首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Variability of Atlantic Meridional Overturning Circulation in FGOALS-g2   总被引:3,自引:0,他引:3  
The variability of Atlantic Meridional Overturning Circulation (AMOC) in the pre-industrial control experiment of the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2) was investigated using the model outputs with the most stable state in a 512-yr time window from the total 1500-yr period of the experiment. The period of AMOC in FGOALS-g2 is double peaked at 20 and 32 years according to the power spectrum, and 22 years according to an auto-correlation analysis, which shows very obvious decadal variability. Like many other coupled climate models, the decadal variability of AMOC in FGOALS-g2 is closely related to the convection that occurs in the Labrador Sea region. Deep convection in the Labrador Sea in FGOALS-g2 leads the AMOC maximum by 3-4 years. The contributions of thermal and haline effects to the variability of the convection in three different regions [the Labrador, Irminger and Greenland-Iceland- Norwegian (GIN) Seas] were analyzed for FGOALS-g2. The variability of convection in the Labrador and Irminger Seas is thermally dominant, while that in the colder GIN Seas can be mainly attributed to salinity changes due to the lower thermal expansion. By comparing the simulation results from FGOALS-g2 and 11 other models, it was found that AMOC variability can be attributed to salinity changes for longer periods (longer than 35 years) and to temperature changes for shorter periods.  相似文献   

2.
A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15–30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.  相似文献   

3.
利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)发展的耦合的气候系统模式FGOALS-s2工业革命前控制试验结果研究了大西洋经向翻转流(Atlantic Meridional Overturning Circulation,AMOC)的年代际变率及其物理机制。传统AMOC是利用深度坐标下的质量流函数来表征,本文通过对密度坐标下49.5°N的AMOC指数与其余纬度的AMOC指数作相关分析,发现AMOC的变化有从深水形成区向南传播的过程,且密度坐标下的AMOC变率在北大西洋高纬度明显大于低纬度。分析进一步表明,模式模拟的AMOC具有年代际振荡,周期约为70年。这个低频振荡主要是由与AMOC变化相关的温度和盐度的变化与海表风场之间的相互作用引起,具体机制如下:格陵兰-冰岛-挪威海有异常强的海表风场,导致蒸发增强,继而使海表盐度增加,深水形成增多,从而使AMOC增强。AMOC加强后,会使得向北的热量和盐度输送增加,减弱此处的经向温度梯度,风场随之减弱,从而完成位相的反转。  相似文献   

4.
Variability in the Atlantic Meridional Overturning Circulation (AMOC) has been analysed using a 600-year pre-industrial control simulation with the Bergen Climate Model. The typical AMOC variability has amplitudes of 1?Sverdrup (1 Sv?=?106?m3?s?1) and time scales of 40–70?years. The model is reproducing the observed dense water formation regions and has very realistic ocean transports and water mass distributions. The dense water produced in the Labrador Sea (1/3) and in the Nordic Seas, including the water entrained into the dense overflows across the Greenland-Scotland Ridge (GSR; 2/3), are the sources of North Atlantic Deep Water (NADW) forming the lower limb of the AMOC’s northern overturning. The variability in the Labrador Sea and the Nordic Seas convection is driven by decadal scale air-sea fluxes in the convective region that can be related to opposite phases of the North Atlantic Oscillation. The Labrador Sea convection is directly linked to the variability in AMOC. Linkages between convection and water mass transformation in the Nordic Seas are more indirect. The Scandinavian Pattern, the third mode of atmospheric variability in the North Atlantic, is a driver of the ocean’s poleward heat transport (PHT), the overall constraint on northern water mass transformation. Increased PHT is both associated with an increased water mass exchange across the GSR, and a stronger AMOC.  相似文献   

5.
A preindustrial climate experiment was conducted with the third version of the CNRM global atmosphere–ocean–sea ice coupled model (CNRM-CM3) for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). This experiment is used to investigate the main physical processes involved in the variability of the North Atlantic ocean convection and the induced variability of the Atlantic meridional overturning circulation (MOC). Three ocean convection sites are simulated, in the Labrador, Irminger and Greenland–Iceland–Norwegian (GIN) Seas in agreement with observations. A mechanism linking the variability of the Arctic sea ice cover and convection in the GIN Seas is highlighted. Contrary to previous suggested mechanisms, in CNRM-CM3 the latter is not modulated by the variability of freshwater export through Fram Strait. Instead, the variability of convection is mainly driven by the variability of the sea ice edge position in the Greenland Sea. In this area, the surface freshwater balance is dominated by the freshwater input due to the melting of sea ice. The ice edge position is modulated either by northwestward geostrophic current anomalies or by an intensification of northerly winds. In the model, stronger than average northerly winds force simultaneous intense convective events in the Irminger and GIN Seas. Convection interacts with the thermohaline circulation on timescales of 5–10 years, which translates into MOC anomalies propagating southward from the convection sites.  相似文献   

6.
利用一个全球海气耦合模式--卑尔根气候模式的积分结果,揭示了与大西洋热盐环流(THC)年代际和年际振荡相对应的气候异常型.年代际振荡发生在全海盆尺度,伴有亚速尔高压的增强、冰岛低压的加深;年际振荡发生在局地尺度,伴有亚速尔高压的减弱.这两种海平面气压异常型都反映了北大西洋涛动(NAO)活动中心的强度变化,两种变率型对应的拉布拉多海对流活动都加剧.但伴随局地尺度的THC调整,伊尔明格海的对流活动减弱.蒸发异常对拉布拉多海表层盐度异常的影响较为显著.分析表明,局地尺度的THC振荡主要是对大气强迫的被动响应,而海盆尺度THC振荡的实质是反映整个输送带的强度变化,其气候意义要大于THC的局地振荡.  相似文献   

7.
Assessing the skill of the Atlantic meridional overturning circulation (AMOC) in decadal hindcasts (i.e. retrospective predictions) is hampered by a lack of observations for verification. Models are therefore needed to reconstruct the historical AMOC variability. Here we show that ten recent oceanic syntheses provide a common signal of AMOC variability at 45°N, with an increase from the 1960s to the mid-1990s and a decrease thereafter although they disagree on the exact magnitude. This signal correlates with observed key processes such as the North Atlantic Oscillation, sub-polar gyre strength, Atlantic sea surface temperature dipole, and Labrador Sea convection that are thought to be related to the AMOC. Furthermore, we find potential predictability of the mid-latitude AMOC for the first 3–6 year means when we validate decadal hindcasts for the past 50 years against the multi-model signal. However, this predictability is not found in models driven only by external radiative changes, demonstrating the need for initialization of decadal climate predictions.  相似文献   

8.
An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1,500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland–Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification precedes that of the MOC by several years.  相似文献   

9.
Atlantic Multidecadal Variability (AMV) is investigated in a millennial control simulation with the Kiel Climate Model (KCM), a coupled atmosphere–ocean–sea ice model. An oscillatory mode with approximately 60 years period and characteristics similar to observations is identified with the aid of three-dimensional temperature and salinity joint empirical orthogonal function analysis. The mode explains 30 % of variability on centennial and shorter timescales in the upper 2,000 m of the North Atlantic. It is associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) of ±1–2 Sv and Atlantic Sea Surface Temperature (SST) of ±0.2 °C. AMV in KCM results from an out-of-phase interaction between horizontal and vertical ocean circulation, coupled through Irminger Sea convection. Wintertime convection in this region is mainly controlled by salinity anomalies transported by the Subpolar Gyre (SPG). Increased (decreased) dense water formation in this region leads to a stronger (weaker) AMOC after 15 years, and this in turn leads to a weaker (stronger) SPG after another 15 years. The key role of salinity variations in the subpolar North Atlantic for AMV is confirmed in a 1,000 year long simulation with salinity restored to model climatology: No low frequency variations in convection are simulated, and the 60 year mode of variability is absent.  相似文献   

10.
The effects of ocean density vertical stratification and related ocean mixing on the transient response of the Atlantic meridional overturning circulation (AMOC) are examined in a freshwater perturbation simulation using the Bergen Climate Model (BCM). The results presented here are based on the model outputs of a previous freshwater experiment: a 300-year control integration (CTRL), a freshwater integration (FW1) which started after 100 years of running the CTRL with an artificially and continuously threefold increase in the freshwater flux to the Greenland-Iceland-Norwegian (GIN) Seas and the Arctic Ocean throughout the following 150-year simulation. In FW1, the transient response of the AMOC exhibits an initial decreasing of about 6 Sv (1 Sv=106 m3 s^-1) over the first 50-year integration and followed a gradual recovery during the last 100-year integration. Our results show that the vertical density stratification as the crucial property of the interior ocean plays an important role for the transient responses of AMOC by regulating the convective and diapycnal mixings under the enhanced freshwater input to northern high latitudes in BCM in which the ocean diapycnal mixing is stratification-dependent. The possible mechanism is also investigated in this paper.  相似文献   

11.
Observations indicate that since the 1970s Equatorial Atlantic sea surface temperature (SST) variations in boreal summer tend to modulate El Niño in the following seasons, indicating that the Atlantic Ocean can have importance for predicting the El Niño–Southern Oscillation (ENSO). The cause of the change in the recent decades remains unknown. Here we show that in the Bergen Climate Model (BCM), a freshwater forced weakening of the Atlantic meridional overturning circulation (AMOC) results in a strengthening of the relation between the Atlantic and the Pacific similar to that observed since the 1970s. During the weakening AMOC phase, SST and precipitation increase in the central Equatorial Atlantic, while the mean state of the Pacific does not change significantly. In the Equatorial Atlantic the SST variability has also increased, with a peak in variability in boreal summer. In addition, the characteristic timescales of ENSO variability is shifted towards higher frequencies. The BCM version used here is flux-adjusted, and hence Atlantic variability is realistic in contrast to in many other models. These results indicate that in the BCM a weakening AMOC can change the mean background state of the Tropical Atlantic surface conditions, enhancing Equatorial Atlantic variability, and resulting in a stronger relationship between the Tropical Atlantic and Pacific Oceans. This in turn alters the variability in the Pacific.  相似文献   

12.
基于美国大气研究中心的CCSM3(Community Climate System Model version3)模式,对淡水扰动试验中不同热盐环流(thermohline circulation,THC)平均强度下,北大西洋气候响应的差异进行研究。结果表明:1)在不同平均强度下,北大西洋海洋、大气要素的气候态差异显著。相对于高平均强度,在低平均强度下,北大西洋地区海表温度(sea surface temperature,SST)、海表盐度(sea surface salinity,SSS)、海表密度(sea surface density,SSD)、表面气温(surface air temperature)异常减弱,最大负异常位于GIN(Greenland sea--Iceland sea--Norwegiansea)海域;海平面气压(sealev—elpressure,SLP)异常升高,相应于北大西洋海域降温,表现为异常冷性高压的响应特征;海冰分布区域向南扩大;北大西洋西部热带海域降水减少,导致热带辐合带(intertropical convergence zone,ITCZ)南移。2)在不同THC平均强度下,SST、SSS和SSD年际异常最显著的区域不同;在高平均强度下,最显著区域位于GIN海域,而在低平均强度下则位于拉布拉多海海域。3)在高平均强度下,北大西洋SST主导变率模态的变率极大区域位于GIN海,而在低平均强度下该极大区域不存在;北大西洋SLP的主导变率模态表现为类NAO型,但在高平均强度下,类NAO型表现得更明显。  相似文献   

13.
利用2个关于大西洋经向翻转流(Atlantic Meridional Overturning Circulation,AMOC)的指数:AMOC指数(15oN~65oN、深度为500 m以下的AMOC的最大值)和AMOC扩展指数(15oN~65oN、深度为2000~2500m的AMOC的最大值),研究了耦合模式FGOALS-g2(Grid-point Version 2 of Flexible Global Ocean-AtmosphereLand System Model)中的AMOC在CMIP5(Coupled Model Intercomparison Project Phase 5)的3个典型浓度路径(Representation Concentration Pathways,RCP)(RCP2.6、RCP4.5和RCP8.5分别对应于2100年时490、650和1370 ppm的CO2浓度水平)下的响应问题,发现:在RCP2.6和RCP4.5浓度路径下,2006~2040年时间段内AMOC指数和AMOC扩展指数都呈现快速下降的趋势,2041~2100年时间段内AMOC指数逐渐恢复,AMOC扩展指数基本维持不变;在RCP8.5浓度路径下,2006~2100年时间段内AMOC指数和AMOC扩展指数都表现出快速下降的趋势。通过分析FGOALS-g2中北大西洋深水的成因发现:3个典型浓度路径下AMOC的长期变化趋势主要受到GIN(Greenland–Iceland–Norwegian)海域的深水形成率的调控,而AMOC的年代际尺度的变化则主要受到Labrador海域深水形成率的控制。同时揭示了:由于北大西洋2000 m深度附近的层结稳定性在RCP2.6和RCP4.5下(相比于1980~2005年)提高了30%~40%,使得由AMOC指数恢复产生的深水无法继续下沉,从而导致AMOC扩展指数没有出现恢复的现象。  相似文献   

14.
于雷  郜永祺  王会军 《大气科学》2009,33(1):179-197
利用卑尔根海洋-大气-海冰耦合气候模式(Bergen Climate Model, 简称BCM), 研究在北冰洋及北欧海淡水强迫增强的背景下, 大西洋经向翻转环流(Atlantic Meridional Overturning Circulation, 简称AMOC)的响应及其机制, 着重讨论了海表热力性质、北大西洋深层水 (North Atlantic Deep Water, 简称NADW) 的生成率、 海洋内部等密度层间的垂直混合 (Diapycnal Mixing, 简称DM) 以及大气风场等物理过程随AMOC的响应所发生的时间演变特征。结果显示, 在持续150年增强 (强度为0.4 Sv) 的淡水强迫下 (淡水试验, FW1), AMOC的强度表现为前50年的快速减弱和在接下来100年中的逐渐恢复。同时, 在淡水试验的前50年北大西洋高纬度海表盐度 (Sea Surface Salinity, 简称SSS) 减小, 海水密度降低, 冬季对流混合减弱, 导致NADW生成率快速减弱; 在接下来的100年中, 尽管增强的淡水强迫依然维持, 由于海洋内部自身的调节和海气相互作用, 导致了AMOC的逐渐恢复。恢复机制可以概括为: (1) 随着向南的NADW的减少, 大西洋中低纬度海水垂直层结逐渐减弱, DM随之逐渐增强, 有利于中低纬度海盆内深层水的上升; (2) 南半球西风应力增强与东风应力的减弱及北半球东风的增强使得大西洋向北的埃克曼体积通量净传输恢复; (3) 大西洋向北的盐度传输逐渐恢复及次极地回旋区降水的减弱, 导致SSS和NADW生成率的恢复, 与之对应, AMOC逐渐恢复。研究还发现, 淡水试验中, NADW的恢复主要以厄尔明格海 (Irminger Sea) 为主, 冬季北大西洋海平面气压场 (SLP) 呈现类似正北大西洋涛动 (NAO+) 的模态, 热带降水中心移到赤道以南, 大西洋热带SSS增强。  相似文献   

15.
The NCEP twentieth century reanalyis and a 500-year control simulation with the IPSL-CM5 climate model are used to assess the influence of ocean-atmosphere coupling in the North Atlantic region at seasonal to decadal time scales. At the seasonal scale, the air-sea interaction patterns are similar in the model and observations. In both, a statistically significant summer sea surface temperature (SST) anomaly with a horseshoe shape leads an atmospheric signal that resembles the North Atlantic Oscillation (NAO) during the winter. The air-sea interactions in the model thus seem realistic, although the amplitude of the atmospheric signal is half that observed, and it is detected throughout the cold season, while it is significant only in late fall and early winter in the observations. In both model and observations, the North Atlantic horseshoe SST anomaly pattern is in part generated by the spring and summer internal atmospheric variability. In the model, the influence of the ocean dynamics can be assessed and is found to contribute to the SST anomaly, in particular at the decadal scale. Indeed, the North Atlantic SST anomalies that follow an intensification of the Atlantic meridional overturning circulation (AMOC) by about 9 years, or an intensification of a clockwise intergyre gyre in the Atlantic Ocean by 6 years, resemble the horseshoe pattern, and are also similar to the model Atlantic Multidecadal Oscillation (AMO). As the AMOC is shown to have a significant impact on the winter NAO, most strongly when it leads by 9 years, the decadal interactions in the model are consistent with the seasonal analysis. In the observations, there is also a strong correlation between the AMO and the SST horseshoe pattern that influences the NAO. The analogy with the coupled model suggests that the natural variability of the AMOC and the gyre circulation might influence the climate of the North Atlantic region at the decadal scale.  相似文献   

16.
20世纪北大西洋温盐环流的年代际变化试评估   总被引:10,自引:0,他引:10  
根据相对丰富的大气器测资料,综合前人对有限的海洋资料的诊断分析,从北大西洋涛动(NAO)变率、表层海温(SST)变率、格陵兰海和拉布拉多海的深对流活动长期变化等不同角度,对20世纪大洋温盐环流(Thermohaline Circulation,THC)变率进行了试评估.结果表明:(1)19世纪末以来,大西洋温盐环流的变化可分为4个时期:1900年以前的一段时期,THC较强;1904年到1930年,THC较弱;1931年到1972年,THC较强;1973年至1995年,THC较弱,目前则又有所增强.(2)与THC的变化相联系,大西洋主要气候要素的变化,相互间存在着某种协调关系,THC强,NAO弱,北大西洋北部SST升高,格陵兰海的对流活动增强,拉布拉多海的对流活动则减弱.  相似文献   

17.
The Atlantic meridional overturning circulation (AMOC) in the last 250?years of the 700-year-long present-day control integration of the Community Climate System Model version 3 with T85 atmospheric resolution exhibits a red noise-like irregular multi-decadal variability with a persistence longer than 10?years, which markedly contrasts with the preceding ~300 years of very regular and stronger AMOC variability with ~20?year periodicity. The red noise-like multi-decadal AMOC variability is primarily forced by the surface fluxes associated with stochastic changes in the North Atlantic Oscillation (NAO) that intensify and shift northward the deep convection in the Labrador Sea. However, the persistence of the AMOC and the associated oceanic anomalies that are directly forced by the NAO forcing does not exceed about 5?years. The additional persistence originates from anomalous horizontal advection and vertical mixing, which generate density anomalies on the continental shelf along the eastern boundary of the subpolar gyre. These anomalies are subsequently advected by the mean boundary current into the northern part of the Labrador Sea convection region, reinforcing the density changes directly forced by the NAO. As no evidence was found of a clear two-way coupling with the atmosphere, the multi-decadal AMOC variability in the last 250?years of the integration is an ocean-only response to stochastic NAO forcing with a delayed positive feedback caused by the changes in the horizontal ocean circulation.  相似文献   

18.
A multi-model analysis of Atlantic multidecadal variability is performed with the following aims: to investigate the similarities to observations; to assess the strength and relative importance of the different elements of the mechanism proposed by Delworth et al. (J Clim 6:1993–2011, 1993) (hereafter D93) among coupled general circulation models (CGCMs); and to relate model differences to mean systematic error. The analysis is performed with long control simulations from ten CGCMs, with lengths ranging between 500 and 3600 years. In most models the variations of sea surface temperature (SST) averaged over North Atlantic show considerable power on multidecadal time scales, but with different periodicity. The SST variations are largest in the mid-latitude region, consistent with the short instrumental record. Despite large differences in model configurations, we find quite some consistency among the models in terms of processes. In eight of the ten models the mid-latitude SST variations are significantly correlated with fluctuations in the Atlantic meridional overturning circulation (AMOC), suggesting a link to northward heat transport changes. Consistent with this link, the three models with the weakest AMOC have the largest cold SST bias in the North Atlantic. There is no linear relationship on decadal timescales between AMOC and North Atlantic Oscillation in the models. Analysis of the key elements of the D93 mechanisms revealed the following: Most models present strong evidence that high-latitude winter mixing precede AMOC changes. However, the regions of wintertime convection differ among models. In most models salinity-induced density anomalies in the convective region tend to lead AMOC, while temperature-induced density anomalies lead AMOC only in one model. However, analysis shows that salinity may play an overly important role in most models, because of cold temperature biases in their relevant convective regions. In most models subpolar gyre variations tend to lead AMOC changes, and this relation is strong in more than half of the models.  相似文献   

19.
Using a coupled ocean–atmosphere general circulation model, we investigated the impact of Greenland ice sheet melting on North Atlantic climate variability. The positive-degree day (PDD) method was incorporated into the model to control continental ice melting (PDD run). Models with and without the PDD method produce a realistic pattern of North Atlantic sea surface temperature (SST) variability that fluctuates from decadal to multidecadal periods. However, the interdecadal variability in PDD run is significantly dominated in the longer time scale compared to that in the run without PDD method. The main oscillatory feature in these experiments likely resembles the density-driven oscillatory mode. A reduction in the ocean density over the subpolar Atlantic results in suppression of the Atlantic Meridional Overturning Circulation (AMOC), leading to a cold SST due to a weakening of northward heat transport. The decreased surface evaporation associated with the cold SST further reduces the ocean density and thus, simultaneously acts as a positive feedback mechanism. The southward meridional current associated with the suppressed AMOC causes a positive tendency in the ocean density through density advection, which accounts for the phase transition of this oscillatory mode. The Greenland ice melting process reduces the mean meridional current and meridional density gradient because of additional fresh water flux, which suppress the delayed negative feedback due to meridional density advection. As a result, the oscillation period becomes longer and the transition is more delayed.  相似文献   

20.
The horizontal coordinate systems commonly used in most global ocean models are the spherical latitude–longitude grid and displaced poles, such as a tripolar grid. The effect of the horizontal coordinate system on Atlantic meridional overturning circulation (AMOC) is evaluated by using an OGCM (ocean general circulation model). Two experiments are conducted with the model—one using a latitude–longitude grid (referred to as Lat_1) and the other using a tripolar grid (referred to as Tri). The results show that Tri simulates a stronger North Atlantic deep water (NADW) than Lat_1, as more saline water masses enter the Greenland–Iceland–Norwegian (GIN) seas in Tri. The stronger NADW can be attributed to two factors. One is the removal of the zonal filter in Tri, which leads to an increasing of the zonal gradient of temperature and salinity, thus strengthening the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because realistic topography is applied in the tripolar grid while the latitude–longitude grid employs an artificial island around the North Pole. In order to evaluate the effect of the filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, an enhanced filter can also augment NADW formation, since more saline water is suppressed in the GIN seas, but accumulated in the Labrador Sea, especially in experiment Lat_2_S, which is the experiment with an enhanced filter on salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号