首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jun Matsushima  Yasukuni Okubo   《Tectonophysics》2003,371(1-4):141-152
We re-processed the seismic reflection survey data of the Kakkonda geothermal field. The pre-stack migration delineates a strong and continuous reflector between 1800- and 2800-m depth, below which formations are not reflective. Earthquake data exhibit seismicity in the upper crust. The lower boundary of seismogenic layer is interpreted as the brittle–ductile transition. The thermal structure is thought to be the major factor controlling its depth. We compared the strong reflector with the thermal and rheological structure from drillholes. The depth of the reflector corresponds to the top of the highly–very highly fractured zone observed from formation microscanner imagery (FMI) logging in the Miocene formations. The density of fracture in the Kakkonda granite is very low, suggesting that granite corresponds to the nonreflective zone. The temperature–depth profile of well WD-1a shows that the temperature at the highly–very highly fractured zone is about 350 °C. This corresponds to a hydrothermal convection zone filled with two-phase geothermal fluid. The cut-off depth of seismicity that indicates the brittle–ductile transition lies at the isotherm of 300–350 °C near the reflector. We conclude that the strong seismic reflector is a strong contrast in acoustic impedance at the top of the fractured layer. The fractured layer could be a decoupling plane caused by different tectonic behaviors between the upper brittle and the lower ductile layers or a dehydration front by thermal diffusion. The similarity between the strong reflector and K-horizon, the strong reflector, found in southern Tuscany, Italy suggests that the P-wave reflector at the top of highly fractured zone at the brittle–ductile transition be common in areas with magmatic activity.  相似文献   

2.
The role of regional extension on the rise and emplacement of granites in the crust is still debated. Pluton ascent and emplacement widely occurred in Tuscany (Italy) since late Miocene during the post-orogenic collapse of the inner Apennines, and are presently occurring in the geothermal areas of Amiata and Larderello. Tuscany offers a preferred test site to study the role of regional extension on pluton ascent and emplacement at different crustal levels. Ductile extension enhanced the segregation and ascent of granitic melts in the lower crust, controlling pluton emplacement in correspondence with the brittle–ductile transition. In the brittle crust, magma ascent occurred through subvertical faults and fractures compatible with the regional extension direction; pluton emplacement mainly occurred by means of roof lifting. The case of Tuscany suggests that the extensional structures enhance melt segregation and ascent in the ductile crust, but are not efficient alone to provide a pathway for the ascent of granitic magmas in the brittle-extending crust. The estimated magmatic strain rates due to pluton emplacement in the geothermal areas are much larger than the regional tectonic strain rates. This suggests that regional tectonics did not control magma emplacement in the brittle crust and explains why nontectonic processes (roof lifting) accommodated the space required for pluton emplacement.  相似文献   

3.
西秦岭北缘构造带不仅发育一系列继承性多期活动或新生的近东西向断层,而且新生代地层中还发育与近东西向断层走向不一致且具有独特构造特征的北西向左旋走滑断层。这种北西向左旋走滑断层带不发育断层角砾岩、磨砾岩、碎粉岩、断层泥、摩擦镜面、擦痕线理、断层阶步等脆性断层中常见的构造现象,仅表现为地层旋转和剪切拉断形成的一定宽度的透镜化带,两条断层之间地层产状发生旋转形成了约1 km宽,平面上类似膝折构造几何形态地层扭折带。该北西向断层横切了渐新统—中新统地层,并被上新统砾岩覆盖和第四纪以来的近东西向左旋走滑断层斜切,指示了其形成于渐新世—中新世沉积地层形成之后,上新世砾岩沉积之前,即上新世早期。北西向断层带不发育脆性断层典型构造现象和断层左旋走滑作用在渐新统—中新统沉积地层中形成了类似膝折构造几何形态地层扭折带,说明其变形具有韧脆性过渡和缓慢剪切变形的特征,是西秦岭北缘一种新的断层类型。其形成机制为基底或中下地壳中大型左旋走滑韧性或韧脆性剪切带向上扩展延伸到上部沉积盖层中之结果,也就是说,新生代沉积盖层中这种北西向断层和地层扭折带是下部韧性剪切带的左旋走滑剪切在盖层中被动构造响应。这种基底或中下地壳北西向左旋韧性剪切带可能指示了上新世初期西秦岭北缘构造带深部韧性地壳物质向南东流变蠕动的构造标志,代表深部地壳缩短增厚向地壳韧性物质侧向扩展流动的转换过程。这种特殊的断层类型对理解青藏高原东北缘新生代构造变形体制转换和地壳隆升具有重要的科学意义。  相似文献   

4.
The Villalcampo shear system is a regional dextral strike-slip fault zone that affects Late Variscan granites and their metamorphic country rocks over an area of about 150 km2. The detailed geometry of this subvertical north-west—south-east shear zone is outlined. The system forms an extensional fan to the northwest and extends to the south-east as a broad extensional duplex. Particular attention is focused on the distribution of fault rocks and associated veins in its north-west splay. A structural study of the shear bands (encompassing both geometric and kinematic criteria) and a microscopic study of the fault rocks has led to the interpretation of the system as a brittle—ductile shear zone. Calculations give a shear strain value of = 1.5 and a minimum displacement of s = 3700 m. The localization of gold mineralization in mylonite-filled subvertical extensional veins is a product of the formation of the Villalcampo shear system. The subvertical faults and veins underwent a process of cyclical sealing and reopening. As such they acted as valves controlled by fluid pressure regulating fluid—rock interactions and gold deposition. Conditions favouring these processes occur near the base of the seismogenic zone in the vicinity of the frictional—quasi-plastic transition at mid-greenschist metamorphic conditions (T = 350°C and 10–15 km depth).  相似文献   

5.
伸展构造及其反转作用   总被引:21,自引:0,他引:21  
刘和甫 《地学前缘》1995,2(1):113-124
伸展构造的演化主要发生在三个阶段:大陆裂谷阶段、大陆初始漂移和主要漂移阶段。伸展构造发育在不同构造层次:(1)在上地壳中,伸展构造呈现为位于拆离带之上脆性岩块的伸展,其周边为铲式断层、坡坪式断层或多米诺式断层所限;(2)在中地壳中,伸展构造呈现为变质透镜体,被不连续的韧性剪切带所分隔;(3)在下地壳中,伸展构造呈现为扩展变平的韧性流动和岩浆侵位。反转的伸展断层系常表现为冲断层、断弯背斜、生长断展褶皱、顶部塌陷地堑区的突隆构造和半地堑区的鱼叉构造等。  相似文献   

6.
东坑金矿产于震旦系云开群中亚群,北东向吴川—四会大断裂是区内的重要控矿构造,大田顶弧形构造控制了矿床、矿点的分布,北西向韧性剪切带使金矿脉群定位;岩浆岩为成矿提供硫源外,还提供了热源和部分金质;金矿赋存于近接触带的绿片岩中,接触带为矿脉群的聚集、充填提供了空间。  相似文献   

7.
The morphology of fast to ultra-fast oceanic spreading ridges such as the East Pacific Rise (EPR) is characterized by an axial dome, 5–10 km wide, culminating at 300–500 m above the surrounding seafloor. This dome is bounded by lateral grabens that develop systematically 2 to 6 km apart from the spreading axis. A large summit trough, 200 m to 2 km wide, locally notches the axial high, only where the dome is inflated, indicative of a time-average robust magma supply. This summit trough is thought to represent an elongated axial summit caldera (ASC) created as a result of the subsidence of the top of the axial magma chamber (AMC). Such subsidence is likely caused by a temporary decrease in melt supply into the shallow magma reservoir suffering continuous regional extension. Analog experiments using small-scale modeling have been performed in order to better constrain the tectonic evolution of the axial region. The experimental apparatus includes an elongated balloon filled with water as an analog of the magma reservoir set in a central groove in a table. It is capped with a silicone layer representing hot rocks below the brittle–ductile transition and is covered by a sand layer representing the brittle crust. The experiments integrate withdrawal of the balloon and extension at the boundary of the model by the mean of two mobile walls. Three experimental setups allowed us to study independently the mechanical parameters controlling the axial tectonic evolution: extension without withdrawal, withdrawal without extension, withdrawal and synchronous extension. We show that the morphology of the EPR axis can be considered as the result of both horizontal and vertical movements. Two symmetrical lateral grabens develop on both sides of a non-deformed axial dome when single extension is applied to a model with a thin silicone layer. Normal faults of the lateral grabens are rooted on two divergent velocity zones (DVZs) located on the edges of the groove. This situation is regarded as an analog of the natural case where the top of the AMC acts as a stress-free boundary that fails to transmit the extensional stresses to the upper brittle layer. An important deflation of the balloon without extension results in the creation of a central collapse trough limited by reverse faults. During synchronous extension and withdrawal, the initiation of the lateral grabens is favored by a balloon deflation, even if such deflation is unable to generate a superficial collapse. This last case is considered as representative of the evolution of EPR segments showing little variations in melt supply into the AMC. Higher deflation rates under continuous extension correspond to EPR segments undergoing strong variations in melt supply. In such experiments, the lateral grabens are created together with a central collapse trough developing in a way similar to that of experiments involving only balloon deflation. Finally, we show that DVZs located at the brittle–ductile boundary are the key mechanical elements which may explain the structural evolution of the axial region of fast to ultra-fast spreading ridges. The distance from axis and the width of the DVZs directly control the location and the distribution of the lateral grabens.  相似文献   

8.
We compared the cutoff depth of seismicity in and around the Nojima fault broken by the 1995 Kobe earthquake occurring in intraplate Japan with the brittle–ductile transition depth of the widely accepted strength profile model of the crust. We successfully determined the temperature profile from borehole measurements, since almost the same geothermal gradients were observed at two boreholes located about 4 km apart from each other, and the thermal conductivity and heat production were also measured by taking numerous core samples. We found that the cutoff depth was much deeper than the transition depth under the assumption that wet granite is deformed at a strain rate of 3×10−15 s−1. This small strain rate implies, however, that plastic flow is uniformly distributed below the seismogenic region. When the strain rate is assumed to be greater than 10−13 s−1, the cutoff depth can be attributed to the transition depth. This suggests that deformation is localized in a narrow fault zone below the seismogenic region, even in the intraplate region.  相似文献   

9.
武功山北缘剥离断层、近水平韧性剪切带与伸展构造   总被引:1,自引:0,他引:1  
覃兆松 《现代地质》1990,4(1):101-106
武功山北缘的伸展构造结构完整,系由以脆性变形的上拆离盘及近水平的韧性剪切带为代表的变质核杂岩体所组成。上拆离盘组成于一系列的北倾犁式正断层系及拉张断陷盆地;变质核杂岩体的岩石以舌状—饼状褶皱、片理化、拉伸线理及条带状糜棱岩等近水平的韧性剪切变形为其特征。根据由伸展构造所控制的拉伸断陷盆地的沉积物时代来推测,武功山北缘的伸展构造可能发生于印支运动晚期。  相似文献   

10.
The Aegean Sea area is thought to be an actively extending back-arc region, north of the present day Hellenic volcanic arc and north-dipping subduction zone in the Eastern Mediterranean. The area shows extensive normal faulting, ductile ‘extensional’ shear zones and extensional S-C fabrics throughout the islands that have previously been related to regional Aegean extension associated with slab rollback on the Hellenic Subduction Zone. In this paper, we question this interpretation, and suggest the Cenozoic geodynamic evolution of the Aegean region is associated with a Late Cretaceous–Eocene NE-dipping subduction zone that was responsible for continent-continent collision between Eurasia and Adria-Apulia/Cyclades. Exhumation of eclogite and blueschist facies rocks in the Cyclades and kyanite-sillimanite grade gneisses in the Naxos core complex have pressures that are far greater than could be accounted for purely by lithospheric extension and isostatic uplift. We identify four stages of crustal shortening that affected the region prior to regional lithospheric extension, herein called the Aegean Orogeny. This orogeny followed a classic Wilson cycle from early ophiolite obduction (ca. 74 Ma) onto a previously passive continental margin, to attempted crustal subduction with HP eclogite and blueschist facies metamorphism (ca. 54–45 ?Ma), through crustal thickening and regional kyanite – sillimanite grade Barrovian-type metamorphism (ca. 22–14 ?Ma), to orogenic collapse (<14 ?Ma). At least three periods of ‘extensional’ fabrics relate to: (1) Exhumation of blueschists and eclogite facies rocks showing tight-isoclinal folds and top-NE, base-SW fabrics, recording return flow along a subduction channel in a compressional tectonic setting (ca. 50–35 ?Ma). (2) Extensional fabrics within the core complexes formed by exhumation of kyanite- and sillimanite gneisses showing thrust-related fabrics at the base and ‘extensional’ fabrics along the top (ca. 18.5–14 ?Ma). (3) Regional ductile-brittle ‘extensional’ fabrics and low-angle normal faulting related to the North Cycladic Detachment (NCD) and the South(West) Cycladic Detachment (WCD) during regional extension along the flanks of a major NW–SE anticlinal fold along the middle of the Cyclades. Major low-angle normal faults and ductile shear zones show symmetry about the area, with the NE chain of islands (Andros, Tinos, Mykonos, Ikaria) exposing the NE-dipping NCD with consistent top-NE ductile fabrics along 200 ?km of strike. In contrast, from the Greek mainland (Attica) along the SE chain of islands (Kea, Kythnos, Serifos) a SW-dipping low-angle normal fault and ductile shear zone, the WCD is inferred for at least 100 ?km along strike. Islands in the middle of the Cyclades show deeper structural levels including kyanite- and sillimanite-grade metamorphic core complexes (Naxos, Paros) as well as Variscan basement rocks (Naxos, Ios). The overall structure is an ~100 ?km wavelength NW–SE trending dome with low-angle extensional faults along each flank, dipping away from the anticline axis to the NE and SW. Many individual islands show post-extensional large-scale folding of the low-angle normal faults around the domes (Naxos, Paros, Ios, Sifnos) indicating a post-Miocene late phase of E–W shortening.  相似文献   

11.
冀东“长城式”金矿的成因探讨   总被引:5,自引:1,他引:5  
区域构造和成矿特征研究表明,进入燕山期,华北地区开始了幔枝构造活动期,沿冀东茅山-金厂峪-肖营子EW向韧性剪切带与NNE向迁安-青龙韧性剪切带强烈活动。特别是2条韧性剪切带并汇部位的肖营子一带,岩浆大规模侵入,形成了以肖营子斑状花岗岩为主体的一系列大小侵入体。并带动变质围岩一起强烈隆升,中上元古界盖层则向外大幅度拆离滑脱,以致于轴部岩浆-变质杂岩呈揭顶式裸露,冷口-清河沿岸块就是由于受冷口断裂或反向铲状断理解活动影响,而残留在岩浆-变质杂岩之上的中元古界岩块。在岩块拆离滑脱过程中所形成的主拆离滑脱带、次级拆离滑脱带及层间滑动断裂成为较发育的构造扩容空间。主成矿期含矿流体沿构造扩容带贯入、聚集和成矿,形成一系列构造蚀变岩型、脉型矿体。新房子金矿的深部钻孔已证实了这种认识。矿体顶部的变宽及变富则是隆升过程中崩塌及风化淋滤造成的浅部表现,因此,应注意寻找深部矿体。  相似文献   

12.
Listric faults of different levels and scales are widely developed in the lithosphere. According to theirtectonomechanical geneses. the author divides listric faults into primary and secondary ones. and the formermay be subdivided into gravity-gliding listric faults, regional extensional listric normal faults. regionalcontractional reverse listric faults and deep-seated ductile listric faults, By means of the slip-line field theorydealing with Mohr's criterion expressed by quadratic limiting curves. the author has preliminarily determinedthe occurrences. patterns and mechanical properties of various types of listric faults during their formation. andhas analyzed their tectonic evolution and related dynamic processes in the lithosphere.  相似文献   

13.
花岗质岩浆的起源、迁移及就位是研究大陆岩石圈流变学特性的重要方面。然而,板内伸展背景下同构造花岗岩体的岩浆来源、就位机制和岩浆流动与区域应力场的关系等问题缺乏系统性的总结。晚中生代期间华北板块东部逐渐变为区域伸展体制,同时中浅部地壳形成一系列的韧性剪切带、变质核杂岩和拆离断层,这些伸展构造往往伴有同剪切变形的花岗岩体。因此,华北东部是系统研究板内伸展背景下同构造花岗岩体的最佳区域。本文选取多个典型的同构造花岗岩体,进行综合分析。通过归纳总结这些同构造岩体的岩石地球化学和年代学资料,发现多数同构造岩体具有多个岩浆源区,且较早就位的中性岩席(单元)往往来自壳幔混合岩浆或新生下地壳的部分熔融,而较晚的酸性岩席(单元)则主要来源于古老下地壳的部分熔融。这一特点反映了同伸展岩体岩浆源区由深至浅的演化规律,也揭示了区域伸展背景下源自地幔的流体和热量是触发地壳部分熔融的重要因素。通过分析岩浆就位过程中围岩和岩体中形成的定向及变形组构,发现华北东部同伸展岩体的就位模式可分为三大类:以扁平岩床或岩基形式就位于中部地壳的水平韧性剪切带内;岩浆以近直立运移的方式形成长轴平行拆离断层的岩基,就位于变质核杂岩核部或拆离断层下盘;岩浆就位于再活化的先存断裂,通过膨胀作用、挤压围岩获得就位空间并使围岩变形,形成类似底辟作用的就位方式。剪切应力和浮力是影响岩浆运移方向的重要力学参数。岩浆自源区上升的过程中浮力起着主要控制作用,就位于韧性剪切带时剪切应力起着控制作用,就位于浅部地壳的脆-韧性过渡带时浮力的作用再次凸显。  相似文献   

14.
 Ridge-parallel extensional shear zones within the layer 3 gabbros of the Lizard ophiolite have recorded varied and numerous chemical and mineralogical changes under a variety of P-T conditions. These changes accompany tectonic exhumation of lower crustal levels by a listric fault mechanism during amagmatic extension at a slow-spreading centre. Deformation within the mid-crustal level of layer three resulted in the migration and impregnation of an evolved iron-titanium-rich silica-poor melt along the shear zones. This syntectonic infiltration occurred along the lowermost portions of listric faults which rooted in a partially molten zone beneath the ridge axis. Residual melt was tapped from this underlying zone and tectonically redistributed about deforming gabbros situated immediately above the partially molten zone. The occurrence of sub-solidus synkinematic assemblages within the shear zones, which were generated at various temperatures and water : rock ratios, is explained in terms of their simultaneous development on listric fault planes in the presence of a hydrothermal fluid phase. The sequential overprinting of pre-existing assemblages arises from repeated block rotation during amagmatic episodes of extension within an oceanic slow-spreading environment. Received: 8 February 1994/Accepted: 4 April 1995  相似文献   

15.
In this paper, we present a relation between the earthquake occurrence and electric resistivity structures in the crust, in West Anatolia and the Thrace region of Turkey. The relationship between magnetotelluric georesistivity models and crustal earthquakes in West Anatolia, during a period from 1900 to 2000, is investigated. It is found that most of the large crustal earthquakes occurred in and around the areas of the highest electrical resistivity in the upper crust, although rare small magnitude earthquakes are observed in some parts of the conductive lower crust in West Anatolian extensional terrain. The high-resistivity zones may represent rocks that are probably mechanically strong enough to permit sufficient stress to accumulate for earthquakes to occur in western Anatolia and the Thrace region. However, some recent studies state that the generation of a large earthquake is not only a pure mechanical process, but is closely related to fluid existence. We also reviewed recent world-wide researches including results from the Anatolian data for the first time and discussed all general findings in combination. Our findings show that the boundary between the resistive upper crust and the conductive lower crust correlates well with the cutout depth of the seismicity in West Anatolia and Thrace. This boundary is also attributed to the fluid bearing brittle–ductile transition zone in world literature. Fluid migration from the conductive lower crust to the resistive upper crust may contribute the seismicity in resistive zones. Alternatively, the upper–lower crust boundary may act as a stress concentrator and fluids may help to release strain energy in brittle parts of lower crust, by small magnitude earthquakes, whereas they may help in focusing strain in mechanically strong and electrically resistive zones for large earthquakes to occur.  相似文献   

16.
Quartz vein systems developed in and adjacent to shear zones host major gold deposits in the Kambalda region of the Norseman–Wiluna greenstone belt. At the Revenge Mine, two groups of mineralised reverse shear zones formed as conjugate, near-optimally oriented sets during ESE subhorizontal shortening adjacent to a major transpressional shear system. The shear zones developed at temperatures of about 400°C in a transitional brittle–ductile regime. Deformation was associated with high fluid fluxes and involved fault-valve behaviour at transiently near-lithostatic fluid pressures. During progressive evolution of the shear system, early brittle and ductile deformation was overprinted by predominantly brittle deformation. Brittle shear failure was associated with fault dilation and the formation of fault-fill veins, particularly at fault bends and jogs. A transition from predominantly brittle shear failure to combined shear along faults and extension failure adjacent to faults occurred late during shear zone evolution and is interpreted as a response to a progressive decrease in maximum shear stress and a decrease in effective stresses. The formation of subhorizontal stylolites, locally subvertical extension veins and minor normal faults in association with thrust faulting, indicates episodic or transient reorientation of the near-field maximum principal stress from a subhorizontal to a near-vertical attitude during some fault-valve cycles. Local stress re-orientation is interpreted as resulting from near-total shear stress release and overshoot during some rupture events. Previously described fault-valve systems have formed predominantly in severely misoriented faults. The shear systems at Revenge Mine indicate that fault-valve action, and associated fluctuations in shear stress and fluid pressure, can influence the mechanical behaviour of optimally-oriented faults.  相似文献   

17.
作者分析了大量国内外金矿模式,并根据浠水-梅川地区的实际情况,提出金活化阶段、金初始富集阶段、金成矿阶段,并分别与韧性、韧脆性、脆性剪切变形相对应。成矿主要与脆性变形有关,韧性剪切变形向脆性剪切变形至关重要。从韧性剪切带向脆性剪切带转变的过程中,Au、Ag、Cu、Pb发生大规模的活化迁移,并在较窄的脆性断裂中明显富集,形成矿体或矿化体。剪切带中的成矿流体在金矿形成过程中起着重要作用。随着变形机制、构造环境变化引起成矿流体沸腾作用并导致金矿形成。金矿成矿过程为:在挤压构造环境下,深层次韧性剪切带中形成原生富气相的(动力)变质流体;随着变质流体向上运移,温度逐渐降低,水蒸气开始逸出,液相成分增加,在伸展构造作用下,岩浆流体沿剪切带上升,不断改造和稀释着变质流体,最终形成以岩浆流体为主的成矿流体;随着伸展作用的继续进行,成矿流体静水压力不断降低引起流体沸腾,从而导致金矿形成。  相似文献   

18.
The Eastern Desert of Egypt is well known as a gold-mining district since ancient times. Gold mineralization is closely associated with the granitic rocks in such way that the mineralization is either hosted by or occurs immediately adjacent to the granite intrusions. Granitic rocks accompanying gold mineralization in the Eastern Desert can be grouped into three categories i.e. syn-late tectonic calc-alkaline granites, calc-alkaline to mildly alkaline granites of the transitional stage and post-tectonic alkaline granites.Tectonically, gold mineralization is linked with the tectonothermal stages that were operative during the evolution of the Arabian–Nubian Shield (ANS). During the primitive stages of the island-arc formation, pre-orogenic gold mineralization (auriferous exhalites) was formed by hot brines accompanying submarine volcanic activity. No role for the granite is observed in this stage. Syn-orogenic gold mineralization (i.e. gold hosted in altered ophiolitic serpentinites along thrust faults and in sutures, quartz veins hosted in the metavolcano-sedimentary assemblage and/or the I-type granitic rocks surrounding them) connected with the collision and accretion stage is characterized by emplacement of calc-alkaline (I-type) older granite batholiths. Shear fractures reflected in brittle–ductile shear zones and amphibolite-green schist facies regional metamorphism were broadly contemporaneous with this intense compressional tectonic regime. Available fluid inclusion microthermometry and isotopic studies reveal that both metamorphic and magmatic fluids related to the syn-late tectonic calc-alkaline granites were operative. A further indication for the role of the granites is indicated by the presence of some concentrations of Antimony, Bismuth, Molybdenum, Tungsten, Rubidium, Beryllium, Tin, Yttrium, Ytterbium, Tantalum and Niobium in some auriferous quartz veins in the Egyptian gold mines.In the cratonal development of the (ANS), the land underwent a transitional stage between the major subduction-related calc-alkaline magmatic activity and the subsequent post-tectonic plutonism represented by the alkaline granites. This transitional stage is dominated by the eruption of Dokhan volcanics and deposition of molass-type Hammamat sediments. At ~ 590–530 Ma, the Arabian–Nubian Shield was deformed by post-accretionary structures, in the form of N-trending shortening zones such as the Hamisana shear zone and NW-trending strike-slip faults such as the Najd fault system. The regional NNW–SSE directed extension opened spaces that were progressively sealed with different magmatic phases including among them a considerable proportion of rocks referred to as “younger granites” in the Egyptian literature. Late-orogenic gold mineralization connected with the transitional stage is represented principally by the gold-bearing quartz veins traversing Hammamat molasse sediments, quartz veins traversing syn-extensional younger granites and generally quartz veins in ductile to brittle shears related to the Najd fault system and within Hamisana shear zone and its splays.By the end of Pan African orogeny until the Tertiary, the basement was intermittently intruded by a number of sub-alkaline to per alkaline granite bodies that host Mo, Sn, W, Nb–Ta and U mineralization in the Eastern Desert of Egypt. Anorogenic gold mineralization connected with post-orogenic granites is represented by small amounts of the element in disseminations, stockworks and quartz veins of Sn–W–Ta–U mineralization.The present review shows that gold mineralization in Egypt is an expression of two major cycles with distinct magmatic and tectonic characteristics, and the two cycles were separated by a transitional stage. The emplacement of granites in the compressional cycle played an important role in metamorphosing the country rocks by producing the heat energy required for the regional metamorphism and the providing of the magmatic fluids. The H2O–CO2 fluids enriched in volatiles were released at the greenschist–amphibolite facies transition at 450°–500 °C and mixed with the I-type calc-alkaline granite related fluids and both moved down a temperature gradient away from the amphibolite-green schist transition at depth to a lower temperature regime in the upper levels where it is deposited in brittle–ductile shear zones. With the extensional cycle, the syn-extensional granite intrusions acted as heat engine in such way that the heat of the granite drove the convective cells to circulate through the auriferous host-granite contacts, leaching gold and other elements and depositing it in structurally favorable sites. In addition, the contrasts in competency between the granites with brittle deformational characteristics and the surrounding country rocks with a ductile response to stress, led to a generation of extensive fracture pattern within the more competent unit.  相似文献   

19.
In this paper we present the current geological knowledge and the results of new geological and structural investigations in the Cho Oyu-Sagarmatha-Makalu region (Eastern Nepal and Southern Tibet).The tectonic setting of the middle and upper part of the Higher Himalayan Crystallines (HHC) and Tibetan Sedimentary Sequence is characterized by the presence of pervasive compressive tectonics with south-verging folds and shear zones overprinted by extensional tectonics.In the middle and upper part of the HHC two systems of folds (F2a and F2b) have been recognized, affecting the S1 high-grade schistosity causing kilometer-scale upright antiforms and synforms. The limbs of these upright folds are affected by F3 collapse folds, top-to-SE extensional shear zones and extensional crenulation cleavages linked to extensional tectonics.The uppermost portion of the HHC and the lower part of the Tibetan Sedimentary Sequence is affected by two major extensional fault zones with a top-to NE direction of movement. The lower ductile extensional shear zone brings into contact the North Col Formation with the high grade gneisses and micaschists of the HHC. It is regarded as the main feature of the South Tibetan Detachment System. The upper low-angle fault zone is characterized by ductile/brittle deformation and thin levels of cataclasites and brings the slightly metamorphosed Ordovician limestones into contact with the North Col Formation. Extensional tectonics continued with the formation of E–W trending high angle normal faults.Three metamorphic stages of Himalayan age are recognized in the HHC of the Sagarmatha-Makalu region. The first stage (M1) is eclogitic as documented by granulitized eclogites collected at the top of the Main Central Thrust Zone in the Kharta region of Southern Tibet. The second event recorded in the Kharta eclogites (M2) was granulitic, with medium P (0.55–0.65 GPa) and high T (750–770°C), and was followed by recrystallization in the amphibolite facies of low pressure and high T (M3). The first event has also been recorded in the overlying Barun Gneiss, where M1 was followed by decompression under increasing T, the M2 event, producing the dominant mineral assemblage (garnet-sillimanite-biotite), and then by strong decompression under high T, with growth of andalusite, cordierite and green spinel. Also, changes in phase compatibilities suggest an increase in metamorphic temperature (T) coupled with a decrease in metamorphic pressure (P) in some of the thrust sheets of the MCT Zone.A telescoped metamorphic zonation ranging from the sillimanite to the staurolite and biotite zones is characteristic of the ductile extensional shear zone which is the lower part of the STDS in the Sagarmatha region. Evidence for decompression under increasing temperature, anatexis and leucogranite emplacement accompanying extension in the HHC was found throughout the whole ductile shear zone, particularly in metapelites both below and above the Makalu leucogranite and in micaschists of the staurolite zone.  相似文献   

20.
The evolution and geometry of the Tertiary Upper Rhine Graben were controlled by a continually changing stress field and the reactivation of pre-existing crustal discontinuities. A period of WNW-ESE extension in the late Eocene and Oligocene was followed by lateral translation from the early Miocene onwards. This study utilizes 3D finite element techniques to simulate extension and lateral translation on a lithospheric scale. Brittle and creep behaviour of lithospheric rocks are represented by elastoplasticity and thermally activated power-law viscoplasticity, respectively. Contact elements allocated with cohesion and frictional coefficients are used to describe pre-existing zones of weakness in the elastic-brittle field. Our results suggest that (1) extension is accommodated along listric border faults to midcrustal depth of 15–16 km. Beneath, pure shear stretching occurs without a need for localized shear zones in lower crust and upper mantle. (2) Ductile flow at midcrustal depth across the graben accounts for the pronounced halfgraben morphology. Thereby, the shape of the border faults, their frictional coefficients, and sedimentary loads have profound effects on the rate of ductile flow across the graben. (3) Horizontal extension of 8–8.5 km and sinistral displacement across the rift of 3–4 km are needed to accommodate the observed sediment thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号