首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comprehensive case and statistical study of CME onsets has been conducted on the solar limb using the CDS, LASCO and EIT instruments aboard the SOHO spacecraft. This is the first dedicated campaign to establish firmly the EUV signatures of CME onsets and is based on a series of low-corona observing campaigns made in 2002. The event database consisted of 36 multiple emission line sequences observed with CDS and the study builds, in particular, on studies of EUV coronal dimming which have been associated with CME onsets. We witness a range of dimming events in EUV coronal emission line data. Shorter events, commonly of duration < 4 hours, we find are indirectly associated with CME onsets whereas longer-duration dimmings (> 4 hours) appear to be either due to coronal evolution or rotational effects. However, for some CME onsets, where the CDS pointing was appropriate, no dimming was observed. Dimming observed in EIT typically occurred immediately after the launch of a loop or prominence, and in 5 out of 9 events there is evidence of a matter buildup within the loop before launch. A total of 10 events occurred where CDS was used to directly observe the CME footprint, but no relationship between these events was found. The results suggest that the response of the corona to a CME launch differs between the low (1.0 R R≤1.2 R ) and middle (1.2 R <R≤2.0 R ) corona regions, hence implying a difference between dimming observations conducted with different instruments.  相似文献   

2.
In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to ?0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.  相似文献   

3.
张军  汪景 《天文学进展》2001,19(2):146-146
主要介绍晕状日冕物质抛射(halo CMEs)的产生机制,包括向量磁场演化是怎样触发halo CMEa的:halo CME与耀斑,暗条活动的相互关系怎样,是否有规律可循,暗条爆发,耀斑等活动现象是如何相互联系的,halo CME事件是由一个活动区域或一个活动事件驱动物,还是多个活动区或多个活动事件相互作用的结果,给出两个halo CME的日面起源的观测例证,提出相反极笥的磁场对消是CME日面源区磁场演化的主要特征。  相似文献   

4.
对地日冕物质抛射研究   总被引:5,自引:0,他引:5  
日冕物质抛射,作为太阳大气中频繁发生的极为壮观的活动现象,越来越受到太阳物理学家的关注。其中一类特殊的抛射事件--对地日冕物质抛射,通常与大的地磁暴、行星际激波和高能粒子事件相伴生,具有强烈的地球物理效应,是影响空间天气的主要因素之一。概括了对地日冕物质抛射的研究现状,重点介绍了与对土日冕物质抛射事件相联系的光球向量磁场演化的观测研究成果,并由典型事件探讨了暗条爆发、耀五等剧烈太阳活动和对地日冕物质抛射之间的密切关系,提出了尚待解决的主要问题和进一步的研究方向。  相似文献   

5.
Cargill  Peter J. 《Solar physics》2004,221(1):135-149
It is well known that the interaction of an interplanetary coronal mass ejection (ICME) with the solar wind leads to an equalisation of the ICME and solar wind velocities at 1 AU. This can be understood in terms of an aerodynamic drag force per unit mass of the form F D/M=−(ρe AC D/M)(V iV e)∣V iV e∣, where A and M are the ICME cross-section and sum of the mass and virtual mass, V i and V e the speed of the ICME and solar wind, ρe the solar wind density, C D a dimensionless drag coefficient, and the inverse deceleration length γ=ρe A/M. The optimal radial parameterisation of γ and C D beyond approximately 15 solar radii is calculated. Magnetohydrodynamic simulations show that for dense ICMEs, C D varies slowly between the Sun and 1 AU, and is of order unity. When the ICME and solar wind densities are similar, C D is larger (between 3 and 10), but remains approximately constant with radial distance. For tenuous ICMEs, the ICME and solar wind velocities equalise rapidly due to the very effective drag force. For ICMEs denser that the ambient solar wind, both approaches show that γ is approximately independent of radius, while for tenuous ICMEs, γ falls off linearly with distance. When the ICME density is similar to or less than that in the solar wind, inclusion of virtual mass effects is essential.  相似文献   

6.
孙凯 《天文学进展》1997,15(1):44-52
综述日冕物质抛射的观测和持性,简短的前言之后,给出CME的发现经过及统计特性,着重介绍CME与其他种类太阳活动的相关。然后介绍CME的一般特性,包括可能与CME相关的一些物理过程的观测特性。初步结论是:CME是一种演变中的磁结构现象。  相似文献   

7.
We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching ?263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.  相似文献   

8.
Basic processes of magnetic reconnection and observations of coronal mass ejection are introduced. A possible mechanism of CME caused by magnetic rcconnection in the current sheet of solar corona is suggested.  相似文献   

9.
1 INTRODUCTIONCoronal majss ejections (CMEs) are often seen as spectacular eruptions of matter fromthe Sun which propagate outward through the heliosphere and often interact with the Earth'smagnetosphere (Hundhausen, 1997; Gosling, 1997; and references herein). It is well known thatthese interactions can have substalltial consequences on the geomagnetic environment of theEarth, sometimes resulting in damage to satellites (e.g., McAllister et al., 1996; Berdichevskyet al., 1998). CMEs…  相似文献   

10.
We compare the temporal and spatial properties of posteruption arcades (PEAs) associated with coronal mass ejections (CMEs) at the Sun that end up as magnetic cloud (MC) and non-MC events in the solar wind. We investigate the length, width, area, tilt angle, and formation time of the PEAs associated with 22 MC and 29 non-MC events and we find no difference between the two populations. According to current ideas on the relation between flares and CMEs, the PEA is formed together with the CME flux-rope structure by magnetic reconnection. Our results indicate that at the Sun flux ropes form during CMEs in association with both MC and non-MC events; however, for non-MC events the flux-rope structure is not observed in the interplanetary space because of the geometry of the observation, i.e. the location of the spacecraft when the structure passes through it.  相似文献   

11.
Wheatland  M.S. 《Solar physics》2003,214(2):361-373
The distribution of times t between coronal mass ejections (CMEs) in the Large Angle and Spectrometric Coronagraph (LASCO) CME catalog for the years 1996–2001 is examined. The distribution exhibits a power-law tail (t) with an index –2.36±0.11 for large waiting times (t>10 hours). The power-law index of the waiting-time distribution varies with the solar cycle: for the years 1996–1998 (a period of low activity), the power-law index is –1.86±0.14, and for the years 1999–2001 (a period of higher activity), the index is –2.98±0.20. The observed CME waiting-time distribution, and its variation with the cycle, may be understood in terms of CMEs occurring as a time-dependent Poisson process. The CME waiting-time distribution is compared with that for greater than C1 class solar flares in the Geostationary Operational Environmental Satellite (GOES) catalog for the same years. The flare and CME waiting-time distributions exhibit power-law tails with very similar indices and time variation.  相似文献   

12.
We present an analysis of all the events (around 400) of coronal shocks for which the shock-associated metric type IIs were observed by many spectrographs during the period April 1997– December 2000. The main objective of this analysis is to give evidence for the type IIs related to only flare-blast waves, and thus to find out whether there are any type II-associated coronal shocks without mass ejections. By carefully analyzing the data from multi-wavelength observations (Radio, GOES X-ray, Hα, SOHO/LASCO and SOHO/EIT-EUV data), we have identified only 30 events for which there were actually no reports of CMEs. Then from the analysis of the LASCO and EIT running difference images, we found that there are some shocks (nearly 40%, 12/30) which might be associated with weak and narrow mass ejections. These weak and narrow ejections were not reported earlier. For the remaining 60% events (18/30), there are no mass ejections seen in SOHO/LASCO. But all of them are associated with flares and EIT brightenings. Pre-assuming that these type IIs are related to the flares, and from those flare locations of these 18 cases, 16 events are found to occur within the central region of the solar disk (longitude ≤45^∘). In this case, the weak CMEs originating from this region are unlikely to be detected by SOHO/LASCO due to low scattering. The remaining two events occurred beyond this longitudinal limit for which any mass ejections would have been detected if they were present. For both these events, though there are weak eruption features (EIT dimming and loop displacement) in the EIT images, no mass ejection was seen in LASCO for one event, and a CME appeared very late for the other event. While these two cases may imply that the coronal shocks can be produced without any mass ejections, we cannot deny the strong relationship between type IIs and CMEs.  相似文献   

13.
14.
Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. Models of CME dynamics have been proposed that do not fully include the effects of magnetic reconnection on the forces driving the ejection. Both observations and numerical modeling, however, suggest that reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the accretion of magnetic flux onto a rising ejection by reconnection involving the ejection’s background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying the forces acting upon the ejection, generically increasing its upward acceleration. The modified forces, in turn, can more strongly drive the reconnection. This feedback process acts, effectively, as an instability, which we refer to as a reconnective instability. Our analysis implies that CME models that neglect the effects of reconnection cannot accurately describe observed CME dynamics. Our ultimate aim is to understand changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux. This flux can be estimated from observations of flare ribbons and photospheric magnetic fields.  相似文献   

15.
作为一种大尺度的太阳高能活动现象,日冕物质抛射(CME)的发现令人瞩目,其强烈的行星际和地球物理效应更引起了天文、空间和地球物理学家的共同关注。在本文中介绍了自CME发现以来的22年中观测和研究所取得的进展,以及它给太阳物理学带来的影响,并分析了研究工作所面临的困难和障碍,展望了CME研究的前景。  相似文献   

16.
太阳日冕物质抛射特性的模糊分类研究   总被引:1,自引:0,他引:1  
韩正忠  唐玉华 《天文学报》2002,43(4):359-365
应用模糊集理论对日冕物质抛射(CME)特性进行分类研究,根据CME形态特性和特征因子之间的关系,重点阐明构造每个特性的隶属函数和确定权重因子的基本原理与方法,通过数据处理,对CME特性进行聚类分析,结果表明,模糊分类方法要优于传统的统计分析,对于CME特性按重要性分类,为空间环境的预报提供了一个具有实用价值的方法。  相似文献   

17.
We present the “Drag-Based Model” (DBM) of heliospheric propagation of interplanetary coronal mass ejections (ICMEs). The DBM is based on the hypothesis that the driving Lorentz force, which launches a CME, ceases in the upper corona and that beyond a certain distance the dynamics becomes governed solely by the interaction of the ICME and the ambient solar wind. In particular, we consider the option where the drag acceleration has a quadratic dependence on the ICME relative speed, which is expected in a collisionless environment, where the drag is caused primarily by emission of magnetohydrodynamic (MHD) waves. In this paper we present the simplest version of DBM, where the equation of motion can be solved analytically, providing explicit solutions for the Sun–Earth ICME transit time and impact speed. This offers easy handling and straightforward application to real-time space-weather forecasting. Beside presenting the model itself, we perform an analysis of DBM performances, applying a statistical and case-study approach, which provides insight into the advantages and drawbacks of DBM. Finally, we present a public, DBM-based, online forecast tool.  相似文献   

18.
We present the results from modeling the coronal mass ejection (CME) properties that have an effect on the Faraday rotation (FR) signatures that may be measured with an imaging radio antenna array such as the Murchison Widefield Array (MWA). These include the magnetic flux rope orientation, handedness, magnetic-field magnitude, velocity, radius, expansion rate, electron density, and the presence of a shock/sheath region. We find that simultaneous multiple radio source observations (FR imaging) can be used to uniquely determine the orientation of the magnetic field in a CME, increase the advance warning time on the geoeffectiveness of a CME by an order of magnitude from the warning time possible from in-situ observations at L 1, and investigate the extent and structure of the shock/sheath region at the leading edge of fast CMEs. The magnetic field of the heliosphere is largely “invisible” with only a fraction of the interplanetary magnetic-field lines convecting past the Earth; remote sensing the heliospheric magnetic field through FR imaging from the MWA will advance solar physics investigations into CME evolution and dynamics.  相似文献   

19.
Characterization of the three-dimensional structure of solar transients using incomplete plane of sky data is a difficult problem whose solutions have potential for societal benefit in terms of space weather applications. In this paper transients are characterized in three dimensions by means of conic coronal mass ejection (CME) approximation. A novel method for the automatic determination of cone model parameters from observed halo CMEs is introduced. The method uses both standard image processing techniques to extract the CME mass from white-light coronagraph images and a novel inversion routine providing the final cone parameters. A bootstrap technique is used to provide model parameter distributions. When combined with heliospheric modeling, the cone model parameter distributions will provide direct means for ensemble predictions of transient propagation in the heliosphere. An initial validation of the automatic method is carried by comparison to manually determined cone model parameters. It is shown using 14 halo CME events that there is reasonable agreement, especially between the heliocentric locations of the cones derived with the two methods. It is argued that both the heliocentric locations and the opening half-angles of the automatically determined cones may be more realistic than those obtained from the manual analysis.  相似文献   

20.
日冕物质抛射(Coronal Mass Ejection, CME)是一种剧烈的太阳爆发现象, 它会对行星际空间造成严重扰动, 进而影响人类生产、生活. 基于CME的时空显著性, 将显著性检测方法引入到CME检测中, 利用结构化矩阵分解SOHO (Solar and Heliospheric Observatory)的大角度光谱日冕仪(Large Angle and Spectrometric Coronagraph Experiment, LASCO) C2的日冕图像对应的特征矩阵, 从中恢复出稀疏部分获得显著前景. 然后考虑CME运动时产生的时间显著性, 从而去除非CME结构(如冕流), 得到最终检测结果. 实验表明, 以人工目录协调数据分析中心(Coordinated Data Analysis Workshop, CDAW)检测结果为基准时, 所提方法不仅在检测CME数量上比计算机辅助跟踪软件包(Computer Aided CME Tracking Software package, CACTus)和太阳爆发事件检测系统(Solar Eruptive Event Detection System, SEEDS)有优势, 还在CME中心角度和张角宽度等特征物理参数测量上比CACTus和SEEDS更接近CDAW目录参考值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号