首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We report on ROSAT HRI observations of the nearby powerful radio galaxies 3C 33 and 111, which both have detected optical hotspots. We find nuclear X-ray sources in both objects, but no X-ray emission from the hotspots. This confirms the presence of a high-energy cut-off in the spectrum of synchrotron-emitting electrons. Since these electrons necessarily scatter the synchrotron photons by the inverse Compton process, our upper limits on the X-ray fluxes of the hotspots allow us to set lower limits of a few nanotesla on their magnetic flux density, close to or greater than the fields implied by equipartition of energy between radiating particles and magnetic field.  相似文献   

2.
The commonly used classical equipartition or minimum‐energy estimate of total magnetic fields strengths from radio synchrotron intensities is of limited practical use because it is based on the hardly known ratio K of the total energies of cosmic ray protons and electrons and also has inherent problems. We present a revised formula, using the number density ratio K for which we give estimates. For particle acceleration in strong shocks K is about 40 and increases with decreasing shock strength. Our revised estimate for the field strength gives larger values than the classical estimate for flat radio spectra with spectral indices of about 0.5–0.6, but smaller values for steep spectra and total fields stronger than about 10 µG. In very young supernova remnants, for example, the classical estimate may be too large by up to 10×. On the other hand, if energy losses of cosmic ray electrons are important, K increases with particle energy and the equipartition field may be underestimated significantly. Our revised larger equipartition estimates in galaxy clusters and radio lobes are consistent with independent estimates from Faraday rotation measures, while estimates from the ratio between radio synchrotron and X‐ray inverse Compton intensities generally give much weaker fields. This may be explained e.g. by a concentration of the field in filaments. Our revised field strengths may also lead to major revisions of electron lifetimes in jets and radio lobes estimated from the synchrotron break frequency in the radio spectrum. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We discuss results from a decade long program to study the fine-scale structure and the kinematics of relativistic AGN jets with the aim of better understanding the acceleration and collimation of the relativistic plasma forming AGN jets. From the observed distribution of brightness temperature, apparent velocity, flux density, time variability, and apparent luminosity, the intrinsic properties of the jets including Lorentz factor, luminosity, orientation, and brightness temperature are discussed. Special attention is given to the jet in M87, which has been studied over a wide range of wavelengths and which, due to its proximity, is observed with excellent spatial resolution. Most radio jets appear quite linear, but we also observe curved non-linear jets and non-radial motions. Sometimes, different features in a given jet appear to follow the same curved path but there is evidence for ballistic trajectories as well. The data are best fit with a distribution of Lorentz factors extending up to γ∼30 and intrinsic luminosity up to ∼1026 W Hz−1. In general, gamma-ray quasars may have somewhat larger Lorentz factors than non gamma-ray quasars. Initially the observed brightness temperature near the base of the jet extend up to ∼5×1013 K which is well in excess of the inverse Compton limit and corresponds to a large excess of particle energy over magnetic energy. However, more typically, the observed brightness temperatures are ∼2×1011 K, i.e., closer to equipartition.  相似文献   

4.
I re-examine the brightness temperature problem in PKS 0405-385, which is an extreme intra-day variable radio quasar with an inferred brightness temperature of  ∼5 × 1014 K  at 5 GHz, well above the Compton catastrophe limit of  ∼1011 K  that is reached when the synchrotron photon energy density exceeds the energy density of the magnetic field. If one takes into account the uncertainty in the distance to the ionized clouds responsible for interstellar scintillation causing rapid intra-day variability in PKS 0405-385, it is possible that the brightness temperature could be as low as  ∼1013 K  at 5 GHz, or even lower. The radio spectrum can be fitted by optically thin emission from mono-energetic electrons, or an electron spectrum with a low-energy cut-off such that the critical frequency of the lowest energy electrons is above the radio frequencies of interest. If one observes optically thin emission along a long narrow emission region, the average energy density in the emission region can be many orders of magnitude lower than calculated from the observed intensity if one assumed a spherical emission region. I discuss the physical conditions in the emission region and find that the Compton catastrophe can then be avoided using a reasonable Doppler factor. I also show that MeV to 100-GeV gamma-ray emission at observable flux levels should be expected from extreme intra-day variable sources such as PKS 0405-385.  相似文献   

5.
We present the results of an Australia Telescope Compact Array (ATCA) survey for intraday variability (IDV) of the total and polarized flux densities of 118 compact, flat-spectrum, extragalactic radio sources from the Parkes 2.7-GHz Survey. A total of 22 total flux density IDV sources were discovered and 15 sources were found to show IDV of their polarized flux density. We discuss the statistical properties of the IDV sources, including the distribution of source modulation indices, and the dependence of the variability amplitude on source spectral index and on Galactic position. We suggest interstellar scintillation (ISS) in the Galactic interstellar medium as the most likely mechanism for IDV. Even so, the inferred high brightness temperatures cannot be easily explained.  相似文献   

6.
Intra-day variability (IDV) of active galactic nuclei (AGN) has been detected from gamma-ray energies to radio wavelengths. At high energies, such variability appears to be intrinsic to the sources themselves. However, at radio wavelengths, brightness temperatures as high as1018 to 1021 K are encountered if the IDV is intrinsic to the source. We discuss here the accumulating evidence showing that, at radio wavelengths where the highest brightness temperatures are encountered, interstellar scintillation (ISS) is the principal mechanism causing IDV. While ISS reduces the implied brightness temperatures, they still remain uncomfortably high. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The precession of eccentric discs in close binaries   总被引:1,自引:0,他引:1  
If the emission of gamma-ray bursts were as a result of the synchrotron process in the standard internal shock scenario, then the typical observed spectrum should have a slope F ν ∝ ν −1/2, which strongly conflicts with the much harder spectra observed. This directly follows from the cooling time being much shorter than the dynamical time. Particle re-acceleration, deviations from equipartition, quickly changing magnetic fields and adiabatic losses are found to be inadequate to account for this discrepancy. We also find that in the internal shock scenario the relativistic inverse Compton scattering is always as important as the synchrotron process, and faces the same problems. This indicates that the burst emission is not produced by relativistic electrons emitting synchrotron and inverse Compton radiation.  相似文献   

8.
We present results of the ATCA IDV Survey of southern extragalactic radio sources. We discuss briefly the properties of the 22 new intraday variable sources discovered in the Survey. The follow-up observations of a few extreme examples of strong intraday variability are presented. We find that the characteristics of the total flux density fluctuations at different wavelengths are consistent with intersteller scintillations (ISS) of the microarcsecondsize soorten components. However, the scintillating components of a few extreme IDVs are characterized by the brightness temperatures far exceeding the T B=1012 K limit. The relativistic beaming invoked in such sources would require Doppler factors up to as high as δ∼ 103. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The angular dimensions of compact components of extragalactic radio sources are calculated theoretically on three hypotheses: (a) magnetic field and relativistic particles energy equipartition; (b) equilibrium between synchrotron and Compton losses; (c) radiative lifetime of the same order as the source's light-travel time. Using angular measurements of 73 radio components, divided into two groups (multicomponent and single-component sources), a correcting formulae is derived to reduce the theoretical values to the observed values.This work was partially supported by the Brasilian research agency CNPq.  相似文献   

10.
The measured brightness temperatures of the low-frequency synchrotron radiation from intense extragalactic sources reach 1011–1012 K. If there is some amount of nonrelativistic ionized gas within such sources, it must be heated through induced Compton scattering of the radiation. If cooling via inverse Compton scattering of the same radio radiation counteracts this heating, then the plasma can be heated up to mildly relativistic temperatures kT~10–100 keV. In this case, the stationary electron velocity distribution can be either relativistic Maxwellian or quasi-Maxwellian (with the high-velocity tail suppressed), depending on the efficiency of Coulomb collisions and other relaxation processes. We derive several simple approximate expressions for the induced Compton heating rate of mildly relativistic electrons in an isotropic radiation field, as well as for the stationary electron distribution function and temperature. We give analytic expressions for the kernel of the integral kinetic equation (one as a function of the scattering angle, and the other for an isotropic radiation field), which describes the photon redistribution in frequency through induced Compton scattering in thermal plasma. These expressions can be used in the parameter range [in contrast to the formulas written out previously in Sazonov and Sunyaev (2000), which are less accurate].  相似文献   

11.
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437−244 and 1025−229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (|RM|<20 rad m−2). The giant sources are defined to be those with overall projected size 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity–size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton loss owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.  相似文献   

12.
Active galactic nuclei and pulsars as cosmic ray sources   总被引:2,自引:0,他引:2  
Relativistic e± particles and cosmic rays are accelerated in the magnetospheres of supermassive black holes and neutron stars. The possibility of synchrotron radiation with extremely high intensity inside the deepest regions of magnetospheres is investigated. Very high brightness temperatures are expected for such radiation by relativistic protons, which can be made even higher in the presence of non-stationary conditions, Doppler boosting and coherent processes. The main parameters for models of such high-brightness-temperature radiation are determined. Two types of active galactic nuclei (AGNs) are expected. One type is associated with the acceleration and ejection of relativistic e± particles only (probably non-IDV sources and FR-I radio galaxies). The second type of AGN is also associated with e± acceleration, but is dominated by the contribution of relativistic protons (probably IDV sources and FR-II radio galaxies). Analogous objects for pulsars are plerion and shell supernova remnants with neutron stars or pulsars without synchrotron nebulae, respectively.  相似文献   

13.
Observations imply that extragalactic radio sources must be in nonstationary states. One possible way to interpret a observed high brightness temperature which exceeds the inverse Compton limit is by means of a nonstationary condition (Kellerman and Pauliny-Toth 1969, Slysh 1992). This paper investigates the maximum brightness temperature of nonstationary radio sources by incorporating the continuity equation for the electron number density and the radiative transfer equation. In radio sources with a high enough magnetic field, synchrotron losses should be considered and the maximum brightness temperature will not achieve the maximum value suggested by Slysh (1992). Strong acceleration canonly shorten the time to achieve the brightness temperature limit and doesnot violate the KPT limit.  相似文献   

14.
Correlated radio-optical variations on intraday timescales have been observed (e.g. In BLO 0716 714) and such radio intraday variability is suggested to have an intrinsic ori- gin. Recently, multi-wavelength observations, simultaneous at radio, mm-submm, optical and hard X-rays, of 0716 714, show that during a period of intraday/interday variations at ra- dio and mm wavelengths, the apparent brightness temperature of the source exceeded the Compton-limit (~1012 K) by 2--4 orders of magnitude, but no Compton catastrophe (or no high luminosity of inverse-Compton radiation) was detected. It is also found that the intra- day/interday variations at mm-submm wavelengths are consistent with the evolutionary be- havior of a standard synchrotron source and for the intraday/interday variations at centimeter wavelengths opacity effects can play a significant role, which is consistent with the interpreta- tion suggested previously by Qian et al. Thus the apparent high brightness temperatures may probably be explained in terms of Doppler boosting effects due to bulk relativistic motion of the source. We will argue a scenario to simulate the correlations between the radio and optical variations on intraday timescales observed in BLO 0716 714 in terms of a relativistic shock propagating through a jet with a dual structure.  相似文献   

15.
We report on the first observation of the Sunyaev–Zel'dovich (SZ) effect, a distortion of the Cosmic Microwave Background radiation (CMB) by hot electrons in clusters of galaxies, with the Diabolo experiment at the IRAM 30 m telescope. Diabolo is a dual-channel 0.1 K bolometer photometer dedicated to the observation of CMB anisotropies at 2.1 and 1.2 mm. A significant brightness decrement in the 2.1 mm channel is detected in the direction of three clusters (Abell 665, Abell 2163 and CL0016+16). With a 30 arcsec beam and 3 arcmin beamthrow, this is the highest angular resolution observation to date of the SZ effect. Interleaving integrations on targets and on nearby blank fields have been performed in order to check and correct for systematic effects. Gas masses can be directly inferred from these observations.  相似文献   

16.
We present new XMM–Newton observations of the hot-gas environments of two low-power twin-jet radio galaxies, 3C 66B and 3C 449, showing direct evidence for the interactions between X-ray-emitting gas and radio plasma that are thought to determine the large-scale radio structure of these sources. The temperatures that we measure for the two environments are significantly higher than those predicted by standard luminosity–temperature relations for clusters and groups. We show that luminosity–temperature relations for radio-quiet and radio-loud X-ray groups differ, in the sense that radio-source heating may operate in most groups containing radio galaxies. If the radio lobes are expanding subsonically, we find minimum ages of  3 × 108 yr  for 3C 66B, and  5 × 108 yr  for 3C 449, older than the values obtained from spectral ageing, which would give the radio source sufficient time to heat the groups to the observed temperatures for plausible values of the jet power. The external pressures in the atmospheres of both radio galaxies are an order of magnitude higher than equipartition estimates of their radio-lobe pressures, confirming that the radio lobes either are out of equipartition or require a pressure contribution from non-radiating particles. Constraints from the level of X-ray emission we measure from the radio lobes allow us to conclude that a departure from equipartition must be in the direction of magnetic domination, and that the most plausible candidates for a particle contribution to lobe pressure are relativistic protons, an additional population of low-energy electrons, or entrained and heated thermal material.  相似文献   

17.
The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchrotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 106K or if the polar cap temperature is of the order of 5×106K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered.  相似文献   

18.
Using the database of the University of Michigan Radio Astronomy Observatory (UMRAO) at three radio frequencies (4.8, 8 and 14.5 GHz), we determined the short-term variability timescales for 166 radio sources. The timescales are 0.15d (2007+777) to 176.17d (0528-250) with an average timescale of △tobs=17.1±16.5d for the whole sample. The timescales are used to calculate the brightness temperatures, TB. The value of log TB is in the range of log TB = 10.47 to 19.06 K. In addition, we also estimated the boosting factor for the sources. The correlation between the polarization and the Doppler factor is also discussed.  相似文献   

19.
1 INTRODUCTIONThe lower energy cutoff of nonthermal electron beams is an important quantity. Not only isit related to the acceleration mechanism, but it also determines the total number of acceleratedelectrons and the energy they carry. The power-law of electron beams cannot extend to lowerenergies indefinitely for if it did, it would imply an indeflnite1y large nuInber of electrons.A lower energy cutoff (E.), therefore, must exist, to keep the number of electrons within areasonable rang…  相似文献   

20.
The resonant inverse Compton scattering (RICS) of relativistic electrons in intense magnetic fields is an efficient mechanism for producing the highenergy γ-rays. In our previous work it is suggested that the early-stage γ-ray radiation of γ-ray bursts (GRBs) may be mainly produced by this mechanism. By using this mechanism, some puzzles in the study of GRBs can be clarified, e.g., the origin of the Amati relation obtained from the statistics of observations, the formation of the observed two-segment (broken) power-law spectra, the relevant “deadline problem”, the polarization property, etc. Herein our discussion will be focused on the formation of the broken power-law spectra. Based on the formula of the RICS spectral power of individual fast electrons, we have derived the simplified analytical formula of the collective RICS radiation spectrum (RICS spectral luminosity) produced by the assembly of relativistic electrons in an intense magnetic field when they pass through the ambient low-frequency radiation field, and applied it to several typical low-frequency radiation fields (e.g., the black-body radiation field, power-law radiation field and thermal bremsstrahlung field) around the central neutron star, for the convenience of comparison with the observed spectra. Our calculations indicate that the RICS radiation mechanism has a very high efficiency in the hard X-ray and γ-ray wavebands, if the matching condition (i.e., the condition approximate to resonance) is satisfied, and that independent of the ambient radiation field, the produced spectra are commonly the two-segment power-law spectra. Additionally, it is suggested that the RICS mechanism might be an ideal highly-efficient radiation mechanism for the high-energy emissions (hard X-rays and γ-rays) of the GRBs, soft γ-ray repeated bursts (SGRs) and γ-ray pulsars (GRPs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号