boundary faults of Sichuan-Yunnan block and South China block. The largest historical earthquake in Yunnan Province, with magnitude 8 occurred on the western branch of the Xiaojiang Fault in Songming County, 1833. Research on the Late Quaternary surface deformation and strong earthquake rupture behavior on the Xiaojiang Fault is crucial to understand the future seismic risk of the fault zone and the Sichuan-Yunnan region, even crucial for the study of tectonic evolution of the southeastern margin of Tibetan plateau. We have some new understanding through several large trenches excavated on the western branch of the Xiaojiang fault zone. We excavated a large trench at Caohaizi and identified six paleoseismic events, named U through Z from the oldest to the youngest. Ages of these six events are constrained at 40000-36300BC, 35400-24800BC, 9500BC-500AD, 390-720AD, 1120-1620AD and 1750AD-present. The Ganhaizi trench revealed three paleoearthquakes, named GHZ-E1 to GHZ-E3 from the oldest to the youngest. Ages of the three events are constrained at 3300BC-400AD, 770-1120AD, 1460AD-present. The Dafendi trench revealed three paleoearthquakes, named E1 to E3 from the oldest to the youngest, and their ages are constrained at 22300-19600BC, 18820-18400BC, and 18250-present. Caohaizi and Ganhaizi trenches are excavated on the western branch of the Xiaojiang Fault, the distance between them is 400m. We constrained four late Holocene paleoearthquakes with progressive constraining method, which are respectively at 500-720AD, 770-1120AD, AD 1460-1620 and 1833AD, with an average recurrence interval of 370~440a. Large earthquake recurrence in the late Holocene is less than the recurrence interval of~900a as proposed in the previous studies. Thus, the seismic hazard on the Xiaojiang Fault should be reevaluated. We excavated a large trench at Dafendi, about 30km away south of Caohaizi trench. Combining with previous paleoseismological research, it is found that the western branch of Xiaojiang Fault was likely to be dominated by segmented rupturing in the period from late of Late Pleistocene to early and middle Holocene, while it was characterized by large earthquakes clustering and whole segment rupturing since late Holocene.  相似文献   

5.
Geomorphic and trench investigations are used toanalyze the seismic potential of the Aremogna-CinqueMiglia fault, an active N- to NW-trending, W-facingnormal fault located in Central Apennines. Wereconstructed a complex 16 km-long, as much as 6m-high, fault scarp that displaces late Holocenesediments in the Aremogna and Cinque Miglia basins.The complex surface expression of the fault, withdouble sub-parallel scarp sections, a change in strikeof about 40° and local complexity showingimportant horizontal component, appears to becontrolled by the presence of older tectoniclineaments. We opened two trenches across the faultscarp, used a quarry exposure, and reinterpreted atrench opened by Frezzotti and Giraudi (1989), to findthe geological evidence for three Holocene surfacefaulting earthquakes on the Aremogna-Cinque Migliafault. Based on radiocarbon dating and stratigraphicand climatic considerations timing of the events isconstrained between 800 B.C. and 1030 A.D., between3735 and 2940 B.C., and between 3540 and 5000 B.C.. The most recent event is not reported in the twomillennia-long Italian Catalogues of HistoricalSeismicity. We suggest that the most recent eventcould be one of the Middle Age earthquakes of unknownorigin for which several felt reports exist in Rome.Moreover, we also consider the hypothesis that one ofthe shocks of the ambiguous September 1349 earthquakesequence could be the Aremogna-Cinque Miglia mostrecent event. Anyway, based on historicalconsideration we indicate A.D. 1349 as the youngestpossible age for this event. Finally, we suggest theAremogna-Cinque Miglia fault is part of the easternsecondary Apennines seismogenic belt. The faultparameters we obtain for this fault (i.e., recurrence interval longer than 2000 yr, verticallong-term slip rate of 0.3–0.5 mm/yr and m 6.5–6.8 forthe event) can be used as a first hand reference tocharacterize the seismic behavior of other faultsalong this section of the Apennines.  相似文献   

6.
Paleoseismology, the study of past earthquakes based on their geological record in the stratigraphy and landscape, is a successful newly developing field of research. The application of fault trench studies in volcanic environments is one of the youngest branches of paleoseismology. In this paper, we present the results of the first exploratory trenches excavated at Mt. Etna in Sicily, the largest European volcano. Modern surface faulting at Etna is a very well known feature, which poses significant hazard to the local community, both in terms of ground displacement of essential lifelines and ground shacking from frequent damaging earthquakes. However, while the geomorphology and the seismicity of the active fault in the Etna region consistently show very high rates of tectonic activity, the Holocene cumulative throw and slip-rates, along with the nature (coseismic vs. creeping fault slip), dimension and timing of the displacement events, are still poorly constrained. For this purpose, we selected as a sample area the Moscarello fault, one of the most outstanding segment of the Timpe system of active normal faults in the volcano’s lower eastern flank. Displaced landforms and volcanic units at the Fondo Macchia basin, in the central sector of this fault, indicate some hundreds of meters of vertical offset in the last ca. 80 kyr, with a long-term slip-rate substantially higher than 1.5–2.0 mm/yr. According to the historical sources and instrumental observations, the Moscarello fault ruptured four times in the last 150 years during shallow (H < 5 km) and moderate magnitude (M < 4.8) earthquakes. These events were associated with severe damage in a narrow epicentral area (macroseismic intensities up to the IX–X grade of the MSK scale) and extensive surface faulting (end-to-end rupture length up to 6 km, vertical offsets up to 90 cm). This clearly indicates very high modern rates of deformation along this fault. We conducted trench investigations at the Fondo Macchia site, in a point where eyewitnesses observed ca. 20 cm of coseismic vertical displacement after the April 21, 1971, Ms=3.7, earthquake. The excavated sections provided direct stratigraphic evidence for a vertical slip-rate of 1.4–2.7 mm/yr in the last ca. 6 kyr. This should be regarded as a minimum slip-rate for the central section of the fault. We explored a single scarp at a single site, while we know from recent historical observations that several parallel scarps may rupture coseismically at Fondo Macchia. Thus, the relevant deformation rate documented for the modern period might be likely extended back in the past to a time-span of some thousands of years at least. As expected, for such a volcanic environment, the activity rates of the Moscarello fault are also significantly higher than for the Apennines normal faults, typically showing slip-rates lower than 1 mm/yr. The agriculturally reworked trench hangingwall stratigraphy did not allow to recognize individual displacement events. Nevertheless, the sedimentary structures observed in the trench footwall strongly suggest that, as for the last 150–200 years of detailed historical record, fault behavior at Fondo Macchia is governed by coseismic surface displacement rather than fault creep. This research confirms that paleoseismology techniques can be effectively applied also in active volcanic environments, typically characterized by rheology and, consequently, seismicity and fault dynamics very different from those of other tectonic environments in which paleoseismology has been firstly developed and is today extensively applied.  相似文献   

7.
龙首山北缘断裂带是潮水盆地与龙首山地的地貌分界线,展布于龙首山隆起的北麓。前期曾在龙首山北缘断裂带东段的白家嘴、中段包代河、西段斜坡山开挖了三个探槽,均揭露出多期古地震。本文通过三个探槽古地震事件的对比分析认为,龙首山北缘断裂带第1次古地震(11 ka)到最后1次古地震(1.6 ka)间隔9.4 ka,约1万年时间里有6次古地震发生。如果取算术平均(9.4 ka/6=1.57 ka),则每隔1 500年左右,龙首山北缘断裂带就有一次强地震事件,即古地震平均重复间隔约1.57 ka。这和其它各大断裂带得出的古地震优势重现周期(1~2 ka)并不矛盾。①5 ka年以前龙首山北缘断裂带仅有2次古地震事件,重复间隔5.3 ka,明显偏长,可能有古地震的遗漏问题;②5 ka年以后该断裂地震活动明显丛集,最短间隔0.7 ka,最长间隔1.5 ka,平均重复间隔约0.8 ka。无论是最短、最长或平均重复间隔,均与山丹-张掖地区历史地震的最长重复间隔0.79 ka接近。  相似文献   

8.
通过详细分析上覆于梅江断裂上全新统地层中三个人工探槽剖面,得出该断裂是一条全新世活动断层,且近3000年以来,至少发生过两次7级左右强烈地震事件的结论性认识。  相似文献   

9.
We excavated five trenches across the North Anatolia fault zone (NAFZ)along the Ganos fault (Gazikoy-Saros segment), which last produced surfacerupture in 1912, near Kavakkoy where the fault enters the Gulf of Saros. The trenches exposed faulted sediments in a flood-plain environment withabundant detrital charcoal and scattered land-snail shells. Twenty-tworadiocarbon dates place constraints on the ages of the exposed sediments,which range from less than a few hundred years to about 6000 years inage. In two closely spaced trenches, we identified five discrete earthquakeevent horizons in the upper 2.5 m of stratigraphy based on abruptupward termination of shear zones, folding, fissuring, and abruptstratigraphic thickening, four of which may corresponded to historicallyrecorded large regional earthquakes. The earliest of the identified eventsoccurs below an unconformity and dates to about 4 ka B.P. The morerecent four events all occurred within the past 1000–1200 years and maycorrespond to large earthquakes in A.D. 824, ca 1354, 1509, 1766 and1912 (Ambraseys and Finkel, 1987, 1991, 1995). In another trench,we identified at least two events that have occurred during the past 500years and probably correspond to the large events of 1766 and 1912. These observations support an average return period of about 250–300years for the Gazikoy-Saros segment of the NAFZ. They also suggest thatthis segment, which is bound both to the east and west by large releasingstepovers, behaves in a quasi-periodic fashion, at least for the past severalsurface ruptures.Most of the 23 mm/yr of dextral shear between Anatolia and Europeobserved by GPS occurs on the North Anatolian fault. We use18 mm/yr and the 250–300 year recurrence rate, as determined fromour trenching and the historical record, to suggest that each of theearthquakes observed in our trenches produced several meters of slip,consistent with their inferred sizes from the extent of historical damage. Considering that Istanbul has not suffered a large nearby event in theMarmara Sea since 1766, we suggest that about 4 m of strain hasaccumulated across faults in the Marmara during these past centuries. Thisis similar to the average slip in many of the large earthquakes on the NorthAnatolian fault this century. If released seismically, this could result in anearthquake in the M 7.2–M 7.6 range, similar to the August and November,1999 earthquakes east of the Marmara Sea.  相似文献   

10.
More attention has been paid to the late Quaternary activity of the boundary fault of the Sichuan-Yunnan block in eastern Tibet. The Lijiang-Xiaojinhe Fault (LXF) locates along the boundary of the northwest Sichuan and central Yunnan sub-blocks in the Sichuan-Yunnan block. Clear displaced landforms show that the fault has undergone strong late-Quaternary activity. However there is no surface-rupturing earthquake occurring on the LXF in the historical record. The LXF crosses the city of Lijiang, one of the most important tourist cities in Southwest China. The rupture behavior on this fault remains unclear and it is hard to assess its seismic hazard in the future. In this study, on the base of the interpretation of high-resolution satellite imagery, we chose the middle segment of the LXF and dug three trenches at Muzhuda, Hongxing, and Gantangzi sites to constrain the ages of paleoearthquakes combined with radiocarbon dating and OxCal modeling. The Muzhuda trench shows that at least three events occurred on the middle segment of the LXF at 7 940~6 540a BP, 4 740~4 050a BP and 1 830~420a BP, respectively. The Hongxing trench indicates that the LXF underwent two events at 5 120~3 200a BP and 2 100~1 220a BP. The Gantangzi trench reveals at least three paleoearthquakes at 44 980~17 660a BP, 7 210~3 810a BP and 2 540~1 540a BP, respectively. The events in the Gantangzi trench might be incomplete because of stratigraphic gap. These three trenches indicate that three events occurred on the middle segment of the LXF in the Holocene at 7 940~7 210a BP, 4 740~4 050a BP and 1 830~1 540a BP, respectively. Large earthquakes on the middle segment of the LXF appear to fit the quasi-periodic model with the mean recurrence interval of~3 000a and the estimated magnitude 7.5. Given the strong late-Quaternary activity of the middle segment of the LXF and a long elapsed time, we propose that the middle segment of the LXF might have a high seismic hazard potential in the near future.  相似文献   

11.
A series of NWW striking faults are obliquely intersected by the NEE striking Altyn Tagh fault zone in the western Qilian Mountains. These faults were mostly active in late Quaternary and play an important role in accommodating regional lateral extrusion by both reverse and sinistral slip. Detailed studies on late Quaternary activity, tectonic transformation, paleoseismology, and strain partitioning not only significantly affect our recognition on seismogenic mechanism and zones of potential large earthquakes, but also provide useful information for exploring tectonic deformation mechanism in the northern Tibetan plateau. The Danghenanshan Fault, Yemahe-Daxueshan fault, and Altyn Tagh Fault form a triplet junction point at southwest of Subei county. The Yemahe-Daxueshan fault is one important branch fault in the western Qilian Mountains that accommodated eastward decreasing slip of the Altyn Tagh Fault, which was active in late Holocene, with a length up to 170km. Based on geometry and late Quaternary activity, the Yemahe-Daxueshan fault was subdivided into 3 segments, i.e. the Subei fault, Yemahe fault and Daxueshan Fault. The Yemahe Fault has the most prominent appearance among them, and is dominated by left-lateral slip with a little normal component. The heights of fresh scarps on this fault are only several tens of centimeters. We dug 2 trenches at the Zhazhihu site, and cleaned and reinterpreted one trench of previous studies. Then we interpreted trench profiles and paleoseismic events, and collected 14C and Optical Stimulated Luminescence samples to constrain event ages. Finally, we determined 3 events on the Yemahe fault with ages(6 830±30) a BP-(6 280±40) a BP, (5 220±30) a BP, (2 010±30) a BP, respectively. The elapsed time of most recent earthquake is(2 010±30) years before present, which is very close to the recurrence interval, so the possibility of major earthquakes on the Yemahe fault is relatively large.  相似文献   

12.
江娃利  谢新生 《地震地质》2002,24(2):177-187
当探槽开挖长度未跨过断层变形带时,得到的断层垂直位移将偏离断层活动的真实情况,在缺少依据帮助确定断层陡坎原始下坡角的具体位置时,通过断层陡坎高度获得的断层垂直位移也将与实际情况有较大的偏离,文中对此进行了讨论。并讨论了应用断层两侧近水平地层累积变位量的分解确定古地震事件期次的方法,以及探槽剖面中断层两侧同层地层厚度差异是断层活动事件的反映等问题。引用了内蒙古大青山山前断裂和狼山山前断裂、北京平原夏垫断裂和南口-孙河断裂及日本丹那断层探槽开挖的实例。  相似文献   

13.
北京平原夏垫断裂齐心庄探槽古地震事件分析   总被引:19,自引:3,他引:16       下载免费PDF全文
齐心庄探槽位于 1679年三河 -平谷 8级地震夏垫地表地震破裂带东段。探槽内出露的断错地层、崩积楔、堰塞塘堆积、张裂楔及微细地层层理的揉皱现象 ,显示夏垫断裂全新世以来曾发生 4次强震事件。这 4次强震分别发生在距今 ( 10 85~ 9 71)ka、( 7 39~ 6 68)ka、( 5 4 16~ 2 2 33)ka及 1679年 (即三河 -平谷 8级地震 )。这 4次强震的时间间隔分别为 ( 3 2 4 5± 0 336)ka、( 3 2 11±0 815)ka及 ( 3 553± 0 796)ka ,平均强震间隔为 ( 3 336± 0 396)ka。 4次强震的平均同震垂直位移为 ( 1 4± 0 5)m。在齐心庄实施的探槽工程 ,除邻近断面开挖的探槽外 ,还在探槽南北 4 0 0m范围内开挖了 4个探坑 ,对认识断层下降盘地层的展布形态及确定断面堰塞塘的分布提供了帮助。在这些野外工作基础上 ,对齐心庄探槽研究结果与前人沿夏垫断裂其它地点的探槽及钻孔资料进行了对比 ,在古地震事件认识上大部分是一致的  相似文献   

14.
天山全新世活动断裂及古地震研究   总被引:2,自引:0,他引:2  
冯先岳 《内陆地震》1995,9(3):217-226
横亘亚洲腹地的天山山脉近代构造活动十分强烈。规模较大的全新世活动断裂有20多条,多为近东西走向的倾滑型逆断裂,常与活动褶皱相伴生。活动褶皱为无根的断裂扩展褶皱和滑脱褶皱,它的生长是受地下活动的盲断裂所控制,往往是褶皱地震潜在的地区。天山古地震活动遗迹很多,归纳其标志有:多重断层陡坎、古断塞塘、崩积楔、填充楔、推覆楔、地震断错台地和断裂扩展褶皱等。近几年对10条全新世活动断裂进行开挖研究,已取得大地  相似文献   

15.
The occurrence of earthquakes in oceanic trenches can pose a tsunami threat to lives and properties in active seismic zones. Therefore, the knowledge of focal depth, magnitude, and time distribution of earthquakes along the trenches is needed to investigate the future occurrence of earthquakes in the zones. The oceanic trenches studied, were located from the seismicity map on: latitude +51° to +53°and longitude-160° to 176°(Aleutian Trench), latitude+40° to +53° and longitude +148° to +165°(Japan Trench), and latitude-75° to-64° and longitude –15° to+30°(Peru–Chile Trench). The following features of seismic events were considered: magnitude distribution, focal depth distribution, and time distribution of earthquake. The results obtained in each trench revealed that the earthquakes increased with time in all the regions. This implies that the lithospheric layer is becoming more unstable. Thus, tectonic stress accumulation is increasing with time. The rate of increase in earthquakes at the Peru–Chile Trench is higher than that of the Japan Trench and the Aleutian Trench. This implies that the convergence of lithospheric plates is higher in the Peru–Chile Trench. Deep earthquakes were observed across all the trenches. The shallow earthquakes were more prominent than intermediate and deep earthquakes in all thetrenches. The seismic events in the trenches are mostly of magnitude range 3.0–4.9. This magnitude range may indicate the genesis of mild to moderate tsunamis in the trench zone in near future once sufficient slip would occur with displacement of water column.  相似文献   

16.
在青藏高原东北隅发育一系列向北东凸出的弧形断裂带.其中最主要的三条断裂带从北到南分别为牛首山-罗山断裂带、香山-天景山断裂带和天祝一海原断裂带。香山-天景山断裂带从上世新以来一直有过活动,并在1709年发生了中卫南7t/2级地震。近期,宁夏地震局在孟家湾村南开挖了一个探槽.揭露出石炭纪的煤系地层逆冲于晚更新世风成沙之上.根据风成沙光释光测年结果表明。此探槽显示的断裂活动时代在距今约26.14±1.08ka.极有可能为22.09±0.4ka与26.14±1.08ka之间.  相似文献   

17.
大凉山断裂带是大型走滑断裂鲜水河-小江断裂系的重要组成部分,其活动性是认识和探讨青藏高原东南缘现今地震活动和构造变形机制的重要基础资料.相较于中段和南段,关于大凉山断裂带北段活动性的相关研究成果,尤其是古地震资料非常缺乏.文中基于野外地质地貌调查,在石棉断裂联合村处开挖了一组(2个)探槽,揭露出断裂全新世活动的直接证据...  相似文献   

18.

郯庐断裂带是中国东部重要的活动断裂带和边界构造带,其鲁苏段全新世活动断层的空间展布和古地震序列是地学关注的焦点问题,也是准确评价区域地震危险性的重要参数.以往研究工作多集中在郯庐断裂带地表地貌现象明显且有强震记录的山东段,而江苏段则研究程度相对较低,有关郯庐断裂带江苏段全新世活动断层范围和古地震序列问题存在争议.本文利用野外地质地貌调查、浅层地震勘探、钻孔联合剖面以及古地震探槽等多层次综合方法,重点开展郯庐断裂带江苏段全新世活动断层的分布和古地震序列研究.结果显示全新世时期,安丘-莒县断裂是郯庐断裂带江苏段的主要活动断层,且江苏全段该断层都是全新世活动断层.通过对比宿迁闸-皂河镇断裂南北安丘-莒县断裂的断层地貌和断层最新活动时间,并结合宿迁闸-皂河镇断裂在第四纪没有活动过等证据,推测该断层在全新世时期并不是区域阻碍破裂的断层.探槽揭示郯庐断裂带江苏段全新世两次古地震事件,事件Ⅰ限定在(6.2±0.3)-(13.4±0.7)ka B.P.之间,而事件Ⅱ限定在(2.5±0.1)ka B.P.到现今,全新世两次古地震间隔较长.基于构造类比法,安丘-莒县断裂具有深部孕震的构造特点,是区域未来强震的潜在发震构造.

  相似文献   

19.
Lithologic data compiled from Deep Sea Drilling Project and Ocean Drilling Program sites, when combined with orthogonal convergence rates at convergent plate boundaries, permit quantification of the mass flux of sediment into subduction zones. We have made such calculations for each major sediment component — terrigenous grains, calcium carbonate, opal, and water — for twelve trench systems. Results show that 1.4 × 1015 g/yr of sediment and 0.9 × 1015 g/yr of water enter the trenches in the oceanic sedimentary layer. Most of the entering sediment, 1.1 × 1015 g/yr, is terrigenous; the remainder is more carbonate than opal. For most of geologic time an order of magnitude more sediment enters the ocean than leaves it via subduction. The global sedimentary cycle need be in balance only over an entire Wilson cycle. Comparison of sediment fluxes into trenches with the magnitude of large earthquakes and with the composition of bulk volcanic rock shows no correlation.  相似文献   

20.
四川大凉山断裂带古地震研究初步结果   总被引:8,自引:7,他引:8       下载免费PDF全文
沿四川大凉山断裂带的 4条次级断裂开挖了 4个探槽 ,共揭露出 9次古地震事件。根据探槽中年龄样品的测试结果 ,分析了各次事件的距今年龄及其重复间隔。其中 ,有 3个探槽共揭露出4次全新世以来的古地震事件。 9次古地震的垂直位移量在 0 5~ 1 5m之间 ,与鲜水河 -小江断裂带历史地震所产生的垂直位移量进行对比 ,估计它们的震级都在 7级以上  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号