首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dumenil  相似文献   

2.
The ocean response to surface temperature transients is simulated with the use of the Hamburg large-scale geostrophic (LSG) ocean general circulation model (OGCM). The transition, from the present to a climate corresponding to a doubling of the atmospheric CO2 content, is compared with the reversed transition. For the Atlantic, the time scale for the deep ocean to adjust to the temperature changes was similar for both transitions. In the Pacific, the time scale is shorter for the present to warm transition than for the reverse case, a result of increased production of Antarctic bottom water (AABW) during the warm climate. While the transition from cold to warm climate shows no secular variability, the reversed transition generates considerable variability on time scales of 300–400 years. For the warm climate, oscillations with periods of 45 years are found in the Southern Ocean. Results of principal oscillation pattern (POP) analysis indicate that these oscillations are due to interaction between convection in the Southern Ocean and advected salinity anomalies in the Antarctic Circumpolar Current (ACC) and the Southern Pacific Ocean. Received: 19 September 1995 / Accepted: 15 March 1996  相似文献   

3.
Mean fields from a perpetual January simulation of a GCM extending from the surface to 0.01 hPa (near 80 km) are compared to observations. The zonal mean temperature and wind fields correspond quite well with reality; the low stratosphere, especially in the polar night, is too cold, but warmer than in the original version of the model, with an upper boundary at 25 hPa. Mean fields at standard levels show that the major features of the troposphere are represented by the model, but rather over emphasised; the stratospheric winter polar vortex is too strong, too cold, and too barotropic; it resembles an `undisturbed' January rather than the climatology. Differences in the stationary eddy activity between the extended and orginal versions of the model are noted, and used to explain some differences between the two simulations.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute für Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

4.
0703温带气旋特大风暴潮数值模拟对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为验证德国汉堡大学所开发的三维陆架模式HAMSOM(Hamburg Shelf Ocean Model)对渤海海域气旋风暴潮模拟的可行性和准确度, 并对不同来源气象数据的模拟结果进行比较, 分别使用T213和NCEP资料的风场和气压场数据, 运用HAM SOM模式对2007年3月4—5日发生在渤海和黄海北部的气旋风暴潮增水过程进行了数值模拟。模拟结果较好地反映出烟台、威海两站风暴潮增水过程的水位变化, 较准确地模拟出风暴潮在渤海、黄海北部的增水过程, 且T213资料比NCEP资料的模拟结果更接近实况, 该模式对研究和模拟渤海气旋风暴潮比较适用。  相似文献   

5.
Recent advances in the development and applications of the author's Hemispheric Thermodynamic Climate Model are presented. The model has been adapted to simulate the climates from 18 kyr BP to the present, and to study the effect of the ice sheets, the insolation anomalies and the atmospheric CO2 content on such climates. The surface ocean temperature anomaly is also simulated in the model, and comparison with values of CLIMAP (1981) for 18 kyr BP shows some agreement. A long series of numerical experiments have lead to the improvement in prediction of the monthly surface temperature anomalies. Verification of 93 predictions over the contiguous United States of America shows a useful skill in the predictions. The model is being adapted for forecasting in the Mexican Republic. Experiments to improve the skill in prediction of surface ocean temperature anomalies in the Northern Hemisphere have been carried out, and using a fine resolution grid, the model has been used to simulate the annual cycle of the normal sea surface temperatures in the Gulf of Mexico, that agrees well with observations.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

6.
One of the generally accepted climatic effects of stratospheric aerosol injection is the reduction of the global radiation in high latitudes by an order of 5% during El Chichon type eruptions. To test the effect of a high-latitude radiation deficit on global climate, a GCM experiment was performed with the ECMWF T21 atmosphere general circulation model (AGCM). The results provide physically-consistent evidence that this radiation deficit is a possible external forcing factor for severe climatic anomalies not only in the area directly affected by the reduced radiation, but also in the tropics. The most important factor is the creation of enhanced snow cover in regions of Asia that are distant from the location of the introduced radiation anomaly. The simulated results show certain features that are well known from observations in weak monsoon years, i.e. the weakened easterly jet in the upper troposphere over northern India, prolonged winter monsoon conditions, and prevailing anticyclonic vorticity anomalies over the entire Indian summer monsoon region. Over the western Pacific at the end of boreal winter (May), increased convective activity leads to a negative Walker circulation anomaly with westerly wind anomalies near the surface and easterly anomalies in the upper troposphere. This is known as one of the most important anomalies at the beginning of an El Niño/Southern Oscillation (ENSO) event.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

7.
A global two-dimensional one-level seasonal energy-balance model is asynchronously coupled to vertically integrated ice-flow models (which depend both on latitude and longitude) to study the response of the atmosphere-ocean-cryosphere-lithosphere system to solar forcing for the last ice age cycle of the late Pleistocene. The model simulates the position of the North American and European ice sheet complexes at the last glacial maximum satisfactorily. Both the geographic distributions of the ice volumes delivered by the model and their masses are a reasonable approximation to those inferred on the basis of relative sea level data (Tushingham and Peltier 1990). The sensitivity of the coupled model over the last glacial-interglacial cycle to solar forcing is nevertheless low, which suggests that further physical mechanisms will have to be added to the model (such as explicit basal sliding and ice shelves which would respond to sea-level variations and therefore permit marine incursions), if it is to adequately simulate the terminations that control the 105 year ice age cycle. One should also incorporate long-term variations of the greenhouse gases (Manabe et al. 1985b).This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

8.
An annual cycle of an atmospheric general circulation model (AGCM) is presented. The winter and summer zonal averages of the atmospheric fields are compared with an observed climatology. The main features of the observed seasonal means are well reproduced by the model. One of the main discrepancies is that the simulated atmosphere is too cold, particularly in its upper part. Some other discrepancies might be explained by the interannual variability. The AGCM surface fluxes are directly compared to climatological estimates. On the other hand, the calculation of meridional heat transport by the ocean, inferred from the simulated energy budget, can be compared to transport induced from climatologies. The main result of this double comparison is that AGCM fluxes generally are within the range of climatological estimates. The main deficiency of the model is poor partitioning between solar and non-solar heat fluxes in the tropical belt. The meridional heat transport also reveals a significant energy-loss by the Northern Hemisphere ocean north of 45° N. The possible implications of model surface flux deficiencies on coupling with an oceanic model are discussed.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

9.
The importance of clouds in the upper troposphere (cirrus) for the sensitivity of the Earth's climate e.g., requires that these clouds be modeled accurately in general circulation model (GCM) studies of the atmosphere. Bearing in mind the lack of unambiguous quantitative information on the geographical distribution and properties of high clouds, the simulated distribution of upper tropospheric clouds in a spectral GCM is compared with several satellite-derived data-sets that pertain to high clouds only, for both winter and summer seasons. In the model, clouds are assumed to occupy an entire gridbox whenever the relative humidity exceeds 99%: otherwise the grid box is assumed to be free of cloud. Despite the simplicity of the cloud prediction scheme, the geographical distribution of the maxima in the model's upper tropospheric cloud cover coincides approximately with the regions of the observed maxima in the high cloud amount and their frequency of occurrence (e.g., intertropical convergence zone and the monsoon areas). These areas exhibit a minimum in the outgoing longwave radiation (OLR; Nimbus-7) and are also coincident with regions of heavy precipitation. The model, with its relatively simple cloud formation scheme, appears to capture the principal large-scale features of the tropical convective processes that are evident in the satellite and precipitation datasets, wherein the intense, upward motion is accompanied by condensation and the spreading of thick upper tropospheric layers of high relative humidity and cloudiness in the vicinity of the tropical rainbelt regions.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

10.
Royer  J. F.  Planton  S.  Déqué  M. 《Climate Dynamics》1990,5(1):1-17
Sea ice has a major influence on climate in high latitudes. In this paper we analyzed the impact of removal of Arctic sea-ice cover on the climate simulated by a T42 20-level version of the French spectral model Emeraude. The control experiment was the second winter of an annual cycle simulation of the present climate. In the perturbed simulation the Arctic sea-ice cover was replaced by open ocean maintained at the freezing temperature of sea water. The zonal mean patterns of the model response were found to be in good agreement with earlier simulations of Fletcher et al. and Warshaw and Rapp. The atmospheric warming, caused by the increase of upward fluxes of sensible and latent heat and of longwave radiation from the ice-free ocean surface, is largely limited to the high latitudes poleward of 70° N and the lower half of the troposphere and leads to a surface pressure decrease and a precipitation increase over this area. We also analyze the geographical distribution of the response and the mechanisms that can explain the simulated cooling over Eurasia in relation to the energy budget at the surface. Finally, we discuss the reduction of cloud cover over the ice-free Arctic, which was an unexpected result of our simulation, and conclude that further studies are necessary to resolve the question of cumulus convection and cloud process parameterization in high latitudes.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

11.
Meridional, linear, and free modes of global, primitive-equation, ocean-atmosphere models were analyzed to see if they contain multi-year, especially decadal ( 10–30 years), oscillation time scale modes. A two-layer model of the global ocean and a two-level model of the global atmosphere were formulated. Both models were linearized around axially-symmetric basic states containing mean meridional circulations. The linearized perturbation system was solved as an eigenvalue problem. The operator matrix was discretized in the north-south direction with centered finite differences. Uncoupled, meridional modes of oscillation of the ocean and the atmosphere models were calculated. Calculations were performed at three grid spacings (5°, 2.5° and 1.25°) and for two types of basic states (symmetric and asymmetric). Uncoupled, free oceanic modes in the presence of mean meridional circulations have oscillation time scales ranging from two years to several centuries. Such low frequency meridional modes do not exist in the ocean model if there are no mean meridional circulations. A large number of oceanic modes are grouped around decadal oscillation time scales. All the oceanic modes have neutral growth rates. The spatial structures of some of the oceanic modes are comparable to observed spatial structures of sea surface temperature variations in the Pacific Ocean. Most years to decades variability of meridional modes of the ocean model is contained in tropical and midlatitude modes. Some oceanic modes with years to decades periods have standing oscillations in the tropics and poleward propagation of zonal velocity and layer thickness outside the tropics. Uncoupled, free atmospheric modes in the presence of mean meridional circulations have oscillation time scales ranging from a week to several decades. Such low-frequency meridional modes do not exist in the atmospere model if there are no mean meridional circulations. A large number of modes are grouped around intraseasonal time scales. Unlike the oceanic modes, the atmospheric modes are weakly unstable. Most of the intraseasonal variability of atmospheric modes is contained in tropical, midlatitude, and polar modes. Atmospheric modes with oscillation periods longer than about one year have global extent. Meridional ocean-atmospheric modes exist in the models wherever there are mean meridional circulations, i.e., tropical, midlatitude, polar, and global. Oceanic and atmospheric eigenvectors have symmetric (assymetric) latitudinal structures if their basic states are symmetric (asymmetric) around the equator. For both models, models calculated at coarser than 2.5° grid spacing do not accurately represent low-frequency variability. Scale analysis shows taht advection by tge basic state meridional velocities is the primary cause of the meridional oscillations on time scales longer than two years in the ocean model and longer than a few weeks in the atmosphere model. Meridional modes of the coupled ocean-atmosphere models are the subject of a subsequent paper.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

12.
The present study developed Pacific Ocean models from the Research Institute for Applied Mechanics Ocean Model (RIAMOM) with very high horizontal (1/6° and 1/12°) and vertical (70 levels) resolutions. The hydrographic features of the simulations show good agreement with observed climatological features. Solution differences between the 1/6° and 1/12° models are small for general features of various physical components, but large for eddy fields and the strengths of western boundary currents and their extensions. However, the two high-resolution models show realistic climatological features of Pacific Ocean circulation patterns. Volume transports through major straits in the northwestern Pacific Ocean were also simulated and compared with previous observational results.  相似文献   

13.
利用改进的中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室的第三代海洋环流模式,以及1949年1月-1999年12月NCEP/NCAR月平均海表面大气距平资料,采用数值试验的方法,研究了1997--1998年热带印度洋偶极子从发展到成熟的特征,以及在相同大气异常强迫下1—12月大气气候基本态对印度洋偶极子的作用。结果表明,海洋表面的大气强迫对激发1997--1998年印度洋偶极子有重要作用;大气气候态对1997--1998年印度洋偶极子的强度有很大影响,其中9月的大气气候态最有利于印度洋偶极子达到最强;赤道印度洋上空风应力异常是1997--1998年印度洋偶极子形成的主要原因。  相似文献   

14.
利用1978-2013年美国NOAA逐候MJO指数和中国气象局上海台风研究所热带气旋资料,研究了MJO与影响广西热带气旋发生发展的联系。结果表明,当MJO处于非洲大陆和西印度洋时,热带气旋生成区域上空为异常东风带;而当MJO处于西太平洋时,热带气旋生成区域北侧为东风异常带、南侧为西风异常带,有利于季风槽或气旋性环流加强,导致影响广西热带气旋频数偏多。当MJO处于东印度洋时,南海上空风场存在明显的向南分量,热带气旋生成数少、位置偏南;而当MJO处于东太平洋时,热带西太平洋对流受到抑制,导致影响广西热带气旋偏少。  相似文献   

15.
El Nio期间印度洋海温异常对 亚洲气候的影响   总被引:18,自引:4,他引:14  
El Nio事件发生时,赤道东太平洋海温出现高达2~3 ℃的正异常,同时,印度洋海温也会出现异常。但每次El Nio事件期间,印度洋异常海温的结构是不相同的,翘翘板型的海表温度结构,是印度洋海温异常的一种典型分布。利用IAP-GCM 9L模式,我们对El Nio期间,印度洋东冷西暖异常海温分布对气候的影响,特别是对亚洲气候的影响,作了数值模拟研究。模拟研究的结果表明,印度洋海温主要影响孟加拉湾、中南半岛、印尼、印度次大陆及中国大陆南部地区的气候变化。在El Nio发生期间,东冷西暖的印度洋海温结构,加大了东太平洋海温异常给东亚季风区带来的影响,它使中南半岛到印尼更加干旱,中国华北到山东半岛的降水减少,而使中国西南到华南的降水明显增加。在其影响下,东亚地区的雨带呈纬向分布,形成旱涝相间的纬向带状异常分布型,使模式模拟结果与中国旱涝的实际分布更加接近。同时,在对高度场、流场的分析中可以看到,印度洋东冷西暖海温分布使夏季副高位置偏南,印度洋到南海的西南风减弱,在中国西南到华南为气旋性环流控制,这些特征与降水分布是一致的。模拟试验表明,印度洋海温异常对我国El Nio期间降水异常的分布型有重要影响。  相似文献   

16.
A model developed recently for the long-term variations of global ice mass, carbon dioxide, and mean ocean temperature through the late Cenozoic is simplified by hypothesizing a new equation for the CO2 variations containing one less adjustable parameter, but retaining the essential physical content of the previous equation (including nonlinearity and the potential for instability). By assuming plausible time constants for the glacial ice mass and global mean ocean temperature, and setting the values of six adjustable parameters (rate constants), a solution for the last 5 My is obtained displaying many of the features observed over this period, including the transition to the near-100 ky major ice-age oscillations of the late Pleistocene. In obtaining this solution it is also assumed that variations in tectonic forcing lead to a reduction of the equilibrium CO2 concentration (perhaps due to increased weathering of rapidly uplifted mountain ranges over this period). As a consequence of this CO2 reduction, the model dynamical system can bifurcate to a free oscillatory ice-age regime that is under the pacemaker influence of earthorbital (Milankovitch) forcing. Expanded discussions are given of the surface temperature variations accompanying the evolution of ice, CO2, and ocean temperature, and of the bifurcation properties of the model from both mathematical and physical viewpoints.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dumenil  相似文献   

17.
Considered is a possibility of specifying the forecast of volcanic aerosol distribution in the atmosphere using the data of ground-based actinometric measurements. To simulate the aerosol distribution, the FlexPart software (Norwegian Institute for Air Research) was used. Using the FlexGraph software (Planeta Research Center for Space Hydrometeorology), the visualization and interactive analysis were carried out of aerosol concentration fields at different time moments. The prognostic concentration of volcanic ash from Grímsvötn volcano (May 2011) is bound to the results of measurements of aerosol optical depth in Hamburg at one of the points of AERONET global network. The comparison of the corrected aerosol concentration with the measurements at other AERONET points demonstrated the competence of the proposed approach. To specify the aerosol cloud distribution forecast on the territory of Russia, the Roshydromet actinometric network data can be used.  相似文献   

18.
The development of a theory of the evolution of the climate of the earth over millions of years can be subdivided into three fundamental, nested, problems: Firstly, to establish by equilibrium climate models (e.g., general circulation models) the diagnostic relations, valid at any time, between the fast-response climate variables (i.e., the weather statistics) and both the prescribed external radiative forcing and the prescribed distribution of the slow-response variables (e.g., the ice sheets and shelves, the deep ocean state, and the atmospheric CO2 concentration). Secondly, to construct, by an essentially inductive process, a model of the time-dependent evolution of the slow-response climatic variables over time scales longer than the damping times of these variables but shorter than the time scale of ultra-slow tectonic and astronomical changes in the boundary conditions (e.g., altered geography and elevation of the continents, slow outgassing and weathering and and solar radiative output). Thirdly, to determine the nature of these ultra-slow processes and their effects on the evolution of the equilibrium state of the climatic system about which the previously mentioned time-dependent variations occur. In this review we discuss the basis for this resolution, and give a broad overview of the contributions that have been made thus far in each area, emphasizing the work of the Yale climate group.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

19.
In the light of the idea of fuzzy neartude, a fuzzy procedure of verifying weather forecast and climate simula-tion is demonstrated. Several verification indices used in weather forecast, such as hit ratio, Heidke score, Brier score, correlation coefficient and information entropy score, are unified under fuzzy neartude and a new verifica-tion index is proposed on the basis of Hamming distance neartude. Further, D2-statistics used in climate sim-ulation verification is derived from a weighted Euclidean distance neartude. The “January climate” generated by general circulation model (GCM) is also numerically verified.  相似文献   

20.
A new cloud microphysics scheme including a prognostic treatment of cloud ice (PCI) is developed to yield a more physically based representation of the components of the atmospheric moisture budget in the general circulation model ECHAM. The new approach considers cloud water and cloud ice as separate prognostic variables. The precipitation formation scheme for warm clouds distinguishes between maritime and continental clouds by considering the cloud droplet number concentration, in addition to the liquid water content. Based on several observational data sets, the cloud droplet number concentration is derived from the sulfate aerosol mass concentration as given from the sulfur cycle simulated by ECHAM. Results obtained with the new scheme are compared to satellite observations and in situ measurements of cloud physical and radiative properties. In general, the standard model ECHAM4 and also PCI capture the overall features, and the simulated results usually lie within the range of observed uncertainty. As compared to ECHAM4, only slight improvements are achieved with the new scheme. For example, the overestimated liquid water path and total cloud cover over convectively active regions are reduced in PCI. On the other hand, some shortcomings of the standard model such as underestimated shortwave cloud forcing over the extratropical oceans of the respective summer hemisphere are more pronounced in PCI.This paper was presented at the Third International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 4–9 Sept. 1995 under the auspices of the Max Planck Institute for Meteorology, Hamburg. Editor for these papers is L. Dümenil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号