首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermokarst lakes in the Siberian Arctic contain sediment archives that can be used for paleoenvironmental inference. Until now, however, there has been no study from the inner Lena River Delta with a focus on diatoms. The objective of this study was to investigate how the diatom community in a thermokarst lake responded to past limnogeological changes and what specific factors drove variations in the diatom assemblage. We analysed fossil diatom species, organic content, grain-size distribution and elemental composition in a sediment core retrieved in 2009 from a shallow thermokarst lake in the Arga Complex, western Lena River Delta. The core contains a 3,000-year record of sediment accumulation. Shifts in the predominantly benthic and epiphytic diatom species composition parallel changes in sediment characteristics. Paleoenvironmental and limnogeological development, inferred from multiple biological and sedimentological variables, are discussed in the context of four diatom zones, and indicate a strong relation between changes in the diatom assemblage and thermokarst processes. We conclude that limnogeological and thermokarst processes such as lake drainage, rather than direct climate forcing, were the main factors that altered the aquatic ecosystem by influencing, for example, habitat availability, hydrochemistry, and water level.  相似文献   

2.
A consequence of predicted climate warming will be tree-line advance over large areas of the Russian tundra. Palaeolimnological techniques can be used to provide analogues of how such changes in tree-line advance and subsequent retreat affected lake ecosystems in the past. A Holocene sediment core taken from Kharinei Lake (Russia) was dated radiometrically and used for multi-proxy analyses with the aim of determining how climate and tree-line dynamics affected the productivity, community structure, carbon cycling and light regime in the lake. Pollen and macrofossil analyses were used to determine the dates of the arrival and retreat of birch and spruce forest. C:N ratios and percent loss-on-ignition were used to infer past changes in sediment organic matter. Visible-near-infrared spectroscopy and diatom analysis were used to infer past changes in lake-water carbon. Algal pigments and aquatic macrophytes were used to determine changes in lake productivity and light. Chironomids together with remains of the aquatic flora and fauna were used to provide information on past July temperature and continentality. Lake sedimentation was initiated shortly before 11,000 cal. years BP, when both chironomid- and pollen-inferred temperature reconstructions suggest higher summer temperatures than present, between 1 and 2°C warmer, and lake productivity was relatively high. A few trees were already present at this time. The spruce forest expanded at 8,000 cal. year BP remaining in the vicinity of the lake until 3,500 cal. year BP. This period coincided with a high concentration of organic material in the water column, and relatively high benthic productivity, as indicated by a high benthic: planktonic diatom ratio. After tree-line retreat, the optical transparency of the lake increased, and it became more open and exposed, and was thus subject to greater water-column mixing resulting in a higher abundance of diatom phytoplankton, especially heavily silicified Aulocoseira species. The colder climate resulted in a shorter ice-free period, the lake was less productive and there was a loss of aquatic macrophytes. Increased wind-induced mixing following forest retreat had a greater influence on the lake ecosystem than the effects of decreasing organic matter concentration and increased light penetration.  相似文献   

3.
The Nebraska Sand Hills are a distinctive eco-region in the semi-arid Great Plains of the western United States. The water table underlying the Sand Hills is part of the High Plains/Ogallala aquifer, an important water resource for the central Great Plains. Lake levels are affected directly by fluctuations in the water table, which is recharged primarily by local precipitation and responds quickly to climatically induced changes in regional water balance. Instrumental records are available for only 50–100 years, and paleolimnological data provide important insights into the extremes and variability in moisture balance over longer time scales. A set of 69 lakes from across Nebraska was used to establish a statistical relationship between diatom community composition and water depth. This relationship was then used to develop a diatom-based inference model for water depth using weighted averaging regression and calibration techniques. Development of the inference model was complicated by strong intra-seasonal variability in water depth and the linkages between depth and other limnologic characteristics, including alkalinity, water clarity and nutrient concentrations. Analysis of historical diatom communities from eight lakes allowed for the reconstruction of lake-level fluctuations over the past several thousand years. Comparisons of the more recent portion of these reconstructions with the instrumental Palmer Drought Severity Index (PDSI) showed that sediment records may not faithfully reflect short-term fluctuations in water level, except where sedimentation rates are very high. However, large and persistent changes in moisture availability were discernible even in longer, low-resolution records. Thus, diatoms are a useful addition to the tools available for understanding past drought in the central Great Plains, especially when trajectories of change are constrained by data from multiple sites or other proxies.  相似文献   

4.
We studied the eutrophication history of a tropical shallow reservoir in the S?o Paulo metropolitan region, southeast Brazil. We analyzed grain size, geochemistry, diatom assemblages, and land-use records in a sediment core from the reservoir to infer its trophic state history during the last ~110?years (1894?C2005). Eighty diatom species were observed in the core and shifts in the relative abundances of planktonic and benthic taxa indicate major limnological changes associated with complex interactions between hydrologic factors and eutrophication. Discostella stelligera was associated with deforestation and water physical changes whereas Aulacoseira granulata, a species abundant throughout the core, was mostly associated with high flux conditions and erosion events, regardless of trophic state. Eutrophication was triggered by construction of the city zoo (1958) and installation of the S?o Paulo State Department of Agriculture (1975) within the Gar?as watershed, and increasing loads of untreated sewage from these institutions. The data suggest that deterioration in water quality began after ~1975 and markedly accelerated after ~1990. The reservoir has been hypereutrophic since 1999. Steady increases in geochemical proxies for trophic state, along with a decrease in C/N ratios, indicated higher nutrient concentrations and the prevalence of autochthonous production towards the core top. Appearance of Achnanthidium catenatum ~1993 highlighted the onset of a marked eutrophication phase. The subsequent dominance of Planothidium rostratum and Cyclotella meneghiniana suggested a sharp shift to a hypereutrophic state since 1999. Land-use history proved valuable for validating the chronology and interpreting anthropogenic impacts. Multi-proxy analysis of the sediment record provided an effective tool for tracking ecological shifts in the reservoir ecosystem. This study provides the first reconstruction of lake eutrophication history in Brazil and highlights the importance of hydrological/physical changes as drivers of diatom assemblage shifts in reservoirs, which may confound trophic state inferences based on shifts in the planktonic/benthic diatom ratio.  相似文献   

5.
The relationships between diatoms (Bacillariophyceae) in surface sediments of lakes and summer air temperature, pH and total organic carbon concentration (TOC) were explored along a steep climatic gradient in northern Sweden to provide a tool to infer past climate conditions from sediment cores. The study sites are in an area with low human impact and range from boreal forest to alpine tundra. Canonical correspondence analysis (CCA) constrained to mean July air temperature and pH clearly showed that diatom community composition was different between lakes situated in conifer-, mountain birch- and alpine-vegetation zones. As a consequence, diatoms and multivariate ordination methods can be used to infer past changes in treeline position and dominant forest type. Quantitative inference models were developed to estimate mean July air temperature, pH and TOC from sedimentary diatom assemblages using weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regression. Relationships between diatoms and mean July air temperature were independent of lake-water pH, TOC, alkalinity and maximum depth. The results demonstrated that diatoms in lake sediments can provide useful and independent quantitative information for estimating past changes in mean July air temperature (R2 jack = 0.62, RMSEP = 0.86 °C; R2 and root mean squared error of prediction (RMSEP) based on jack-knifing), pH (R2 jack = 0.61, RMSEP = 0.30) and TOC (R2 jack = 0.49, RMSEP = 1.33 mg l-1). The paper focuses mainly on the relationship between diatom community composition and mean July air temperature, but the relationships to pH and TOC are also discussed.  相似文献   

6.
Prior to environmental legislation in the 1980s, anthropogenic waste in Antarctica was often deposited into landfill sites or into the sea. This resulted in metal contamination in terrestrial and near-shore marine environments. In this study, we assess the feasibility of using both past and present diatom assemblages to reconstruct and monitor past and future metal contamination. Our dataset included the analyses of both surface sediment samples and sediment cores from a contaminated site near Casey Station, Antarctica. Redundancy analyses indicated a strong relationship between metal concentrations and the composition of diatom communities. Within the surface sediment samples, tin and lead individually explained 43% of the variation observed in the diatom data; copper and iron explained 42% of this variation. In the sediment cores, tin and lead individually explained 53% of the variation in diatom community composition. In the same samples copper explained 47% of this variation, with iron explaining 46% of the observed variation. Once one metal had been selected, incorporating further metal data into the analyses added little extra information. Modern analog technique (MAT) analyses showed a strong correlation between actual and predicted values within one dataset (R2: Cu 0.75; Pb 0.86; Sn 0.89; p<0.05 for each). MAT reconstructions of metal concentrations closely followed measured concentrations, with both high and low concentrations recorded. MAT analyses performed favorably when compared to predictive techniques based on multivariate linear regression and multilayer perceptron neural networks. This study demonstrates that the composition of benthic diatom communities is a good indicator of anthropogenic metal contamination, and may be useful in monitoring the success of environmental remediation strategies in Antarctica and elsewhere.  相似文献   

7.
A continuous, 1,420-cm sediment record from Lake Pupuke, Auckland, New Zealand (37°S) was analysed for diatom taxonomy, concentration and flux. A New Zealand freshwater diatom transfer function was applied to infer past pH, electrical conductivity, dissolved reactive phosphorus and chlorophyll a. A precise, mixed-effect regression model of age versus depth was constructed from 11 tephra and 13 radiocarbon dates, with a basal age of 48.2?cal kyr BP. Diatom-inferred changes in paleolimnology and climate corroborate earlier inferences from geochemical analyses (Stephens et al. 2012), with respect to the timing of marked climate changes in the Last Glacial Coldest Phase (LGCP; 28.8?C18.0?cal kyr BP), the Last Glacial Interglacial Transition (LGIT; 18.0 to ca. 12?C10?cal kyr BP) and the Holocene, the onset of which is difficult to discern from LGIT amelioration, but which includes an early climatic optimum (10.2?C8.0?cal kyr BP). The LGCP is readily defined by a reduction in lake level and effective precipitation, whereas the LGIT represents a period of rising lake level, with greater biomass during the Holocene. There was limited change in diatom assemblage structure, influx or inferred water quality during a Late Glacial Reversal (LGR; 14.5?C13.8?cal kyr BP), associated with heightened erosional influx. In contrast, an LGIT peak in paleoproductivity is recorded by increased diatom influx from 13.8 to 12.8?cal kyr BP. Changes in sediment influx and biomass record complex millennial-scale events attuned to the Antarctic Cold Reversal (ACR; 14.5?C12.8?cal kyr BP). Additional millennial-scale environmental change is apparent in the Holocene, with marked changes in lake circulation beginning at 7.6?cal kyr BP, including the onset of seasonal thermal stratification and rapid species turnover at 5.7?cal kyr BP. The most rapid diatom community turnover accompanied widely varying nutrient availability and greater seasonality during the last 3.3?cal kyr. Rising seasonality appears to have been linked to strengthened Southern Westerlies at their northern margins during the middle and late Holocene.  相似文献   

8.
We examined changes at the community and population level of sedimentary diatoms over a wide temporal and spatial gradient of metal pollution encountered in cores from three lakes in the Abitibi mining region (Québec, Canada). Diatom communities on the whole appeared to be very tolerant of metal contamination, as shown by diatom cell accumulation rates decreasing only under the most severe conditions of contamination, which were found from the 1930s to the 1980s in Lac Dufault (cadmium, up to 94 μg/g dry sediment; Cu, up to 8600 μg/g; Zn, up to 9000 μg/g). Under the moderate conditions of contamination observed in the other two lakes and in the most recent sediment of Lac Dufault, diatom cell accumulation rates tended to increase over values typical of the pre-mining period. However, there were increasing rearrangements of the community composition along the contamination gradient. Under moderate metal enrichment, the diatom community of Lac Vaudray experienced only subtle changes, with Cyclotella stelligera, albeit decreasing, remaining the dominant taxon. In the intermediately contaminated Lac Caron, several benthic taxa, noticeably Cymbella silesiaca and several Fragilaria species, rose in taxonomic importance. The most extreme contamination observed in Lac Dufault led to a severely impoverished community almost entirely represented by Achnanthes minutissima and Brachysira vitrea. With increasing levels of contamination, there was a shift from planktonic to benthic taxa and morphotypes and a consistent decrease in the siliceous stomatocysts/diatom frustules ratio. These trends suggest that littoral zones may represent an important refugium under conditions of high contamination. Responses to metal stress were in general more evident at the population than at the community level. Cyclotella stelligera and B. vitrea had a consistent negative and positive response, respectively, along the gradient and are the most promising indicators of metal pollution for this region.  相似文献   

9.
Diatoms are used widely for paleolimnological studies in lakes, but their use for studying the environmental history of reservoirs has not been tested extensively. Reservoirs have hydrodynamic characteristics intermediate between those of rivers and lakes. This study assessed the utility of diatom assemblages as recorders of long-term changes in hydrodynamics and spatial gradients in Liuxihe Reservoir, an impoundment in southern China. Four sediment cores were collected in the reservoir, from the riverine, transition and lacustrine zones. Each core was sectioned at 2-cm intervals to investigate the stratigraphic distribution of accumulated diatoms. Varve counting was used to develop a chronology for one of the cores. The unique characteristics of Liuxihe Reservoir, including its large size, great depth, long narrow morphology and strong thermal stratification for 10 months of the year, limit secondary sedimentation processes and preserve the varves, enabling development of an accurate chronology. Damming profoundly altered the physical environment of the former river, especially in the lacustrine zone, where the change is clearly illustrated by diatoms in the sediment. Diatom abundance increased as a consequence of nutrient enrichment after construction of the dam in 1958, but later decreased as the new impoundment stabilized. After damming, relative abundance of Cyclotella increased along with a simultaneous decrease of Navicula and Achnanthes in the lacustrine zone, most significantly in 1963, when Cyclotella replaced Navicula as the dominant genus. This switch was indicative of a general shift from a lotic to a lentic habitat. A longitudinal gradient was apparent in the patterns of sedimentation and diatom accumulation at different sites in the reservoir, with diatom abundance highest in the transition zone. In the long term, water discharge from the reservoir showed a weak, but significant negative correlation with diatom abundance in the lacustrine zone (r = −0.320, P = 0.03). In summary, diatom assemblages in the Liuxihe Reservoir sediments recorded past changes in hydrodynamics, suggesting that paleolimnological study of some impoundments is feasible.  相似文献   

10.
The recent sediment record of Lake Belau (Schleswig–Holstein, Germany), deposited in the period 1945–2002, was compared with instrumental meteorological and limnological data. The sediments deposited during this period are annually laminated. A varve chronology was established and supported by 137Cs measurements. Micro-facies and diatom assemblage composition analyses were confirmed in thin sections and compared statistically with limnological and meteorological data. Comparison of phytoplankton data with diatom assemblage data from the sediment for the time interval from 1988 to 1999 proved that the sediments reflect limnological processes in the lake and record seasonal changes in the primary producer communities. Among the climatological data, the number of contiguous ice days (days with maximal temperatures ≤0 °C) and the state of the winter NAO are strong predictors for micro-facies development and diatom assemblage composition. Furthermore, solar and local (nutrient input) influences are visible in the diatom assemblage compositions. Our study illustrates the high potential for using analyses of micro-facies and diatom assemblages to reconstruct past weather conditions in varved sediments of Lake Belau.  相似文献   

11.
Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (<1 to 3.2 kg Nr ha−1 year−1 in wet deposition). Out of the fourteen measured environmental variables for these 46 lakes, ordination analysis identified that nitrate, specific conductance, total phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.  相似文献   

12.
Bathurst Harbour in World Heritage southwest Tasmania, Australia, is one of the world’s most pristine estuarine systems. At present there is a lack of data on pollution impacts or long-term natural variability in the harbor. A ca. 350-year-old 210Pb-dated sediment core was analysed for trace metals to track pollution impacts from local and long-range sources. Lead and antimony increased from AD 1870 onwards, which likely reflects remote (i.e. mainland Australian and global) atmospheric pollution sources. Variability in the concentrations of copper and zinc closely followed the history of mining activities in western Tasmania, which began in the AD 1880s. Tin was generally low throughout the core, except for a large peak in AD 1989 ± 0.5 years, which may be a consequence of input from a local small-scale alluvial tin mine. Changes in diatom assemblages were also investigated. The diatom flora was composed mostly of planktonic freshwater and benthic brackish-marine species, consistent with stratified estuarine conditions. Since mining began, however, an overall decrease in the proportion of planktonic to benthic taxa occurred, with the exception of two distinct peaks in the twentieth century that coincided with periods of high rainfall. Despite the region’s remoteness, trace metal analyses revealed evidence of atmospheric pollution from Tasmanian and possibly longer-range mining activities. This, together with recent low rainfall, appears to have contributed to altering the diatom assemblages in one of the most pristine temperate estuaries in the world.  相似文献   

13.
Despite the dominance of cyanobacteria in polar freshwater aquatic ecosystems, little is known about their past biodiversity and response to climate and environmental changes. We explored the use of light microscopy of microfossils, high performance liquid chromatography of the fossil pigment composition and denaturing gradient gel electrophoresis of fossil 16S rRNA genes to study past and present-day differences in cyanobacterial community structure in response to climate changes in two adjacent maritime Antarctic lakes with contrasting depths (4 and 26 m) and light climates. Light microscopy was of limited use because of degradation of cell structures. Fossil cyanobacterial pigment concentrations were below the detection limits of our method in several sediment samples in the deep lake, but abundant and diverse in the sediment core from the shallow pond, probably as a consequence of increased light availability and/or a more diverse and abundant benthic cyanobacterial flora. Total carotenoid and chlorophyll concentrations were highest in both lakes between ca. 2,950 and 1,800 cal yr BP, which coincides with the late Holocene climate optimum recognised elsewhere in maritime Antarctica. Cyanobacterial molecular diversity was higher in the top few centimeters of the sediments in both lakes. In deeper sediments, the taxonomic turnover of cyanobacteria appeared to be relatively small in response to past climate anomalies in both lakes, underscoring the broad tolerance of cyanobacteria to environmental variability. This, however, may in part be explained by the low taxonomic resolution obtained with the relatively conserved 16S rRNA gene and/or the preferential preservation of particular taxa. Our results highlight the potential of fossil DNA in lake sediments to study colonization and succession dynamics of lacustrine cyanobacteria and warrant further investigation of the factors that affect preservation of cyanobacterial DNA.  相似文献   

14.
The water chemistry of lake systems on the edge of the Antarctic continent responds quickly to changes in the moisture balance. This is expressed as increasing salinity and decreasing lake water level during dry periods, and the opposite during wet periods. The diatom composition of the lakes also changes with these fluctuations in salinity and lake water depth. This is important, as their siliceous remains become incorporated into lake sediments and can provide long-term records of past salinity using transfer functions. In order to develop transfer functions, diatoms and water chemistry data were inter-calibrated from five different East Antarctic oases, namely the Larsemann Hills, the Bølingen Islands, the Vestfold Hills, the Rauer Islands and the Windmill Islands. Results indicate that salinity is the most important environmental variable explaining the variance in the diatom flora in East Antarctic lakes. In oligo- saline lakes the variance is mainly explained by lake water depth. This dataset was used to construct a weighted averaging transfer function for salinity in order to infer historical changes in the moisture balance. This model has a jack-knifed r2 of 0.83 and a RMSEP of 0.31. The disadvantage of this transfer function is that salinity changes in oligo-saline lakes are reconstructed inaccurately due to the edge effect and due to the low species turnover along the salinity gradient at its lower end. In order to infer changes in the moisture balance in these lakes, a second transfer function using weighted averaging partial least squares (with two components) for depth was constructed. This model has a jack-knifed r2 of 0.76 and a RMSEP of 0.22. Both transfer functions can be used to infer climate driven changes in the moisture balance in lake sediment cores from oligo-, hypo-, meso- and hyper-saline lakes in East Antarctic oases between 102–75°E. The transfer function for lake water depth is promising to track trends in the moisture balance of small freshwater lakes, where changes in shallow and deep-water sediments are readily reflected in changing diatom composition.  相似文献   

15.
Inferences of past climate from the fossil record in lakes rely on the accurate quantification of a relationship of fossilizing organisms to their environment. Whereas the relationship of diatoms to water chemistry parameters has been modeled in many systems, few studies adequately address the relationship of diatoms to physical properties, such as water depth or hydrology, that may be more directly tied to climate. We examined the composition of modern diatoms in surface sediments of 75 isolated ponds (mostly Carolina bays) of the Atlantic Coastal Plain to: (1) assess the influence of physical and chemical variables on the distribution of diatoms among ponds of the region, and (2) develop a model that predicts hydroperiod (a measure of pond permanence) from diatom assemblages. We constructed two hydroperiod calibration models: the first infers hydroperiod from the weighted-average optima and tolerances of taxa along the hydroperiod gradient, the second bases inferences on the hydroperiod estimates of compositionally similar samples. Both approaches incorporate a-priori and post-hoc tests of assumptions often inherent in the construction of transfer functions. Diatom assemblage composition had strong, approximately linear relationships to hydroperiod, water depth, and calcium concentration in non-metric multidimensional ordination space; effects of other variables, including pH, were non-linear or ambiguous. Overall, the assemblages reflected the dilute, acidic chemical characteristics of bays. The assemblages contained differing abundances of euterrestrial, benthic and planktonic taxa, depending on a pond's susceptibility to drying. A weighted-averaging regression model based on taxon-specific hydroperiod optima generated adequate, unbiased hydroperiod inferences from diatom species composition (r2 = 0.81). This model may be used to infer past drought episodes from fossil diatom assemblages at appropriate sites on the Atlantic Coastal Plain.  相似文献   

16.
In this study, we demonstrate that an integrated approach, combining palaeolimnological records and limnological monitoring data, can increase our understanding of changing ecological patterns and processes in shallow lakes. We focused on recent regime shifts in shallow Lake Krankesjön, southern Sweden, including the collapse of the clear-water state in 1975 and its subsequent recovery in the late 1980s. We used diatom, hydrocarbon and biogenic silica sediment records, in concert with limnological data sets on nutrient concentrations, water clarity, chlorophyll-a and water depth, to investigate the shifts. The shift from clear to turbid conditions was abrupt and occurred over 1 to 2 years, whereas recovery of the clear-water state was more gradual, taking 4–5 years. In 1978, shortly after the first regime shift in water clarity, the diatom community underwent a significant shift. It became less diverse, with decreased abundance of epiphytic and planktonic taxa. Despite rising phosphorus concentrations and lower abundance of submerged macrophytes, Lake Krankesjön has remained in the clear-water state over the past 20 years, although this state seems to be increasingly unstable and susceptible to collapse. The complex reactions of the entire lake ecosystem to major changes in lake-water clarity, as shown by the palaeolimnological variables investigated in this study, emphasize the importance of careful lake and catchment management if a stable, clear-water state is desired.  相似文献   

17.
Musky Bay in Lac Courte Oreilles, Wisconsin, USA, is currently eutrophic. This large, shallow bay of an oligotrophic lake possesses the densest aquatic plant growth and a floating algal mat. Paleoecological reconstructions encompassing the last 130 years, were based on multiproxy analyses of sediment cores from three coring sites, two within the bay and one in the lake itself. These data were compared to historical records of the construction and expansion of two commercial cranberry bogs and shoreline residential homes to identify temporal and causal relations of eutrophication. The proxies investigated included: minor and trace elements; biogenic silica; and the diatom community. Post-depositional diagenesis of organic carbon, nitrogen, and phosphorus in the upper 30 cm of the core obscured records of historical ambient nutrient concentrations in the bay obviating their usefulness for this purpose. In contrast, calcium, magnesium, and potassium concentration profiles appeared to reflect runoff of soil amendments applied to the cranberry bogs and aerial fertilizer spraying over the eastern bog adjacent to Musky Bay. The increase in aluminum content since about 1930 coincided with the historical trend in shoreland development and construction of the original commercial cranberry farm. The biogenic silica profile recorded a steady increase of nutrients to Musky Bay over the last several decades. Stratigraphic changes in the diatom community indicated that nutrient input began to increase in the 1940s and accelerated in the mid-1990s with the onset of a noxious floating algal mat. The diatom community indicates the bay has possessed a significant macrophyte community for at least the last 200 years, but increased nutrient input was manifested by a change in the composition, and an increase in the density of the epiphytic diatom community. Cranberry farming appeared to be the major source of nutrients because the diatom community changes occurred prior to the significant increase in residential housing.  相似文献   

18.
We analyzed surface-sediment samples collected along transects from three sub-basins of a relatively large (~115 ha), bathymetrically complex lake, in northwest Ontario, Canada, to assess the reproducibility of diatom species habitats and diversity along a water-depth gradient. Transects displayed different orientations with respect to prevailing wind direction and varied in complexity and degree of slope along the lake bottom. Each transect consisted of three replicate samples at a resolution of ~1 m water depth from ~1 to 30 m for the two deep-basin transects and from ~1 to 18 m in the shallower basin. Distinct diatom assemblages were identified in all transects: (1) a near-shore community composed largely of attached life-forms and some motile benthic taxa, (2) a mid-depth community composed largely of motile life-forms and other benthic taxa that are adapted to lower light conditions (e.g. Staurosirella pinnata), and (3) a deep-water community dominated by planktonic taxa. Species richness was highest in the benthic zones (<9 m), with greatest species evenness in the mid-depth zone (~3–9 m). Species richness and evenness were highly correlated across the three transects (r = 0.89–0.93, p < 0.01). Diatom-inferred depth models were developed from the individual transects to assess reproducibility and applicability for down-core analyses using modern analog (MAT) and weighted-averaging (WA-PLS) approaches. Coefficients of determination (r 2) for these models ranged from 0.80 to 0.98, and RMSEP ranged from 1.2 to 4.2 m. The models developed from the transect with the highest resolution sampling, gentlest non-complex slope and shallowest maximum depth were the strongest ( r\textMAT2 = 0.97 r_{\text{MAT}}^{2} = 0.97 ; r\textWA - PLS2 = 0.98 r_{\text{WA - PLS}}^{2} = 0.98 ) and had the lowest RMSEP (MAT = 1.2 m, WA-PLS = 1.3 m). These inference models can be used to infer past fluctuations in the depth of the benthic/planktonic boundary from cores retrieved near this ecotone and provide a sensitive record of the past change in location of the benthic zone. These types of data can be used to assess past variability in droughts and lake levels to better plan for potential future extremes. Such records incorporate more realistic estimates of natural variability than the ~100-year instrumental records currently used by water resource managers.  相似文献   

19.
White Rock Lake reservoir in Dallas, Texas contains a 150-cm sediment record of silty clay that documents land-use changes since its construction in 1912. Pollen analysis corroborates historical evidence that between 1912 and 1950 the watershed was primarily agricultural. Land disturbance by plowing coupled with strong and variable spring precipitation caused large amounts of sediment to enter the lake during this period. Diatoms were not preserved at this time probably because of low productivity compared to diatom dissolution by warm, alkaline water prior to burial in the sediments. After 1956, the watershed became progressively urbanized. Erosion decreased, land stabilized, and pollen of riparian trees increased as the lake water became somewhat less turbid. By 1986 the sediment record indicates that diatom productivity had increased beyond rates of diatom destruction. Neither increased nutrients nor reduced pesticides can account for increased diatom productivity, but grain size studies imply that before 1986 diatoms were light limited by high levels of turbidity. This study documents how reservoirs may relate to land-use practices and how watershed management could extend reservoir life and improve water quality.  相似文献   

20.
A sample of a sediment record contains diatom species that have grown in disparate habitats and eventually accumulated in a deep part of the lake. The original habitats may differ in substrate, depth location, and availability of resources. Identifying the species characteristic of each habitat should improve our ecological and environmental interpretation of the sediment record by distinguishing habitat specific responses. With this aim, we studied the benthic diatom communities of a deep oligotrophic lake across several habitats. The main source of variation in the diatom composition was the substrate type; particularly, sediment biofilms. Depth was the second factor. The thermocline defined a shift in diatom communities that also included changes in the dominant lifeforms. A third factor was the mesoscale heterogeneity (i.e., rock sides). Although most species were present in many habitats, characteristic species were identified for all the main habitats and used for an improved interpretation of the deep sediment record. Appropriate standardization showed increasing species richness and diversity from epilimnetic epilithic samples to hypolimnetic sediment samples. We estimate that more than 5000 valve counts are required for appropriate comparisons. Consequently, in sediment records with lower counts per sample, one has to amalgamate samples—losing temporal resolution—to achieve reliable analyses of diversity changes over time. Deep sediment samples are representative of the gamma-diversity of the lake diatom metacommunity, which result from the local alpha diversity of the habitats and the beta-diversity of the variability in composition among them. This double source of diversity has to be taken into account when using the sediment record for estimating lake biodiversity changes. On the other hand, we show that an estimation of the spatial (habitat) heterogeneity of a reconstructed environmental variable can be achieved using subsets of species characteristic of each habitat. We demonstrate the procedure by reconstructing the pH fluctuations during the last 200 years in several habitats from a single sediment record. The results are coherent with the expected differences between predominantly trophogenic or tropholithic habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号