首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The present-day existence of internal oceans under the outer ice shell of several icy satellites of the Solar System has been recently proposed. The presence of antifreeze substances decreasing ice’s melting point (and tidal heating in Europa’s case) has been generally believed to allow the stability of such oceans; limited cooling of the water (ice plus liquid) layer, due to stability against convection or to stagnant lid convection in the icy shell, have been also considered. Here we propose that even pure liquid-water oceans could survive today within several icy worlds, and we consider some factors affecting thermal modeling in these bodies. So, the existence of such oceans would be a natural consequence of the physical properties of water ice, independently from the addition of antifreeze substances or any other special conditions. The inclusion of these substances would contribute to expand the conditions for water to stay liquid and to increase ocean’s volume.  相似文献   

3.
Hauke Hussmann  Frank Sohl 《Icarus》2006,185(1):258-273
The detection of induced magnetic fields in the vicinity of the jovian satellites Europa, Ganymede, and Callisto is one of the most surprising findings of the Galileo mission to Jupiter. The observed magnetic signature cannot be generated in solid ice or in silicate rock. It rather suggests the existence of electrically conducting reservoirs of liquid water beneath the satellites' outermost icy shells that may contain even more water than all terrestrial oceans combined. The maintenance of liquid water layers is closely related to the internal structure, composition, and thermal state of the corresponding satellite interior. In this study we investigate the possibility of subsurface oceans in the medium-sized icy satellites and the largest trans-neptunian objects (TNO's). Controlling parameters for subsurface ocean formation are the radiogenic heating rate of the silicate component and the effectiveness of the heat transfer to the surface. Furthermore, the melting temperature of ice will be significantly reduced by small amounts of salts and/or incorporated volatiles such as methane and ammonia that are highly abundant in the outer Solar System. Based on the assumption that the satellites are differentiated and using an equilibrium condition between the heat production rate in the rocky cores and the heat loss through the ice shell, we find that subsurface oceans are possible on Rhea, Titania, Oberon, Triton, and Pluto and on the largest TNO's 2003 UB313, Sedna, and 2004 DW. Subsurface oceans can even exist if only small amounts of ammonia are available. The liquid subsurface reservoirs are located deeply underneath an ice-I shell of more than 100 km thickness. However, they may be indirectly detectable by their interaction with the surrounding magnetic fields and charged particles and by the magnitude of a satellite's response to tides exerted by the primary. The latter is strongly dependent on the occurrence of a subsurface ocean which provides greater flexibility to a satellite's rigid outer ice shell.  相似文献   

4.
Previous analyses into flexural deformation on the icy satellites of Jupiter and Saturn have assumed static, elastic lithospheres. Viscous creep within the lithosphere, however, can cause evolution over time. Here, we apply a finite-element model that employs a time-dependent elastic–viscous-plastic rheology in order to investigate flexure on icy satellites. Factors that affect this time-dependent response are those that control creep rates; surface temperature, heat flow, and grain size. Our results show that surface temperature is by far the dominant factor. At higher surface temperatures (100–130 K), the evolution of the deformation is such that the thickness of a modeled elastic lithosphere could vary by up to an order of magnitude, depending on the time scale over which the deformation occurred. Because the flexure observed on icy satellites generally indicates transient high heat flow events, our results indicate that the duration of the heat pulse is an important factor. For the icy worlds of Jupiter and Saturn, static models of lithospheric flexure should be used with caution.  相似文献   

5.
The tectonically and cryovolcanically resurfaced terrains of Ganymede attest to the satellite's turbulent geologic history. Yet, the ultimate cause of its geologic violence remains unknown. One plausible scenario suggests that the Galilean satellites passed through one or more Laplace-like resonances before evolving into the current Laplace resonance. Passage through such a resonance can excite Ganymede's eccentricity, leading to tidal dissipation within the ice shell. To evaluate the effects of resonance passage on Ganymede's thermal history we model the coupled orbital-thermal evolution of Ganymede both with and without passage through a Laplace-like resonance. In the absence of tidal dissipation, radiogenic heating alone is capable of creating large internal oceans within Ganymede if the ice grain size is 1 mm or greater. For larger grain sizes, oceans will exist into the present epoch. The inclusion of tidal dissipation significantly alters Ganymede's thermal history, and for some parameters (e.g. ice grain size, tidal Q of Jupiter) a thin ice shell (5 to 20 km) can be maintained throughout the period of resonance passage. The pulse of tidal heating that accompanies Laplace-like resonance capture can cause up to 2.5% volumetric expansion of the satellite and contemporaneous formation of near surface partial melt. The presence of a thin ice shell and high satellite orbital eccentricity would generate moderate diurnal tidal stresses in Ganymede's ice shell. Larger stresses result if the ice shell rotates non-synchronously. The combined effects of satellite expansion, its associated tensile stress, rapid formation of near surface partial melt, and tidal stress due to an eccentric orbit may be responsible for creating Ganymede's unique surface features.  相似文献   

6.
《Icarus》1987,69(2):297-313
Consideration of the thermal sublimation of ice on the Galilean satellites suggests that dirty-ice surfaces are susceptible to a process of cold-trapping of water in local bright patches and its preferential removal from dark areas. The result may be very rapid (decade time scale) segregation on the surface into bright icy regions and regions covered by dark ice-free lag deposits. Ion sputtering and micrometeorite bombardment are probably insufficient to prevent this process at low latitudes on Ganymede and Callisto. Sputtering on Europa may prevent segregation, especially on the trailing side. Segregated regions must be mostly smaller than the kilometer resolution of the Voyager images, but larger than centimeter size.  相似文献   

7.
Javier Ruiz 《Icarus》2003,166(2):436-439
The Raz Fossae, a pair of ≈15-km wide trough en echelon interpreted as grabens, can be used to propose an estimation of the depth to the brittle-ductile transition on Triton. This estimation may in turn give an idea of the thermal state of Triton's icy lithosphere when these features formed. Given the young age of its surface, the conclusions obtained could be roughly applicable to the present state of this satellite of Neptune. Considering water or ammonia dihydrate as possible components of the lithosphere and a feasible range of strain rates, it was estimated that surface heat flow is greater than that inferred from radiogenic heating, especially for a lithosphere dominated by water. Also, an internal ocean could lie at a depth of only ∼20 km beneath the surface. The presence over the surface of an insulating layer of ice of low thermal conductivity (e.g., nitrogen) or of regolith would only substantially alter these estimates if the effective surface temperature were considerably higher than the observed value of 38 K.  相似文献   

8.
Thermal histories of the small icy Saturnian satellites Mimas, Tethys, Dione, Rhea, and Iapetus are constructed by assuming that they formed as homogeneous ice-silicate mixtures. The models include effects of radiogenic and accretional heating, conductive and subsolidus convective heat transfer, and lithospheric growth. Accretional heating is unlikely to have melted the water ice in the interiors of these bodies and solid state creep of the predominately ice material precludes melting by radiogenic heating. Mimas is so small that its thermal evolution is essentially purely conductive; at present it is a cold, nearly isothermal body. Any subsolidus convection or thermal activity in Mimas would have been confined to a brief period in its early history and would have been due to a warm formation. The four largest satellites are big enough and contain sufficient heat-producing silicates that solid state convection beneath a rigid lithosphere is inevitable independent of initial conditions. Dione and Rhea have convective interiors for most of their thermal histories, while Tethys and Iapetus have mainly conductive thermal histories with early periods of convective 0activity. The thermal histories of the five satellites for the last 4 by are independent of initial conditions; at present they have cold, conductive interiors. The model thermal histories are qualitatively consistent with the appearances of these satellites: Mimas has an ancient heavily cratered surface, Tethys and probably Iapetus have both heavily cratered and more lightly cratered areas, and Dione and Rhea have extensively modified surfaces. Because of their similar sizes and densities, Mimas and Enceladus are expected to have similar surfaces and thermal histories, but instead Enceladus has the most modified surface of all the small icy Saturnian satellites. Our results suggest a heat source for Enceladus, in addition to radiogenic and accretional heating; tidal dissipation is a possibility. Because the water ice in these bodies does not melt, resurfacing must be accomplished by the melting of a low-melting-temperature minor component such as ammonia hydrate.  相似文献   

9.
The position of the satellite within the protonebula, the influence of the parent planet, particularly the relative effects of tidal (gravitational) as opposed to radiogenic (internal) heat generating processes, as well as the type of ice, exert a control on the evolutionary histories of the Jovian and Saturnian satellites. The landscapes of the moons are modified by surface deformational processes (tectonic activity derived from within the body) and externally derived cratering. The geological history of the Galilean satellites is deduced from surface stratigraphic successions of geological units. Io and Europa, with crater-free surfaces, are tectonically more advanced than crater-saturated Callisto.Two thermal-drive models are proposed based on: an expression for externally derived gravitational influences between two bodies; and internal heat generation via radiogenic decay (expressed by surface area/volume ratio). Both parameters, for the Galilean satellites, are plotted against an inferred product of tectonic processes — the age of the surface terrain. From these diagrams, the tectonic evolutionary state of the more distant Saturnian system are predicted. These moons are fitted into an evolutionary framework for the Solar System.Based on a paper presented at the 1985 Royal Astronomical Society of New Zealand Conference, Hamilton, New Zealand.  相似文献   

10.
《Icarus》1987,70(1):99-110
Recent interpretations of the reflectance spectra of the icy Galilean satellites (Europa, Ganymede, and Callisto) have implied very ice-rich surfaces, as high as 90 wt% ice even on the dark surface of Callisto. A reevaluation of the spectra, taking into account the depth of the 3-μm fundamental water ice absorption feature as well as the shorter wavelength bands, suggests that the spectra of at least Ganymede and Callisto may also be consistent with much lower ice abundances if the ice is segregated from the nonicy material. Reasonable fits to all band depths (including the shallow 1.04- and 1.25-μm bands) are obtained with around 50% areal coverage of ice on Ganymede and 10% on Callisto, the rest of the surface being occupied by carbonaceous chondrite-like material which has a strong 3-μm absorption due to bound water. Europa's spectrum probably indicates a homogeneous icy surface. The darkness beyond 3 μm, and lack of a 3.6-μm peak, for all three objects may be consistent with the presence of small quantities of sulfuric acid on the satellite surfaces.  相似文献   

11.
Calculations of the topography and shape of planetary bodies are presented for two sets of models. One set of models deals with the effects of static loading on bodies, taking into account strengths of materials, density, and size. The other set considers the effects of creep deformation on model bodies of differing composition, size and temperature. Application of these models to asteroids and satellites of the major planets indicates that model, even the largest asteroids could retain highly nonspherical shapes, and the four large satellites of Jupiter could sustain statically loaded topography on the order of 10 km. (2) If silicate asteroids have not been heated to near the melting temperature of silicates, initial topography should survive for at least 109 yr under creep deformation. Topography on an insulated icy asteroid will be rapidly reduced if it is of larger scale than the insulating layer, no matter what the thermal history. (3) Of the Galilean satellites of Jupiter, J1 and J2 should retain topography created on silicate surfaces since their formation (or since the surfaces were near the silicate melting temperature. If ice layers of any significant thickness exist, topography on a scale smaller than the layer's thickness will be reduced rapidly. (4) J4 and J3 probably fit an icy model throughout and topography of all scales may be reduced with relaxation times < 106yr. These satellites are thus likely to preserve only very recent features on their surfaces, in contrast to the other Galilean satellites. If melting has taken place since formation, these conclusions become even stronger. (5) Of the satellites of the other planets, only Titan appears likely to have undergone topographic reduction by creep, under the models presented. However, if ices other than water are present in large proportion on these satellites relaxation times for topography may be shorter than calculated from the water ice models.  相似文献   

12.
Oceans in the icy Galilean satellites of Jupiter?   总被引:1,自引:0,他引:1  
Tilman Spohn  Gerald Schubert 《Icarus》2003,161(2):456-467
Equilibrium models of heat transfer by heat conduction and thermal convection show that the three satellites of Jupiter—Europa, Ganymede, and Callisto—may have internal oceans underneath ice shells tens of kilometers to more than a hundred kilometers thick. A wide range of rheology and heat transfer parameter values and present-day heat production rates have been considered. The rheology was cast in terms of a reference viscosity ν0 calculated at the melting temperature and the rate of change A of viscosity with inverse homologous temperature. The temperature dependence of the thermal conductivity k of ice I has been taken into account by calculating the average conductivity along the temperature profile. Heating rates are based on a chondritic radiogenic heating rate of 4.5 pW kg−1 but have been varied around this value over a wide range. The phase diagrams of H2O (ice I) and H2O + 5 wt% NH3 ice have been considered. The ice I models are worst-case scenarios for the existence of a subsurface liquid water ocean because ice I has the highest possible melting temperature and the highest thermal conductivity of candidate ices and the assumption of equilibrium ignores the contribution to ice shell heating from deep interior cooling. In the context of ice I models, we find that Europa is the satellite most likely to have a subsurface liquid ocean. Even with radiogenic heating alone the ocean is tens of kilometers thick in the nominal model. If tidal heating is invoked, the ocean will be much thicker and the ice shell will be a few tens of kilometers thick. Ganymede and Callisto have frozen their oceans in the nominal ice I models, but since these models represent the worst-case scenario, it is conceivable that these satellites also have oceans at the present time. The most important factor working against the existence of subsurface oceans is contamination of the outer ice shell by rock. Rock increases the density and the pressure gradient and shifts the triple point of ice I to shallower depths where the temperature is likely to be lower then the triple point temperature. According to present knowledge of ice phase diagrams, ammonia produces one of the largest reductions of the melting temperature. If we assume a bulk concentration of 5 wt% ammonia we find that all the satellites have substantial oceans. For a model of Europa heated only by radiogenic decay, the ice shell will be a few tens of kilometers thinner than in the ice I case. The underlying rock mantle will limit the depth of the ocean to 80-100 km. For Ganymede and Callisto, the ice I shell on top of the H2O-NH3 ocean will be around 60- to 80-km thick and the oceans may be 200- to 350-km deep. Previous models have suggested that efficient convection in the ice will freeze any existing ocean. The present conclusions are different mainly because they are based on a parameterization of convective heat transport in fluids with strongly temperature dependent viscosity rather than a parameterization derived from constant-viscosity convection models. The present parameterization introduces a conductive stagnant lid at the expense of the thickness of the convecting sublayer, if the latter exists at all. The stagnant lid causes the temperature in the sublayer to be warmer than in a comparable constant-viscosity convecting layer. We have further modified the parameterization to account for the strong increase in homologous temperature, and therefore decrease in viscosity, with depth along an adiabat. This modification causes even thicker stagnant lids and further elevated temperatures in the well-mixed sublayer. It is the stagnant lid and the comparatively large temperature in the sublayer that frustrates ocean freezing.  相似文献   

13.
Lithospheric strength can be used to estimate the heat flow at the time when a given region was deformed, allowing us to constrain the thermal evolution of a planetary body. In this sense, the high (>300 km) effective elastic thickness of the lithosphere deduced from the very limited deflection caused by the north polar cap of Mars indicates a low surface heat flow for this region at the present time, a finding difficult to reconcile with thermal history models. This has started a debate on the current heat flow of Mars and the implications for the thermal evolution of the planet. Here we perform refined estimates of paleo-heat flow for 22 martian regions of different periods and geological context, derived from the effective elastic thickness of the lithosphere or from faulting depth beneath large thrust faults, by considering regional radioactive element abundances and realistic thermal conductivities for the crust and mantle lithosphere. For the calculations based on the effective elastic thickness of the lithosphere we also consider the respective contributions of crust and mantle lithosphere to the total lithospheric strength. The obtained surface heat flows are in general lower than the equivalent radioactive heat production of Mars at the corresponding times, suggesting a limited contribution from secular cooling to the heat flow during the majority of the history of Mars. This is contrary to the predictions from the majority of thermal history models, but is consistent with evidence suggesting a currently fluid core, limited secular contraction for Mars, and recent extensive volcanism. Moreover, the interior of Mars could even have been heating up during part of the thermal history of the planet.  相似文献   

14.
G.J. Black  D.B. Campbell 《Icarus》2007,191(2):702-711
We have measured the bulk radar reflectance properties of the mid-size saturnian satellites Rhea, Dione, Tethys, and Enceladus with the Arecibo Observatory's 13 cm wavelength radar system during the 2004 through 2007 oppositions of the Saturn system. Comparing to the better studied icy Galilean satellites, we find that the total reflectivities of Rhea and Tethys are most similar to Ganymede while Dione is most similar to Callisto. Enceladus' reflectivity falls between those of Ganymede and Europa. The mean circular polarization ratios of the saturnian satellites range from ∼0.8 to 1.2, and are on average lower than those of the icy Galilean satellites at this wavelength although still larger than expected for single reflections off the surface. The ratio for the trailing hemisphere of Enceladus may be the exception with a value ?0.56. The 13 cm wavelength radar albedos and polarization ratios may be systematically lower than similar results from the Cassini orbiter's RADAR instrument at 2.2 cm wavelength [Ostro, S.J., and 19 colleagues, 2006. Icarus 183, 479-490]. Overall, these reflectivities and polarization properties, together with the shapes of the echo spectra, suggest subsurface multiple scattering to be the dominant reflection mechanism although operating less efficiently than on the large icy moons of Jupiter. All these saturnian moons and icy jovian moons are atmosphere-less, low temperature water ice surfaces, and any differences in radar properties may be indicative of differences in composition or the effects of various processes that modify the regolith structure. The degree of variation in radar properties with wavelength on each satellite may constrain the thickness and efficiency of the scattering layer.  相似文献   

15.
William B. McKinnon 《Icarus》2006,183(2):435-450
It has been argued that the dominant non-Newtonian creep mechanisms of water ice make the ice shell above Callisto's ocean, and by inference all radiogenically heated ice I shells in the outer Solar System, stable against solid-state convective overturn. Conductive heat transport and internal melting (oceans) are therefore predicted to be, or have been, widespread among midsize and larger icy satellites and Kuiper Belt objects. Alternatively, at low stresses (where non-Newtonian viscosities can be arbitrarily large), convective instabilities may arise in the diffusional creep regime for arbitrarily small temperature perturbations. For Callisto, ice viscosities are low enough that convection is expected over most of geologic time above the internal liquid layer for plausible ice grain sizes (?a few mm); the alternative for early Callisto, a conducting shell over a very deep ocean (>450 km), is not compatible with Callisto's present partially differentiated state. Moreover, if convection is occurring today, the stagnant lid would be quite thick (∼100 km) and compatible with the lack of active geology. Nevertheless, Callisto's steady-state heat flow may have fallen below the convective minimum for its ice I shell late in Solar System history. In this case convection ends, the ice shell melts back at its base, and the internal ocean widens considerably. The presence of such an ocean, of order 200 km thick, is compatible with Callisto's moment-of-inertia, but its formation would have caused an ∼0.25% radial expansion. The tectonic effects of such a late, slow expansion are not observed, so convection likely persists in Callisto, possibly subcritically. Ganymede, due to its greater size, rock fraction and full differentiation, has a substantially higher heat flow than Callisto and has not reached this tectonic end state. Titan, if differentiated, and Triton should be more similar to Ganymede in this regard. Pluto, like Callisto, may be near the tipping point for convective shutdown, but uncertainties in its size and rock fraction prevent a more definitive assessment.  相似文献   

16.
The results of ground-based spectrophotometry of the icy Galilean satellites of Jupiter—Europa, Ganymede, and Callisto—are discussed. The observations were carried out in the 0.39–0.92 μm range with the use of the CCD spectrometer mounted on the 1.25-m telescope of the Crimean laboratory of the Sternberg Astronomical Institute in March 2004. It is noted that the calculated reflectance spectra of the satellites mainly agree with the analogous data of the earlier ground-based observations and investigations in the Voyager and Galileo space missions. The present study was aimed at identifying new weak absorption bands (with the relative intensity of ~3–5%) in the reflectance spectra of these bodies with laboratory measurements (Landau et al., 1962; Ramaprasad et al., 1978; Burns, 1993; Busarev et al., 2008). It has been ascertained that the spectra of all of the considered objects contain weak absorption bands of molecular oxygen adsorbed into water ice, which is apparently caused by the radiative implantation of O+ ions into the surface material of the satellites in the magnetosphere of Jupiter. At the same time, spectral features of iron of different valence (Fe2+ and Fe3+) values typical of hydrated silicates were detected on Ganymede and Callisto, while probable indications of methane of presumably endogenous origin, adsorbed into water ice, were found on Europa. The reflectance spectra of the icy Galilean satellites were compared to the reflectance spectra of the asteroids 51 Nemausa (C-class) and 92 Undina (X-class).  相似文献   

17.
The four Galilean satellites are thought to harbor one or even two global internal liquid layers beneath their surface layer. The iron core of Io and Ganymede is most likely (partially) liquid and also the core of Europa may be liquid. Furthermore, there are strong indications for the existence of a subsurface ocean in Europa, Ganymede, and Callisto. Here, we investigate whether libration observations can be used to prove the existence of these liquid layers and to constrain the thickness of the overlying solid layers. For Io, the presence of a small liquid core increases the libration of the mantle by a few percent with respect to an entirely solid Io and mantle libration observations could be used to determine the mantle thickness with a precision of several tens of kilometers given that the libration amplitude can be measured with a precision of 1 m. For Europa, Ganymede, and Callisto, the presence of a water ocean close to the surface increases by at least an order of magnitude the ice shell libration amplitude with respect to an entirely solid satellite. The shell libration depends essentially on the shell thickness and to a minor extent on the density difference between the ocean and the ice shell. The possible presence of a liquid core inside Europa and Ganymede has no noticeable influence on their shell libration. For a precision of several meters on the libration measurements, in agreement with the expected accuracy with the NASA/ESA EJSM orbiter mission to Europa and Ganymede, an error on the shell thickness of a few tens kilometers is expected. Therefore, libration measurements can be used to detect liquid layers such as Io’s core or water subsurface oceans in Europa, Ganymede, and Callisto and to constrain the thickness of the overlying solid surface layers.  相似文献   

18.
《Icarus》1987,69(3):506-518
New results of low-velocity impact experiments in cubic and cylindrical (20 cm) water-ice targets initially at 257 and 81 °K are reported. Impact velocities and impact energies vary between 0.1 and 0.64 km/sec and 109 and 1010 ergs, respectively. Observed crater diameters range from 7 to 15 cm and are two to three times larger than values found for equal-energy impacts in basaltic targets. Crater dimensions in ice targets increase slightly with increasing target temperatures. Crater volumes of strength-controlled ice craters are about 10 to 100 times larger than those observed for craters in crystalline rocks. Based on similarity analysis, general scaling laws for strength-controlled crater formation are derived and are applied to crater formation on the icy Galilean and Saturnian satellites. This analysis indicates that surface ages, based on impact-crater statistics on an icy crust, will appear greater than those for a silicate crust which experienced the same impact history. The greater ejecta volume for cratering in ice versus cratering in silicate targets leads to accelerated regolith production on an icy planet.  相似文献   

19.
O. Gomis  G. Strazzulla 《Icarus》2008,194(1):146-152
In this paper we present the results of new experiments of ion irradiation of water ice deposited on top of a solid sulfurous residue to study the potential formation of SO2 at the interface ice/refractory material and discuss the possibility that this mechanism accounts for the sulfur dioxide ice detected on the surfaces of the Galilean satellites. In situ infrared spectroscopy was the used experimental technique. We have irradiated a thin film of H2O frost on a sulfurous layer with 200 keV of He+ at 80 K. The used sulfurous residue was obtained by irradiation of frozen SO2 at 16 K and it is used as a template of sulfur bearing solid materials. We have not found evidences of the efficient formation of SO2 after irradiation of H2O ice on top of the sulfurous residue. An upper limit to the production yield of SO2, of interface area for each 100 eV of energy absorbed in 1 cm3 of ice-covered residue, has been estimated. These results have relevance in the context of the surfaces of the icy Galilean satellites in which SO2 was detected. Our results show that radiolysis of mixtures of water ice and refractory sulfurous materials is not the primary formation mechanism responsible for the SO2 present on the surfaces of the Galilean satellites.  相似文献   

20.
The possibility of generating water vapor and other gaseous products during nonvolcanic explosive eruptions in lithospheres of icy satellites is discussed. Explosive eruptions of ice, with its fragmentation into micro-and nanofragments, can occur in the extensive deep layers of such icy satellites as Europa, Ganymede, Enceladus, etc., if giant cracks are episodically formed in the lithospheres of these satellites. Such cracks can be produced by tidal forces, synchronous resonances of satellites, or especially powerful impacts. The model is based on the recently obtained experimental evidence that explosive ice instability (Bridgman effect) is formed at a strong nonuniform compression in the regions of high pressures and low temperatures. Water films, the thicknesses of which reach several microns, can be formed during the process of the mutual friction of ice fragments during their quasi-liquid flow at the instant of an explosive eruption. About 1–10 dm3 of a water film can be produced in 1 m3 of erupted ice fragments. Water vapor can be formed from a water film when this water boils up after a rapid pressure drop as a result of an ice-water mixture eruption from cracks. A certain amount of gaseous products in the form of hydrogen, oxygen, and ammonia molecules and radicals on their basis can be generated during the sputtering induced by electrons and ions and the dissociation of nanofragments of ice during the process of ice explosive fragmentation as a result of fracto-, tribo-, and secondary emission. The estimates indicate that the volume of water vapor erupted on satellites can be larger than that of discharged ionized gases by a factor of not less than 105–107. Water vapor and microscopic ice fragments can be erupted from cracks in the lithospheres of small Enceladus-type satellites at velocities higher than the second cosmic velocity. Gaseous products generated in such episodic processes can, most probably, substantially contribute to the density of the atmosphere that exists on small icy satellites, but can only insignificantly contribute to this density on large satellites. The stick-slip motions of the most condensed plumes of water vapor and dust, normal to the satellite surface, along the mouths of gigantic cracks may indicate that the proposed model is realistic. Such wanderings of water vapor plumes can result in the synchronous motions of thermal patches on the satellite surface along crack mouths at velocities of about 10 km/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号