首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent spectroscopic observations of galaxies in the Fornax Cluster reveal nearly unresolved 'star-like' objects with redshifts appropriate to the Fornax Cluster. These objects have intrinsic sizes of ≈100 pc and absolute B -band magnitudes in the range  −14< M B<−11.5 mag  and lower limits for the central surface brightness   μ B≳23 mag arcsec−2  , and so appear to constitute a new population of ultracompact dwarf galaxies (UCDs). Such compact dwarfs were predicted to form from the amalgamation of stellar superclusters (by Kroupa) , which are rich aggregates of young massive star clusters (YMCs) that can form in collisions between gas-rich galaxies. Here we present the evolution of superclusters in a tidal field. The YMCs merge on a few supercluster crossing times. Superclusters that are initially as concentrated and massive as knot S in the interacting Antennae galaxies evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs. Less massive superclusters resembling knot 430 in the Antennae may evolve to ω Cen-type systems. Low-concentration superclusters are disrupted by the tidal field, dispersing their surviving star clusters while the remaining merger objects rapidly evolve into the   μ B− M B  region populated by low-mass Milky Way dSph satellites.  相似文献   

2.
The dynamical friction problem is a long-standing dilemma about globular clusters (hereafter GCs) belonging to dwarf galaxies. GCs are strongly affected by dynamical friction in dwarf galaxies, and are presumed to fall into the galactic centre. But, GCs do exist in dwarf galaxies generally. A solution of the problem has been proposed. If dwarf galaxies have a core dark matter halo which has constant density distribution in its centre, the effect of dynamical friction will be weakened considerably, and GCs should be able to survive beyond the age of the Universe. Then, the solution argued that, in a cored dark halo, interaction between the halo and the GC constructs a new equilibrium state, in which a part of the halo rotates along with the GC (corotating state). The equilibrium state can suppress the dynamical friction in the core region. In this study, I tested whether the solution is reasonable and reconsidered why a constant density, core halo suppresses dynamical friction, by means of N -body simulations. As a result, I conclude that the true mechanism of suppressed dynamical friction is not the corotating state, although a core halo can actually suppress dynamical friction on GCs significantly.  相似文献   

3.
4.
5.
Stellar population studies show that low-mass galaxies in all environments exhibit stellar haloes that are older and more spherically distributed than the main body of the galaxy. In some cases, there is a significant intermediate age component that extends beyond the young disc. We examine a suite of Smoothed Particle Hydrodynamic simulations and find that elevated early star formation activity combined with supernova feedback can produce an extended stellar distribution that resembles these haloes for model galaxies ranging from   v 200= 15  to 35 km s−1, without the need for accretion of subhaloes.  相似文献   

6.
7.
8.
9.
We investigate the importance of interactions between dark matter substructures for the mass loss they suffer whilst orbiting within a sample of high-resolution galaxy cluster mass cold dark matter (CDM) haloes formed in cosmological N -body simulations. We have defined a quantitative measure that gauges the degree to which interactions are responsible for mass loss from substructures. This measure indicates that interactions are more prominent in younger systems when compared to older more relaxed systems. We show that this is due to the increased number of encounters a satellite experiences and a higher mass fraction in satellites. This is in spite of the uniformity in the distributions of relative distances and velocities of encounters between substructures within the different host systems in our sample.
Using a simple model to relate the net force felt by a single satellite to the mass loss it suffers, we show that interactions with other satellites account for ∼30 per cent of the total mass loss experienced over its lifetime. The relation between the age of the host and the importance of interactions increases the scatter about this mean value from ∼25 per cent for the oldest to ∼45 per cent for the youngest system we have studied. We conclude that satellite interactions play a vital role in the evolution of substructure in dark matter haloes and that a significant fraction of the tidally stripped material can be attributed to these interactions.  相似文献   

10.
11.
The dark matter dominated Fornax dwarf spheroidal has five globular clusters orbiting at ∼1 kpc from its centre. In a cuspy cold dark matter halo the globulars would sink to the centre from their current positions within a few Gyr, presenting a puzzle as to why they survive undigested at the present epoch. We show that a solution to this timing problem is to adopt a cored dark matter halo. We use numerical simulations and analytic calculations to show that, under these conditions, the sinking time becomes many Hubble times; the globulars effectively stall at the dark matter core radius. We conclude that the Fornax dwarf spheroidal has a shallow inner density profile with a core radius constrained by the observed positions of its globular clusters. If the phase space density of the core is primordial then it implies a warm dark matter particle and gives an upper limit to its mass of ∼0.5 keV, consistent with that required to significantly alleviate the substructure problem.  相似文献   

12.
13.
Recent observations and hydrodynamical simulations of star formation inside a giant molecular cloud have revealed that, within a star-forming region, stars do not form evenly distributed throughout this region, but rather in small subclumps. It is generally believed that these subclumps merge and form a young star cluster. The time-scale of this merging process is crucial for the evolution and the possible survival of the final star cluster. The key issue is whether this merging process happens faster than the time needed to remove the residual gas of the cloud. A merging time-scale shorter than the gas-removal time would enhance the survival chances of the resulting star cluster. In this paper, we show by means of numerical simulations that the time-scale of the merging is indeed very fast. Depending on the details of the initial subclump distribution, the merging may occur before the gas is expelled from the newly formed cluster via either supernovae or the winds from massive stars. Our simulations further show that the resulting merger objects have a higher effective star formation efficiency than the overall star-forming region and confirm the results that mass-segregated subclumps form mass-segregated merger objects.  相似文献   

14.
We study the merging of star clusters out of cluster aggregates similar to Knot S in the Antennae on orbits close to the one of ω Cen by carrying out high resolution numerical N-body simulations. We want to constrain the parameter space which is able to produce merger objects with similar properties as ω Cen. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
16.
17.
We demonstrate that the large scatter in the ultraviolet (UV) colours of intermediate-mass early-type galaxies in the local Universe and the inferred low-level recent star formation (RSF) in these objects can be reproduced by minor mergers in the standard Λ cold dark matter (ΛCDM) cosmology. Numerical simulations of mergers with mass ratios ≤1:4, with reasonable assumptions for the ages, metallicities and dust properties of the merger progenitors, produce good agreement with the observed UV colours of the early-type population, if the infalling satellites are assumed to have (cold) gas fractions ≥20 per cent. Early-types that satisfy  ( NUV − r ) ≲ 3.8  are likely to have experienced mergers with mass ratios between 1:4 and 1:6 within the last ∼1.5 Gyr, while those that satisfy  3.8 < ( NUV − r ) < 5.5  are consistent with either recent mergers with mass ratios ≤1:6 or mergers with higher mass ratios that occurred more than ∼1.5 Gyr in the past. We demonstrate that the early-type colour–magnitude relations and colour distributions, in both the UV and optical spectral ranges, are consistent with the expected frequency of minor merging activity in the standard ΛCDM cosmology at low redshift. We present a strong plausibility argument for minor mergers to be the principal mechanism behind the large UV scatter and associated low-level RSF observed in early-type galaxies in the nearby Universe.  相似文献   

18.
To further enhance our understanding on the formation and evolution of bars in lenticular (S0) galaxies, we are undertaking a detailed photometric and spectroscopic study on a sample of 22 objects. Here we report the results of a 2D structural analysis on two barred face-on S0's, which indicate that presently these galaxies do not possess disks. We discuss two possibilities to explain these surprising results, namely strong secular evolution and bar formation without disks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号