首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The turbulent structure of the lake breeze penetration and subsequent development of the thermal internal boundary layer (TIBL) was observed using a kytoon-mounted ultrasonic anemometer-thermometer. The lake breeze penetrated with an upward rolling motion associated with the upward flow near the lake breeze front. After the lake breeze front passed, the behaviors of the velocity and temperature at the top of the lake breeze layer were similar to those found in convective boundary layers (CBL). Comparing gq/*, u /w * and w /w * between the present observation of TIBL development after the passage of the lake breeze front and CBL data from the literature, the /* values showed reasonable agreement; however, u /w * and w /W* had smaller values in the TIBL than in the CBL at higher altitudes. This is due to the differences in the mean velocity profiles. While the CBL has a uniform velocity profile, the TIBL has a peak at lower elevation due to the lake breeze penetration; the velocity then decreases with height.Present address: The Institute of Behavioral Science, 1-35-7 Yoyogi, Tokyo 151, Japan.  相似文献   

2.
The air pollution meteorology of a typical sea breeze day is investigated using the Colorado State University Mcsoscale Model. Results are qualitatively compared with observations and reveal a complex wind field characterised by migratory sea breeze convergence zones. Associated with these features, the model predicts enhanced upward vertical velocities and doming of the planetary boundary layer (PBL). The diurnal variation in PBL depth is shown to vary markedly at different locations and is dependent on position in relation to the migratory convergence zones. These complex spatial and temporal variations in the wind and PBL depth have important implications for air quality in Auckland and confirm that simple Gaussian or box trajectory approaches are inappropriate for air quality assessment in such environments. The inclusion in the model of variable surface properties, a dynamic synoptic state and improved PBL parameterisations, as well as coupling with a Lagrangian particle model, are recommended if the model is to be used as a tool for further air quality studies in the Auckland area.  相似文献   

3.
The influence of the main large-scale wind directions on thermally driven mesoscale circulations at the Baltic southwest coast, southeast of Sweden, is examined. The aim of the study is to highlight small-scale alterations in the coastal atmospheric boundary layer. A numerical three-dimensional mesoscale model is used in this study, which is focused on an overall behaviour of the coastal jets, drainage flows, sea breezes, and a low-level eddy-type flow in particular. It is shown that synoptic conditions, together with the moderate terrain of the southeast of Sweden (max. height h0 206 m), governs the coastal mesoscale dynamics triggered by the land-sea temperature difference T. The subtle nature of coastal low-level jets and sea breezes is revealed; their patterns are dictated by the interplay between synoptic airflow, coastline orientation, and T.The simulations show that coastal jets typically occur during nighttime and vary in height, intensity and position with respect to the coast; they interact with downslope flows and the background wind. For the assigned land surface temperature (varying ±8 K from the sea temperature) and the opposing constant geostrophic wind 8 m s-1, the drainage flow is more robust to the opposing ambient flow than the sea breeze later on. Depending on the part of the coast under consideration, and the prevailing ambient wind, the sea breeze can be suppressed or enhanced, stationary at the coast or rapidly penetrating inland, locked up in phase with another dynamic system or almost independently self-evolving. A low-level eddy structure is analyzed. It is governed by tilting, divergence and horizontal advection terms. The horizontal extent of the coastal effects agrees roughly with the Rossby radius of deformation.  相似文献   

4.
A numerical study of the Chicago lake breeze   总被引:3,自引:0,他引:3  
A two-dimensional numerical model is presented for the study of the Chicago area lake breeze. The hydrostatic approximation used by previous workers in this field is not employed. Instead, the complete z-momentum equation is solved and the equation of continuity is retained in its original form. The numerical model employs a staggered mesh, and Alternating Direction Implicit methods are used for the integration of the equations. Computational stability is achieved without external filters, upstream space differencing, or artificial horizontal diffusion terms.The results obtained for realistic initial conditions but simplified boundary conditions compare reasonably well with observations obtained by Lyons in his 1967 observational study of the Chicago lake breeze. Limiting forms of the lower boundary condition bracket the observed wind speeds and other kinematic features of the breeze. Among the various eddy diffusivity models, that with constant eddy diffusivity with height produces the most realistic results. The models with a decrease of eddy diffusivity with height show unrealistic flow patterns in the upper layers. The stability of the atmosphere at the onset of the breeze is shown to have a pronounced effect on the intensity of the circulation, but not on the thickness of the inflow layer, which appears quite insensitive to large changes in the parameters involved.  相似文献   

5.
Meteorological measurements taken at the Näsudden wind turbine site during slightly unstable conditions have been analyzed. The height of the convective boundary layer (CBL) was rather low, varying between 60 and 300 m. Turbulence statistics near the ground followed Monin-Obukhov similarity, whereas the remaining part of the boundary layer can be regarded as a near neutral upper layer. In 55% of the runs, horizontal roll vortices were found. Those were the most unstable runs, with -z i/L > 5. Spectra and co-spectra are used to identify the structures. Three roll indicators were identified: (i) a low frequency peak in the spectrum of the lateral component at low level; (ii) a corresponding increase in the vertical component at mid-CBL; (iii) a positive covariance {ovvw} together with positive wind shear in the lateral direction (V/z) in the CBL. By applying these indicators, it is possible to show that horizontal roll circulations are likely to be a common phenomenon over the Baltic during late summer and early winter.  相似文献   

6.
Plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focusis on highly-buoyant plumes that loft near or become trapped in the CBL capping inversion and resistdownward mixing. Such plumes are defined by dimensionless buoyancy fluxes F* 0.1, where F* = Fb/(U w* 2 zi), Fb is the stack buoyancy flux,U is the mean wind speed, w* is the convective velocity scale, and zi is the CBL depth. The aim is to obtain statistically-reliable mean (C) and root-mean-square (rms, c) concentration fields as a function of F* and the dimensionless distance X = w*x/(U zi), where x is the distance downstream of the source.The experiments reveal the following mainresults: (1) For 3 X 4and F* 0.1, the crosswind-integrated concentration (CWIC) fields exhibit distinctly uniform profiles below zi with a CWIC maximum aloft, in contrast to the nonuniform profiles obtained earlier by Willis and Deardorff. (2) The lateral dispersion (y) variation with X is consistent with Taylor's theory for * 0.1 and a buoyancy-enhanced dispersion, y/zi F* 1/3X2/3, forF* = 0.2 and 0.4. (3) The entrapment, the plume fraction above zi, has a mean (E) that follows a systematic variationwith X and F*, and a variability (e/E) that is broad ( 0.3 to 2) near the source but subsides to 0.25 far downstream. (4) Vertical profiles of the concentration fluctuation intensity (c/C) are uniform for z < zi and X > 1.5, but exhibit significant increases: (a) at the surface and close to the source (X 1.5), and(b) in the entrainment zone. (5) The cumulative distribution functions (CDFs) of the scaled concentration fluctuations (c/c) separate into mixed-layer and entrainment-layer CDFs for X 2, with the mixed-layer group collapsing to a single distribution independent of z.These are the first experiments to obtain all components of the lateral and vertical dispersion parameters (rms meander, relative dispersion, total dispersion) for continuous buoyant releases in a convection tank. They also are the first tank experiments to demonstrate agreement with field observations of: (1) the scaled ground-level concentration along the plume centreline, and (2) the dimensionless lateral dispersion _y/z_i of buoyant plumes.  相似文献   

7.
Turbulence and mean flow variables under unstable conditions are examined with special emphasis on the consequences of roughness and surface elevation change. An interpolation formula for w 2, between neutral and free convection, is shown to bring order to the data. The spectral distribution of vertical wind variance is found to be in good agreement with results over horizontal homogeneous terrain, both with respect to form and position. In particular, the length scale m corresponding to the maximum of nS w(n) is unchanged. Another turbulent length scale, (k/)z, is found to be substantially reduced in the disturbed zone of the internal boundary layer. To a first approximation, the flow-acceleration effect on the non-dimensional wind shear can be separated from the diabatic effect.  相似文献   

8.
A model is developed to simulate the potential temperature and the height of the mixed layer under advection conditions. It includes analytic expressions for the effects of mixed-layer conditions upwind of the interface between two different surfaces on the development of the mixed layer downwind from the interface. Model performance is evaluated against tethersonde data obtained on two summer days during sea breeze flow in Vancouver, Canada. It is found that the mixed-layer height and temperature over the ocean has a small but noticeable effect on the development of the mixed layer observed 10 km inland from the coast. For these two clear days, the subsidence velocity at the inversion base capping the mixed layer is estimated to be about 30 mm s–1 from late morning to late afternoon. When the effects of subsidence are included in the model, the mixed-layer height is considerably underpredicted, while the prediction for the mean potential temperature in the mixed layer is considerably improved. Good predictions for both height and temperature can be obtained when values for the heat entrainment ratio,c, 0.44 and 0.68 for these two days respectively for the period from 1000 to 1300 LAT, were used. These values are estimated using an equation including the additional effects on heat entrainment due to the mechanical mixing caused by wind shear at the top of the mixed layer and surface friction. The contribution of wind shear to entrainment was equal to, or greater than, that from buoyant convection resulting from the surface heat flux. Strong wind shear occurred near the top of the mixed layer between the lower level inland flow and the return flow aloft in the sea breeze circulation.Symbols c entrainment parameter for sensible heat - c p specific heat of air at constant pressure, 1010 J kg–1 K–1 - d 1 the thickness of velocity shear at the mixed-layer top, m - Q H surface sensible heat flux, W m–2 - u m mean mixed-layer wind speed, m s–1 - u * friction velocity at the surface, m s–1 - w subsidence velocity, m s–1 - W subsidence warming,oC s–1 - w e entrainment velocity, m s–1 - w * convection velocity in the mixed layer, m s–1 - x downwind horizontal distance from the water-land interface, m - y dummy variable forx, m - Z height above the surface, m - Z i height of capping inversion, m - Z m mixed-layer depth, i.e.,Z i–Zs, m - Z s height of the surface layer, m - lapse rate of potential temperature aboveZ i, K m–1 - potential temperature step atZ i, K - u h velocity step change at the mixed-layer top - m mean mixed-layer potential temperature, K  相似文献   

9.
This paper summarizes some measurements of high-frequency turbulence made at Cardington during the years 1968, 1969 and 1970 at heights up to 900 m. It discusses the statistical distribution of the data which appears to be closely log-normal. Also it is shown how the mean profiles of the derived dissipation of turbulent kinetic energy () can be rationalized to some extent in terms of atmospheric stability and low-level wind speed. A close correlation between and the mean wind and temperature profiles up to 900 m is illustrated and some discussion of the turbulent energy budget throughout the boundary layer is presented. The use and limitations of the constant flux layer relations in calculatingz 0 andL from the estimates of, at the lower heights, is brought out.  相似文献   

10.
The formation of longitudinal vortex rolls in the planetary boundary layer (PBL) is investigated by means of perturbation analysis. The method is the same as that used by previous authors who have investigated the instability of a laminar Ekman layer. To study the instability of the turbulent boundary layer of the atmosphere, vertical profiles are needed of the eddy viscosity and of the two components of the basic flow. These profiles have been obtained by a numerical PBL-model; they are universal for zz 0. (However, the stability equations are not completely universal, i.e., independent of the external parameters). For each thermal stratification, expressed by the internal stratification parameter , one has a set of three consistent profiles.The numerical solution of the stability equations gives the critical values and the perturbation growth rates as functions of thermal stratification and of the surface Rossby number Ro0. This is in contrast to the case of a laminar Ekman layer, where the instability depends on a Reynolds number only, which makes atmospheric applications difficult. The most unstable perturbations are found for Ro0 = 1 × 106 approximately, which is in the range of surface Rossby numbers observed in the atmosphere. However, considering vortex rolls oriented in the direction of the surface stress, the instability is found to be universal, i.e., independent of the external parameters combined in the surface Rossby number. With respect to thermal stratification, the results show that the instability of the perturbations increases with increasing static stability.  相似文献   

11.
Panofsky et al. (1977) have presented an analysis which seems to show a clear dependence of the dimensionless turbulence statistics u /u * and v/u * on the planetary boundary-layer stability parameter z i/L. However it is possible that much of the apparent relationship results from artificial correlations introduced by the use of inter-related dimensionless parameters. Apparent dependencies of similar statistical quantities on z/L in the surface boundary layer might also be contaminated.This work was supported by the U.S. Department of Energy, and is a contribution of the Multistate Atmospheric Power Production Pollution Study (MAP3S).  相似文献   

12.
An analysis was performed of experimental data obtained at fixed ship stations during AMTEX 1974 and 1975. This allowed the calculation of the bulk transfer relationships for water vapor and sensible heat in the atmospheric boundary layer for different interpretations of the thickness scale of the boundary layer. It was found that scaling based on the observed thickness, which herein was taken as the height of the lowest value in the potential temperature profile under unstable conditions, produces least scatter in the calculations. The results obtained for the similarity function c( i ) of the bulk heat transfer coefficient are in good agreement with the results of previous studies. As observed earlier (Brutsaert and Mawdsley, 1976; Mawdsley and Brutsaert, 1977), under unstable conditions the similarity functions D() of the bulk water vapor transfer coefficient are smaller than the corresponding C() functions for sensible heat. In the case of inversion height scaling, the results can be represented by d( i ) = 0.65 c( i ).  相似文献   

13.
Nine profiles of the temperature structure parameter C T 2 and the standard deviation of vertical velocity fluctuations ( w) in the convective boundary layer (CBL) were obtained with a monostatic Doppler sodar during the second intensive field campaign of the First ISLSCP Field Experiment in 1987. The results were analyzed by using local similarity theory. Local similarity curves depend on four parameters: the height of the mixed layer (z i ), the depth of the interfacial layer (), and the temperature fluxes at the top of the mixed layer (Q i ) and the surface (Q o). Values of these parameters were inferred from sodar data by using the similarity curve for C T 2 and observations at three points in its profile. The effects of entrainment processes on the profiles of C T 2 and wnear the top of the CBL appeared to be described well by local similarity theory. Inferred estimates of surface temperature flux, however, were underestimated in comparison to fluxes measured by eddy correlation. The measured values of wappeared to be slightly smaller than estimates based on available parmeterizations. These discrepancies might have been caused by experimental error or, more likely, by the distortion of turbulence structure above the site by flow over the nonuniform terrain at the observation site.  相似文献   

14.
Surface-layer features with different prevailing wind directions for two distinct seasons (Southwest Monsoon and Northeast Monsoon) on the west coast of India are studied using data obtained from tower-based sensors at a site located about 500 m from the coast. Only daytime runs have been used for the present analysis. The surface boundary-layer fluxes have been estimated using the eddy correlation method. The surface roughnessz 0 obtained using the stability-corrected wind profiles (Paulson, 1970) has been found to be low for the Southwest monsson season. For the other season,z 0 is relatively high. The drag coefficientC D varies with height in the NE monsoon season but not in the season with lowz 0. This aspect is reflected in the wind profiles for the two seasons and is discussed in detail. The scaling behaviour of friction velocityu * and the turbulence intensity of longitudinal, lateral and vertical winds u, v and w, respectively) are further examined to study their dependence on fetch. Our study shows that for the non-dimensional case, u/u* and v/u* do not show any surface roughness dependence in either season. On the other hand, for w/u* for the season with lowz 0, the values are seen to agree well with that of Panofskyet al. (1977) for homogeneous terrain whereas for the other season with highz 0, the results seem to conform more to the values observed by Smedman and Högström (1983) for coastal terrain. The results are discussed in the light of observations by other investigators.  相似文献   

15.
The mean structure within the internal boundary layer (IBL) near the shore, which develop from the coast in the presence of a sea breeze, has been described in Part I of this study (Ogawa and Ohara, 1984). This paper presents the results of the similarity and energy budget analysis for the purpose of parameterization of the turbulent structure within the IBL. The analysis of the turbulent kinetic energy balance, turbulent intensities and spectra show that the wind is strongly affected by mechanical turbulence in comparison with the past results in a fully developed convective layer where thermal convection dominated. The standard deviations of the wind velocities normalized by the friction velocity u * (surface-layer scaling parameter) are functions only of the normalized height z/Z i within 160 m of the shoreline, where Z i is the IBL. On the other hand, the standard deviations of temperature normalized by * (mixing-layer scaling parameter) have less scatter with distance than those normalized by T * (surface-layer scaling parameter). The data showed that both u * (not a mixed-layer parameter), and Z i (not a surface-layer parameter) are necessary to describe the turbulent characteristics of the IBL near the shore.Deceased March, 1984.  相似文献   

16.
The winter-time arctic atmospheric boundary layer was investigated with micrometeorological and SF6 tracer measurements collected in Prudhoe Bay, Alaska. The flat, snow-covered tundra surface at this site generates a very small (0.03 cm) surface roughness. The relatively warm maritime air mass originating over the nearby, partially frozen Beaufort Sea is cooled at the tundra surface resulting in strong (4 to 30 °C · (100 m)-1) temperature inversions with light winds and a persistent weak (1 to 2 °C · (100 m)-1) surface inversion with wind speeds up to 17 m s-1. The absence of any diurnal atmospheric stability pattern during the study was due to the very limited solar insolation. Vertical profiles were measured with a multi-level mast from 1 to 17 m and with a Doppler acoustic sounder from 60 to 450 m. With high wind speeds, stable layers below 17 m and above 300 m were typically separated by a layer of neutral stability. Turbulence statistics and spectra calculated at a height of 33 m are similar to measurements reported for non-arctic, open terrain sites and indicate that the production of turbulence is primarily due to wind shear. The distribution of wind direction recorded at 1 Hz was frequently non-Gaussian for 1-hr periods but was always Gaussian for 5-min periods. We also observed non-Gaussian hourly averaged crosswind concentration profiles and assume that they can be modeled by calculating sequential short-term concentrations, using the 5-min standard deviation of horizontal wind direction fluctuations () to estimate a horizontal dispersion coefficient ( y ), and constructing hourly concentrations by averaging the short-term results. Non-Gaussian hourly crosswind distributions are not unique to the arctic and can be observed at most field sites. A weak correlation between horizontal ( v ) and vertical ( w ) turbulence observed for both 1-hr and 5-min periods indicates that a single stability classification method is not sufficient to determine both vertical and horizontal dispersion at this site. An estimate of the vertical dispersion coefficient, z , could be based on or a stability classification parameter which includes vertical thermal and wind shear effects (e.g., Monin-Obukhov length, L).  相似文献   

17.
Equilibrium evaporation beneath a growing convective boundary layer   总被引:1,自引:1,他引:0  
Expressions for the equilibrium surface Bowen ratio ( s ) and equilibrium evaporation are derived for a growing convective boundary layer (CBL) in terms of the Bowen ratio at the top of the mixed layer i and the entrainment parameter A R . If AR is put equal to zero, the solution for s becomes-that previously obtained for the zero entrainment or closed box model. The Priestley-Taylor parameter is also calculated and plotted in terms ofA R and i . Realistic combinations of the atmospheric parameters give values of in the range 1.1 to 1.4.  相似文献   

18.
Analytical solutions for the Ekman layer   总被引:1,自引:0,他引:1  
The PBL equation that governs the transition from the constant-stress surface layer to the geostrophic wind in a neutrally stratified atmosphere for which the eddy viscosityK(z) is assumed to vary smoothly from the surface-layer value U *z (0.4,U *=friction velocity,z=elevation) to the geostrophic asymptoteK GU *d forzd is solved through an expansion in fd/U *1 (f=Coriolis parameter). The resulting solution is separated into Ekman's constant-K solution an inner component that reduces to the classical logarithmic form forzd and isO() relative to the Ekman component forzd. The approximationKU *d is supported by the solution of Nee and Kovasznay's phenomenological transport equation forK(z), which yieldsKU *d exp(–z/d), where is an empirical constant for which observation implies, 1. The parametersA andB in Kazanskii and Monin's similarity relation forG/U * (G=geostrophic velocity) are determined as functions of . The predicted values ofG/U * and the turning angle are in agreement with the observed values for the Leipzig wind profile. The predicted value ofB based on the assumption of asymptotically constantK is 4.5, while that based on the Nee-Kovasznay model is 5.1; these compare with the observed value of 4.7 for the Leipzig profile. A thermal wind correction, an asymptotic solution for arbitraryK(z) and 1, and an exact (unrestricted ) solution forK(z)=U *d[1–exp(–z/d)] are developed in appendices.  相似文献   

19.
From measurements in the atmospheric surface layer over a paddy field, the Kolmogorov constants for CO2 and longitudinal wind velocity were obtained. In this study, the nondimensional dissipation rate nc = (1–16 v )-1/2 for CO2 variance and = (1–16 v )-1/4 v for turbulent energy were used, assuming the equality of the local production term and the local dissipation term, and neglecting the divergence flux term in the budget equation. The value of the constant for CO2 was consistent with recent determinations for temperature and humidity. The constant for longitudinal wind velocity showed good agreement with other recent observations.  相似文献   

20.
It is shown that the observationally determined roughness relation z 0 = u * 2/g in which g is the acceleration of gravity, u *, is the friction velocity in air, and = 0.0185 (Wu, 1982) for the wind profile over the sea surface relative to the surface current, is consistent with the existence of a Richardson Number criterion at the air-sea interface in which the critical Richardson Number, Ric = 1, such that all the shear energy is converted into potential energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号