首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Velocities of compressional waves are determined for central California rocks at pressures up to 0.7 GPa (7 kb) and temperatures up to 450°C. These data are used to interpret the seismic velocity structure of the crust in the California Coast Ranges. The seismic data on both sides of the San Andreas fault are consistent with the following model; besides some patches of surface sediments the upper 10—15 km of the crust on the northeast side consists predominantly of sedimentary and metasedimentary rocks of the Franciscan assemblage; the lower crust, of a thickness of 15—20 km, may be composed of gabbroic or other mafic rocks. Across the fault on the south-west side, the entire crustal section is probably a granitic complex similar to that exposed on the surface. The proposed model is shown to be consistent with the observed gravity anomaly.  相似文献   

2.
Rayleigh wave phase velocity maps in southern Africa are obtained at periods from 6 to 40 s using seismic ambient noise tomography applied to data from the Southern Africa Seismic Experiment (SASE) deployed between 1997 and 1999. These phase velocity maps are combined with those from 45 to 143 s period which were determined previously using a two-plane-wave method by Li & Burke. In the period range of overlap (25–40 s), the ambient noise and two-plane-wave methods yield similar phase velocity maps. Dispersion curves from 6 to 143 s period were used to estimate the 3-D shear wave structure of the crust and uppermost mantle on an 1°× 1° grid beneath southern Africa to a depth of about 100 km. Average shear wave velocity in the crust is found to vary from 3.6 km s–1 at 0–10 km depths to 3.86 km s–1 from 20 to 40 km, and velocity anomalies in these layers correlate with known tectonic features. Shear wave velocity in the lower crust is on average low in the Kaapvaal and Zimbabwe cratons and higher in the surrounding Proterozoic terranes, such as the Limpopo and the Namaqua-Natal belts, which suggests that the lower crust underlying the Archean cratons is probably less mafic than beneath the Proterozoic terranes. Crustal thickness estimates agree well with a previous receiver function study of Nair et al. . Archean crust is relatively thin and light and underlain by a fast uppermost mantle, whereas the Proterozoic crust is thick and dense with a slower underlying mantle. These observations are consistent with the southern African Archean cratons having been formed by the accretion of island arcs with the convective removal of the dense lower crust, if the foundering process became less vigorous in arc environments during the Proterozoic.  相似文献   

3.
Summary. A series of long-range explosion seismological experiments has been conducted by the use of specially designed ocean bottom seismographs (OBSs) in the Western Pacific. OBS studies of apparent velocity measurements by the use of natural earthquakes have also been made. The experiments have made clear that large-scale P -wave anisotropy exists in the entire thickness of the oceanic lithosphere. The existence of the large-scale anisotropy in the oceanic lithosphere has been demonstrated for the first time by seismic body-wave studies. Previously, anisotropy had been found only in the uppermost oceanic mantle in the Eastern Pacific.
The azimuth of the maximum velocity, 8.6 km s-1, is about 155° clock-wise from north. The direction is perpendicular to the magnetic lineation of the region, however, the direction differs from the direction of the present plate motion by about 30°. So it appears that the anisotropy has been 'frozen' at least since the change of the plate motion that occurred 40 Myr ago. The frozen anisotropy should set important constraints on the mechanical properties of the lithosphere such as the viscosity and temperature of the lower lithosphere.  相似文献   

4.
Seismic anisotropy within the uppermost mantle of southern Germany   总被引:1,自引:0,他引:1  
This paper presents an updated interpretation of seismic anisotropy within the uppermost mantle of southern Germany. The dense network of reversed and crossing refraction profiles in this area made it possible to observe almost 900 traveltimes of the Pn phase that could be effectively used in a time-term analysis to determine horizontal velocity distribution immediately below the Moho. For 12 crossing profiles, amplitude ratios of the Pn phase compared to the dominant crustal phase were utilized to resolve azimuthally dependent velocity gradients with depth. A P -wave anisotropy of 3–4 per cent in a horizontal plane immediately below the Moho at a depth of 30 km, increasing to 11 per cent at a depth of 40 km, was determined. For the axis of the highest velocity of about 8.03 km s−1 at a depth of 30 km a direction of N31°F was obtained. The azimuthal dependence of the observed Pn amplitude is explained by an azimuth-dependent sub-Moho velocity gradient decreasing from 0.06 s−1 in the fast direction to 0 s−1 in the slow direction of horizontal P -wave velocity. From the seismic results in this study a petrological model suggesting a change of modal composition and percentage of oriented olivine with depth was derived.  相似文献   

5.
Summary. Group velocities for first and second higher mode Rayleigh waves, in the frequency range 0.8–4.8 Hz, generated from a local earthquake of magnitude 3.7 M L in western Scotland, are measured at stations along the 1974 LISPB line. These provide detailed information about the crustal structure west of the line. The data divide the region into seven apparently homogeneous provinces. Averaged higher mode velocity dispersion curves for each province are analysed simultaneously using a linearized inversion technique, yielding regionalized shear velocity profiles down to a depth of 17 km into the upper crust. Shear wave velocity is between 3.0 and 3.4 km s−1 in the upper 2 km, with a slow increase to around 3.8 km s−1. P -wave models computed using these results agree with profiles from the LISPB and LUST refraction experiments.  相似文献   

6.
This paper presents estimates of detailed seasonal variations in ice-flow velocity for Shirase Glacier calculated using data obtained by Japanese Earth Resources Satellite-1 (JERS-1) synthetic aperture radar (SAR). We used 12 pairs of images (44-day repeat cycle) over the interval from 30 April 1996 to 1 July 1998 to estimate ice-flow fields using an image correlation method. Geometric registration was performed with reference to the RADARSAT Antarctic Mapping Project (RAMP) image dataset. Error analysis based on feature mismatch indicated an absolute error of ±0.30 km/a and relative error of ±0.04 km/a in the estimated flow velocity. The obtained ice-flow velocity increases rapidly from the upstream region (1.18 km/a) to the grounding line, where it becomes stagnant (2.32 km/a), before accelerating gradually to 2.62–2.82 km/a in the downstream region and then increasing to 3.05–3.50 km/a at the terminus of the floating ice tongue. The ice-flow velocities in the downstream region are highly variable, depending on both the distance from the grounding line and the observed epoch (season). Most of the obtained seasonal variations in ice-flow velocity at the floating ice tongue are within the range of the associated error estimate, but the annual difference between 1997 (3.11 km/a) and 1998 (3.50 km/a) is significant, reflecting a possible acceleration in the ice-flow velocity in association with the disappearance of the floating ice tongue between April and May of 1998. In terms of the summer–winter difference in averaged air temperature, the large difference recorded in 1997 (17.0 °C) relative to 1996 (13.9 °C) corresponds to a reduced ice-flow velocity in 1997 (approximately 0.20 km/a) relative to that in 1996 (approximately 0.30 km/a), indicating interactions between air, sea ice, and glacier flow in Lützow-Holm Bay.  相似文献   

7.
Surface-wave polarization data and global anisotropic structure   总被引:1,自引:0,他引:1  
In the past few years, seismic tomography has begun to provide detailed images of seismic velocity in the Earth's interior which, for the first time, give direct observational constraints on the mechanisms of heat and mass transfer. The study of surface waves has led to quite detailed maps of upper-mantle structure, and the current global models agree reasonably well down to wavelengths of approximately 2000 km. Usually, the models contain only elastic isotropic structure, which provides an excellent fit to the data in most cases. For example, the variance reduction for minor and major arc phase data in the frequency range 7–15 mHz is typically 65–92 per cent and the data are fit to within 1–2 standard deviations. The fit to great-circle phase data, which are not subject to bias from unknown source or instrument effects, is even better. However, there is clear evidence for seismic anisotropy in various places on the globe. This study demonstrates how much (or little) the fit to the data is improved by including anisotropy in the modelling process. It also illuminates some of the trade-offs between isotropic and anisotropic structure and gives an estimate of how much bias is introduced by neglecting anisotropy. Finally, we show that the addition of polarization data has the potential for improving recovery of anisotropic structure by diminishing the trade-offs between isotropic and anisotropic effects.  相似文献   

8.
Summary. Reduced Pn travel times from the Archaean Pilbara Craton of north-west Australia show a strong correlation with azimuth, which could be used as evidence of anisotropy. However, the azimuthal correlation could also be explained by a southerly dip of between 1 and 2° on the crust–mantle boundary, although the models from several reversed seismic profiles across the craton suggest a smaller dip.
A time-term analysis of the Pn date yielded several models. The preferred solution, in which the dip on the crust–mantle boundary is similar to that in the models from the reversed profiles, has approximately 2 per cent anisotropy in the uppermost mantle, with the direction of maximum velocity 30° east of north. One possible cause of the anisotropy is that olivine crystals were aligned by syntectonic recrystallization and/or power law creep in the tensional environment caused at the base of the lithosphere by flexure during loading of the lithosphere by the strata of the Hamersley Basin which overlies the Pilbara Craton.
A seismic discontinuity occurs about 15 km below the crust–mantle boundary under the craton. A qualitative analysis of all available seismic data suggests that the velocity below the boundary is probably also anisotropic, with the direction of maximum velocity between north and 40° west of north. The direction of minimum velocity below the sub-Moho boundary correlates loosely with the direction of basement lineaments in the Proterozoic Capricorn Orogenic Belt to the south of the craton, suggesting that the anisotropy under the boundary may be younger than that immediately under the crust/mantle boundary. This is consistent with the notion that the Archaean lithosphere was thinner than the present lithosphere.  相似文献   

9.
P-SH conversion is commonly observed in teleseismic P waves, and is often attributed to dipping interfaces beneath the receiver. Our modelling suggests an alternative explanation in terms of flat-layered anisotropy. We use reflectivity techniques to compute three-component synthetic seismograms in a 1-D anisotropic layered medium. For each layer of the medium, we prescribe values of seismic velocities and hexagonally symmetric anisotropy about a common symmetry axis of arbitrary orientation. A compressional wave in an anisotropic velocity structure suffers conversion to both SV -and SH -polarized shear waves, unless the axis of symmetry is everywhere vertical or the wave travels parallel to all symmetry axes. The P-SV conversion forms the basis of the widely used 'receiver function' technique. The P-SH conversion occurs at interfaces where one or both layers are anisotropic. A tilted axis of symmetry and a dipping interface in isotropic media produce similar amplitudes of both direct ( P ) and converted ( Ps ) phases, leaving the backazimuth variation of the P-Ps delay as the main discriminant. Seismic anisotropy with a tilted symmetry axis leads to complex synthetic seismograms in velocity models composed of just a few flat homogeneous layers. It is possible therefore to model observations of P coda with prominent transverse components with relatively simple 1-D velocity structures. Successful retrieval of salient model characteristics appears possible using multiple realizations of a genetic-algorithm (GA) inversion of P coda from several backazimuths. Using GA inversion, we determine that six P coda recorded at station ARU in central Russia are consistent with models that possess strong (> 10 per cent) anisotropy in the top 5 km and between 30 and 43 km depth. The symmetry axes are tilted, and appear aligned with the seismic anisotropy orientation in the mantle under ARU suggested by SKS splitting.  相似文献   

10.
Simultaneous inversion of seismic data   总被引:2,自引:0,他引:2  
Summary. The resolving power of different data sets, consisting of surface-wave dispersion measurements and S travel times, are compared for a continental structure. The shear velocity in the low-velocity zone can be resolved in some detail with higher-mode phase-velocity data. Sufficient resolution for small density contrasts (0.03 g cm−3) until depths of ∼ 300 km can be reached if higher-mode group velocities are available as well, even at a precision as low as 0.10 km/s. At greater depths the density is not resolved, and here travel-time data are superior to higher modes in resolving the shear velocity.  相似文献   

11.
Summary. Lateral heterogeneity exists in the Earth's mantle, and may result in seismic velocity anomalies up to several per cent. If convection cells and plumes extend down to the core, then these features may be associated with local inhomogeneities observed in the lower mantle.
Published data for direct and core-reflected P -wave residuals are used to delineate velocity anomalies in the middle—lower mantle under the North Atlantic. Differential ( PcP — P ) residuals indicate travel-time anomalies near the core—mantle transition, and may be due to core topography or lateral variations in velocity. It is assumed that the anomalies occur near the midpoints of the ray paths. The main source of error in the data set may arise from phases which have been identified incorrectly. Hence trend-surfaces are fitted to the residual data to show only the large-scale trends in anomaly values, with wavelengths of the order of 1000 km.
The Azores and Colorado hot spots occur in a region covered by the data. A possible interpretation of the trend maps is that an anomalous zone extends from a relatively fast region at the core boundary at 35° N, 50° W up to these hot spots, at about 30 degrees from the vertical. This may agree with the suggestion of Anderson that plumes are chemical rather than thermal in origin. If inclined plumes do exist, the deviation from the ideal vertical plume or convection cell boundary may imply that lateral shear or other distortion effects exist in the mantle.  相似文献   

12.
本文分析了2002年9月10日Cluster四颗卫星穿越南极和北极极隙区期间的观测资料。这两次穿越是在弱而稳定的南向行星际磁场(IMF)条件下发生的。数据显示极隙区中的场向电流(FACs)引起了大的磁场扰动。本文采用了一种基于卫星多点测量来计算扰动界面方向和运动速度的方法。结果显示界面与磁力线大致平行,而它们的速度在卫星穿越南极极隙区时几乎朝向晨侧,在穿越北极极隙区时几乎朝向昏侧,并且其运动速度与相应卫星的速度相比其值很小。  相似文献   

13.
Summary. The relative P-wave delay between CWF, a permanent seismic station on the Precambrian rocks of Charnwood Forest in the English Midlands and EKA, the Eskdalemuir Seismological Array, shows a large azimuthal variation of 1.3 s. This is examined and is consistent with a thinning of the crust from EKA to CWF, together with a considerable thickness of high velocity (most probably greater than 7.0 km s−1) lower crust beneath CWF. The Southern Uplands Fault, approximately 42 km to the north-west at its closest approach to EKA, seems to be associated with a large anomaly in the relative P -wave delay. Raypaths from events originating between azimuths 260 to 350° from EKA apparently pass through anomalously high velocity material entering the crust just to the south of the fault.  相似文献   

14.
Summary. The paper gives the results of a study of the anisotropy of seismic wave velocities within the Ashkhabad test field in Central Asia. The anisotropy was studied by analysing variations in the values of apparent velocities of first arrivals for epicentral distances ranging from 30 to 130 km and by analysing the delays (Δ ts1-s2 ) between the arrival times of shear waves with different polarizations.
The velocities of P -waves vary with azimuth from 5.3 to 6.27 km s-1 and the velocities of S -waves vary from 3.15 to 3.5 km s-1.
The delay times Δ tS1 - S2 depend on the direction of the propagation. The character of the variation of the propagation velocity of the longitudinal wave, the presence of two differently polarized shear waves S 1 and S 2 propagating at different velocities, and the character of the distribution of Δ tS1 - S2 on the stereogram suggest that the symmetry of the anisotropic medium is close to hexagonal with a nearly horizontal symmetry axis coinciding with the direction of maximal velocity. The azimuth of the symmetry axis of the medium is 140° and coincides with the direction of geological faults.  相似文献   

15.
Summary. This paper extends an earlier study (Sengupta & Julian) of travel times of P waves of deep-focus earthquakes to include shear waves. Primary advantage of deep-focus earthquakes is the reduction of anomalies caused by complex structures near the source. The standard deviations of travel times and station anomalies of this study are about half as large as those determined from the data of shallow-focus earthquakes (e.g. Herrin et al.; Hales & Roberts). Spherically-symmetric velocity models derived from the travel times by a linearized inverse technique have resolving lengths of about 70 km for standard errors in velocity of about 0.02 km/s. No pronounced reversal of either compressional or shear velocity was required at the base of the mantle to satisfy the data, though a small velocity decrease could not be entirely ruled out. Some anomalous rapid changes in compressional velocity gradient were, however, found centred around the depths of 2400 and 2600 km. The models derived in this study agree most closely with that of Herrin et al . for compressional velocity and the model 1066B of Gilbert & Dziewonski for shear velocity.  相似文献   

16.
Summary. Nine portable seismic stations deployed across the Western Plains of New South Wales recorded signals in the distance range 250–1000 km from large timed explosions at both ends of the line. A velocity—depth model derived from the travel-time data has the following features: a two-layer crust with a thickness of 35 km; a sub-Moho velocity of 7.98 km/s; an abrupt increase to 8.36 km/s at 100 km depth; a further step to 8.72 km/s at 190 km depth, with a low-velocity channel immediately above the discontinuity. The model has several features in common with others derived from long-range profiles in Australia and elsewhere. The data, however, provide the first suggestion of a low P -velocity channel in Eastern Australia.  相似文献   

17.
Summary. Available seismic refraction data from three different continental areas, northern Britain and the eastern and western United States, has been studied for possible Pn , velocity anisotropy using the methods described by Bamford. There are various deficiencies in the time—distance data used in each case but, while the uppermost mantle beneath northern Britain and the eastern United States seems to be isotropic within the limits of measurement error, there is a small but significant anisotropy beneath the western United States.
Both the amount (up to 3 per cent) and the direction (70–80° east of north) of this anisotropy are very similar to the results obtained in the Pacific Ocean off California. We tentatively conclude that this anisotropy is present as a consequence of the subduction of oceanic lithosphere beneath the western United States.  相似文献   

18.
Summary. The shear-wave velocity distribution in a spherically averaged Earth is estimated statistically from previously published short-period S travel-time measurements (Uhrhammer). An algorithm is defined for integral inversion techniques which allows estimation of the variance of the velocity distribution from the uncertainties in the S slowness model. Comparisons are made between the resulting S -velocity solution and other solutions in common use. There are significant differences (at the 95 per cent confidence level) between the 5-velocity model determined here and the Jeffreys-Bullen model over the depth ranges of 150–550 km and 2100–2350 km. The 95 per cent confidence level in the present velocity distribution ranges from ± 0.025 km/s at 625 km to ±0.32km/s at 2766 km and averages about ±0.063 or ±1 percent.
Correlations between azimuthally dependent source and station adjustments (which were previously determined (Uhrhammer)) indicate widespread lateral inhomogeneities (up to 3.4 per cent) to depths of approximately 700 km. Up to three-quarters of the source adjustments are due to lateral velocity variations in the source regions. Station adjustments for differential 5 minus P times are significantly correlated with elevation and crustal age, but not with station instrumental magnification.  相似文献   

19.
Summary Isotropic earth models are unable to provide uniform fits to the gross Earth normal mode data set or, in many cases, to regional Love-and Rayleigh-wave data. Anisotropic inversion provides a good fit to the data and indicates that the upper 200km of the mantle is anisotropic. The nature and magnitude of the required anisotropy, moreover, is similar to that found in body wave studies and in studies of ultramafic samples from the upper mantle. Pronounced upper mantle low-velocity zones are characteristic of models resulting from isotropic inversion of global or regional data sets. Anisotropic models have more nearly constant velocities in the upper mantle.
Normal mode partial (Frediét) derivatives are calculated for a transversely isotropic earth model with a radial axis of symmetry. For this type of anisotropy there are five elastic constant. The two shear-type moduli can be determined from the toroidal modes. Spheroidal and Rayleigh modes are sensitive to all five elastic constants but are mainly controlled by the two compressional-type moduli, one of the shear-type moduli and the remaining, mixed-mode, modulus. The lack of sensitivity of Rayleigh waves to compressional wave velocities is a characteristic only of the isotropic case. The partial derivatives of the horizontal and vertical components of the compressional velocity are nearly equal and opposite in the region of the mantle where the shear velocity sensitivity is the greatest. The net compressional wave partial derivative, at depth, is therefore very small for isotropic perturbations. Compressional wave anisotropy, however, has a significant effect on Rayleigh-wave dispersion. Once it has been established that transverse anisotropy is important it is necessary to invert for all five elastic constants. If the azimuthal effect has not been averaged out a more general anisotropy may have to be allowed for.  相似文献   

20.
b
A two ship refraction profile was undertaken on the Australian continental shelf during the Banda Sea geophysical program, carried out by the Woods Hole Oceanographic Institution, the Scripps Institution of Oceanography and the Geological Survey of Indonesia. S waves originating close to the sea bottom were observed to distances of up to 1150 km at an array of stations in northern Australia.
These observations are interpreted as implying S mantle velocities of 4.60 km s-1 from a depth of 45 km to a depth of 76 km and 4.72 km s-1 below a depth of 76 km.
Ratios of the P and S travel times (Vp/Vs) have been determined to be 1.74 in the crust rising to a value of greater than 1.79 below a velocity discontinuity at a depth of 200 km. It is inferred that this high value arises because the effect of temperature is greater for S than for P .
Using the data from this and other studies in the shield region of Northern Australia it has been found that the S travel times are significantly less than predicted by the Jeffreys—Bullen tables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号