首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Physick et al. (1989) have discussed some difficulties associated with simulation of the sea-breeze thermal internal boundary layer (TIBL), using a numerical model containing a profile exchange coefficient formulation developed by O'Brien (1970). They suggested that a closure scheme based on a prediction of turbulent kinetic energy (TKE) would be able to resolve the TIBL better than a profile scheme. This Research Note reports simulations of the case discussed in I, using a numerical model with a TKE-based turbulence closure.  相似文献   

2.
The growth of a two-dimensional internal boundary layer (IBL), which develops when a neutral or unstably stratified flow over a uniform terrain encounters a step-change in surface roughness, is numerically investigated by a higher-order turbulence closure theory. It is found that the thickness of the IBL increases as ~ x n, where x is the downstream distance from the roughness-transition line. For a given set of upstream conditions, the value of the exponent n depends only on the Monin-Obukhov length L, and it is approximately independent of the roughness-change parameter M = In (z01/z02). At large fetches, increases markedly with increasing instability.NRC-NAS Resident Research Associate at AFCRL, 1973–74  相似文献   

3.
The nocturnal boundary layer during the passage of a mesoscale fog front   总被引:1,自引:1,他引:1  
The structure of the nocturnal boundary layer affected by an advected fog mass is investigated. For this, measurements of the horizontal wind vector, the temperature, relative humidity and horizontal visibility performed on a radio mast 300 m high are used together with a monostatic SODAR recording.The shape of the cold fog mass, which roughly resembles that of a density current, is described by the shallow water equations in a first approximation. Ahead of the leading edge of the fog mass, a stream function analysis suggests an upward flow component. In addition, a local circulation pattern exists at the density interface. After the fog front has passed the measuring site, the boundary-layer flow becomes more turbulent and, from the hydrodynamical point of view, critical. In agreement with this, the friction velocity inside the growing fog mass increases with time, as shown by a simple integral method.  相似文献   

4.
5.
The coastal TIBL is one of the most important and interesting atmospheric processes in shoreline areas, because it has some distinct turbulent features and because it has a major influence on atmospheric dispersion in shoreline areas. In this paper the characteristics of the TIBL, such as its growth parabolically with downwind distance and its turbulent structure are examined.  相似文献   

6.
This article reviews the available data, measurement techniques, and present understanding of the millimeter thick aqueous thermal boundary layer. A temperature difference between the surface and lower strata, T, of the order of a few tenths to –1 °C have been observed. Techniques ranging from miniature mercury thermometers and electrical point sensors to optical interferometry and infrared radiometry have been employed. Many processes influence the temperature structure in this thin boundary layer. Among them are: the net upward heat flux due to evaporation and sensible heat transfer; infrared and solar radiation; and the turbulence near the interface due to wind mixing, wave breaking and current shear. Presence of solute and surface-active materials stimulate or dampen these mixing processes thereby influencing boundary-layer thickness and temperature structure.Department of Atmospheric Sciences Contribution Number 354.  相似文献   

7.
The effects of variations in sea-surface temperature on the surface fluxes of the marine atmospheric boundary layer have been investigated. The boundary model developed by Brown and Brown and Liu has been used to estimate these effects for near neutral conditions. Data taken on September 1, 1978, during the JASIN experiment have been used to corroborate the results obtained with Brown's model. Some speculations on secondary effects of the sea-surface temperature are given.  相似文献   

8.
Turbulent characteristics of a 50 to 100 m deep convective internal boundary layer (I.B.L.) have been studied. The data were gathered at a flat coastal site (Näsudden on the island of Gotland, Sweden) during three consecutive days in May 1980 which were characterized by a steady, very stable stratified marine approach flow. The site is situated on a flat area ca. 1500 m from the shoreline. Only daytime runs have been analysed in the present paper. The sensible heat flux at the ground was typically 200 W m-2 and was found to decrease more or less linearly with height throughout the I.B.L., being slightly negative at greater heights. The momentum flux was also found to decrease with height, but nevertheless shear production of turbulent kinetic energy was found to be large throughout the entire I.B.L. The analysis shows that the turbulent regime has a mixed character. Certain characteristics, such as the rate of growth of the I.B.L., appear to be almost entirely controlled by mechanical turbulence, while others, notably temperature variance and the spectrum of vertical velocity, scale remarkably well with w * and z i, in accordance with the results found in fully convective conditions during the experiments at Minnesota and Aschurch. Other turbulent characteristics, such as spectra of the horizontal wind components measured near the top of the I.B.L. tend to adhere to mixed-layer scaling in the high frequency range, exhibiting much increased energy in the lower (reduced) frequency range. Spectra of the velocity components from 10 m are shown to be in general agreement with findings from ‘ideal’, homogeneous sites (Kansas) when properly normalized, although the low frequency part of u- and v-spectra are slightly reduced compared to the case with deep convection.  相似文献   

9.
A numerical modelling study is presented focusing on the effects of mesoscale sea-surface temperature (SST) variability on surface fluxes and the marine atmospheric boundary-layer structure. A basic scenario is examined having two regions of SST anomaly with alternating warm/cold or cold/warm water regions. Conditions upstream from the anomaly region have SST values equal to the ambient atmosphere temperature, creating an upstream neutrally stratified boundary layer. Downstream from the anomaly region the SST is also set to the ambient atmosphere value. When the warm anomaly is upstream from the cold anomaly, the downstream boundary layer exhibits a more complex structure because of convective forcing and mixed layer deepening upstream from the cold anomaly. An internal boundary layer forms over the cold anomaly in this case, generating two distinct layers over the downstream region. When the cold anomaly is upstream from the warm anomaly, mixing over the warm anomaly quickly destroys the shallow cold layer, yielding a more uniform downstream boundary-layer vertical structure compared with the warm-to- cold case. Analysis of the momentum budget indicates that turbulent momentum flux divergence dominates the velocity field tendency, with pressure forcing accounting for only about 20% of the changes in momentum. Parameterization of surface fluxes and boundary-layer structure at these scales would be very difficult because of their dependence on subgrid-scale SST spatial order. Simulations of similar flow over smaller scale fronts (<5 km) suggest that small-scale SST variability might be parameterized in mesoscale models by relating the effective heat flux to the strength of the SST variance.  相似文献   

10.
StudyontheThermalinternalBoundaryLayerandDispersionofAirPollutantinCoastalAreabyNumericalSimulation¥JiangWeimei(蒋维楣)andYuHong...  相似文献   

11.
梅雨锋上两类中尺度对流系统形成的边界层特征   总被引:3,自引:0,他引:3  
采用具有较高时空分辨率的地面观测资料以及WRF(Weather reasearch and forecasting)模式输出资料,分析了2009年6月29一-30日梅雨锋暴雨过程中两类不同的中尺度对流系统(rnesoscale convective system,MCS)边界层特征及边界层对两类MCS的触发维持机理,重点分析了海平面气压场特征、边界层冷池、干线及其在MCS中的影响。结果表明:两类中尺度对流系统的海平面气压特征存在着明显的差异,对流爆发阶段地面风场存在辐合线,再次激发阶段气压场呈“跷跷板”型的中尺度扰动,即由前置中低压和后置中高压组成,最强的对流带位于中低压和中高压之间的过渡区内;边界层辐合线是第一类中尺度对流系统(MCSl)维持的重要因素;MCSl爆发后边界层冷池生成,冷池前的冷出流与低层环境风产生的强辐合触发了第二类中尺度对流系统(MCS2);存在于中低压和中高压之间的中尺度干线是MCS2的重要特点之一。  相似文献   

12.
许建玉  刘羽 《暴雨灾害》2016,27(1):31-38

以华中区域中尺度业务模式WRF3D为平台,使用MYJ、ACM2边界层方案完成2012年7月的批量敏感试验,重点研究不同边界层方案对中国中东部地区夏季降水预报的影响。与高分辨率降水实况相比,白天(夜晚)的降水预报差异主要由降水面积(降水强度)决定,以MYJ方案在白天预报过大降水面积和ACM2方案在夜晚预报过强降水最为突出。对模式结果的进一步诊断表明,MYJ方案下的大面积降水由白天大范围启动积云对流方案形成隐式降水造成,而ACM2方案下的强降水与夜间更易激发云微物理方案形成过强显式降水有关。在此基础上,从边界层方案设计原理出发,指出不同方案下的垂直混合强度是导致降水预报差异的根本原因。

  相似文献   

13.
1.Introducti0nThemesoscaleoperationalmodel-whichisoftenused,isMM4orMM5'butMM4isusedfrequentlyonlO3kmscale.Thephysicalprocessesinthismodeldevelopconstantly.FororiginalMM4,thecomputationofsurfacefluxesisnotaccurate,andKmodelfortheturbu-lencefluxesbetweenany2levelsneedstobeimprovedbynewtreatment.Inordertostudytheinfluencesofboundarylayerparameterizationschemesonmesoscaleheavyrainsystem,sur-facefluxesandKmodelinoriginalMM4areimprovedbytherecentresearchinthispaPer.Theflux-profilerelationsforv…  相似文献   

14.
Atmospheric numerical models depend critically on realistic treatment of the lower boundary conditions. In strongly thermally-stratified conditions, turbulence may be very weak and the models may find it difficult to produce a good forecast near the surface. Under clear skies and for weak synoptic winds the determining factors are the turbulent kinetic energy and surface-layer parameterizations, which can be very different between models. Here, two state-of-the-art mesoscale models (MM5 and Meso-NH) are operated under exactly the same conditions for two different nights over the Duero basin in the Iberian Peninsula: one night with a well-defined synoptic wind and a second with practically no horizontal pressure gradient. The models are inter-compared and checked against available information, and their performances are evaluated.  相似文献   

15.
Landscape heterogeneity that causes surface flux variability plays a very important role in triggering mesoscale atmospheric circulations and convective weather processes. In most mesoscale numerical models, however, subgrid-scale heterogeneity is somewhat smoothed or not adequately accounted for, leading to artificial changes in heterogeneity patterns (e.g., patterns of land cover, land use, terrain, and soil types and soil moisture). At the domain-wide scale, the combination of losses in subgrid-scale heterogeneity from many adjacent grids may artificially produce larger-scale, more homogeneous landscapes. Therefore, increased grid spacing in models may result in increased losses in landscape heterogeneity. Using the Weather Research and Forecasting model in this paper, we design a number of experiments to examine the effects of such artificial changes in heterogeneity patterns on numerical simulations of surface flux exchanges, near-surface meteorological fields, atmospheric planetary boundary layer (PBL) processes, mesoscale circulations, and mesoscale fluxes. Our results indicate that the increased heterogeneity losses in the model lead to substantial, nonlinear changes in temporal evaluations and spatial patterns of PBL dynamic and thermodynamic processes. The decreased heterogeneity favor developments of more organized mesoscale circulations, leading to enhanced mesoscale fluxes and, in turn, the vertical transport of heat and moisture. This effect is more pronounced in the areas with greater surface heterogeneity. Since more homogeneous land-surface characteristics are created in regional models with greater surface grid scales, these artificial mesoscale fluxes may have significant impacts on simulations of larger-scale atmospheric processes.  相似文献   

16.
The mean structure within the internal boundary layer (IBL) near the shore, which develop from the coast in the presence of a sea breeze, has been described in Part I of this study (Ogawa and Ohara, 1984). This paper presents the results of the similarity and energy budget analysis for the purpose of parameterization of the turbulent structure within the IBL. The analysis of the turbulent kinetic energy balance, turbulent intensities and spectra show that the wind is strongly affected by mechanical turbulence in comparison with the past results in a fully developed convective layer where thermal convection dominated. The standard deviations of the wind velocities normalized by the friction velocity u * (surface-layer scaling parameter) are functions only of the normalized height z/Z i within 160 m of the shoreline, where Z i is the IBL. On the other hand, the standard deviations of temperature normalized by * (mixing-layer scaling parameter) have less scatter with distance than those normalized by T * (surface-layer scaling parameter). The data showed that both u * (not a mixed-layer parameter), and Z i (not a surface-layer parameter) are necessary to describe the turbulent characteristics of the IBL near the shore.Deceased March, 1984.  相似文献   

17.
A field experiment to measure the turbulent structure of the internal boundary layer near the shore was conducted using three instrumented meteorological poles, a kytoon, and a crane-mounted ultrasonic anemometer-thermometer, as well as three reference ultrasonic anemometer-thermometers positioned near the poles. Part 1 of this study gives the explicit details and general characteristics for one run of the experiment. Part 2 (Ohara and Ogawa, 1984) will present a similarity and energy budget analysis. The mean velocity profiles showed that there was wind speed acceleration due to the sea-land temperature difference. In addition, the velocity profiles consisted of three distinct regions; the region near the ground had the largest gradient followed by a transition zone which had a small velocity gradient, while above, the profile resembled the oncoming sea breeze. In general, the turbulence was greatest near the shore, gradually decreasing inland. The lowest region had large turbulence intensities and the transition region had some intermittent turbulence characteristics between the lower strong unstable layer and the relatively turbulent-free region above.Deceased March 1984.Present address: The Institute of Behavioral Sciences, Yoyagi, Tokyo 151, Japan.  相似文献   

18.
A model for the time and space variation of the internal boundary-layer height over a land area with an irregular coastline is presented. It is based on the analytical model of the boundary-layer height proposed by Gryning and Batchvarova (1990) and Batchvarova and Gryning (1991), The model accounts for the temperature jump and the mean vertical air motion at the top of the internal boundary-layer. Four cases from experiments in Nanticoke and Vancouver are used for model validation. The agreement between the calculated and measured internal boundary layer height at the observational sites is fairly good. The input information for the model consist of wind speed and direction, friction velocity and kinematic heat flux in time and space for the area, and the potential temperature gradient and the mean vertical air motion above the internal boundary layer. For the experiments used in the validation the effect of subsidence is relatively important in the afternoon under low wind speed high pressure conditions, lowering the height of the internal boundary layer by up to 10%, and it is negligible in the morning hours. The effect of the mixing height over the sea is found to be negligible.  相似文献   

19.
Expressions for the vertical and the lateral diffusivity coefficients were derived from the Local Similarity Theory and the Statistical Diffusion Theory. For such, the spectral density energies for the turbulent velocities were used. The expressions here derived are compared with the diffusivity coefficients for momentum and heat suggested by Sorbjan (from the Minnesota experiments) and Nieuwstadt (from the Cabauw experiments). This comparison allows us to conclude that turbulence is equally efficient in transporting momentum, heat and contaminants in an ideally stable boundary layer.  相似文献   

20.
A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, ζ, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号