首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
锂(Li)元素最初诞生于大爆炸核合成,是最重要的轻元素之一.但锂元素丰度在很多类天体中均表现出观测与理论不符的现象,这一问题困扰了天体物理学家数十年.富锂巨星就是这样的一类天体,它们大气中的Li丰度超过了标准恒星演化模型的理论值.虽然富锂巨星早在约四十年前就被发现,但其起源依然是未解之谜.随着以郭守敬望远镜(LAMOST)巡天等为代表的大型光谱巡天项目的开展、以开普勒(Kepler)卫星为代表的星震学观测数据的产出以及数据驱动类方法和技术的飞速发展,针对富锂巨星的研究取得了一系列重要的突破.在此将回顾富锂巨星近四十年来的研究进展,并总结对于富锂巨星最新的认知.  相似文献   

2.
Kepler卫星提供的长时序、高精度的光度观测和郭守敬望远镜(LAMOST)提供的大规模光谱观测为研究恒星表面转动周期与富锂巨星锂丰度关系提供了良好的数据.将LAMOST搜寻到的富锂巨星与Kepler观测交叉,获得了619颗共同源,研究了其中295颗有良好观测数据的富锂巨星的表面转动.在205颗有星震学参数的恒星中提取出14颗恒星的转动周期,其中氦核燃烧星(HeB) 11颗,红巨星支(RGB) 2颗, 1颗演化阶段未确定.本样本中的极富锂巨星(A(Li) 3.3 dex)皆为HeB;对于90颗没有星震学参数的样本因而没有依靠星震学手段确定演化阶段的恒星中,有22颗提取出了自转周期.前者的自转探测率为6.8%,显著高于之前工作中大样本巨星2.08%的探测率.同时,此研究首次从自转周期的角度确认了恒星转动与巨星锂增丰存在相关性,在增丰程度较弱时,自转周期分布比较弥散;强锂增丰的星倾向于快速转动.富锂巨星与极富锂巨星在转动速度随锂丰度的演化上展现了两个序列,在转动-锂丰度图上的A(Li)≈3.3 dex处产生第2个下降序列,或许暗示了两者在形成机制上的不同.极富锂巨星的样本中,随巨星锂增丰程度增强,恒星转速加快.这种相关性为由转动引起的额外混合作为富锂巨星形成的机制提供了支持.  相似文献   

3.
In this paper we discuss our choice of a large unbiased sample used for the survey of red giant branch stars for finding Li-rich K giants, and the method used for identifying Li-rich candidates using low-resolution spectra. The sample has 2000 giants within a mass range of 0.8 to \(3.0\textit{M}_{\odot }\). Sample stars were selected from the Hipparcos catalogue with colour (B–V) and luminosity \((\textit{L}/\textit{L}_{\odot }\)) in such way that the sample covers RGB evolution from its base towards RGB tip passing through first dredge-up and luminosity bump. Low-resolution (R \(\approx \) 2000, 3500, 5000) spectra were obtained for all sample stars. Using core strength ratios of lines at Li I 6707 Å and its adjacent line Ca I 6717 Å  we successfully identified 15 K giants with A(Li) > 1.5 dex, which are defined as Li-rich K giants. The results demonstrate the usefulness of low-resolution spectra to measure Li abundance and identify Li-rich giants from a large sample of stars in relatively shorter time periods.  相似文献   

4.
The number ratios of horizontal branch stars to red giant stars were obtained for globular clusters and Draco dwarf galaxy and the helium abundance was estimated using model results without semiconvection zone (SCZ) and with fully developed one. The analysis was confined to the four clusters (M4, M5, M13, and 47 Tuc) and the Draco galaxy, for which fairly precise star counts had been carried out. The effect of the difference in radial distribution between horizontal and red giant branch stars were taken into account, if necessary. The statistically significant difference inR exists among these objects. The cause may be the difference in the helium abundance and/or in the development of the SCZ. In the case of the fully developed SCZ, the helium abundance for M5 and Draco is appreciably smaller than the value given by the big-bang cosmology. It may be taken as an evidence against the full development of the SCZ for the horizontal branch stars in these objects.  相似文献   

5.
We present determinations of fundamental parameters and lithium abundances in eleven solar-type stars through observations of the Li I λ6707.8Å. The correlations between the abundance of lithium and that of other elements (Ca, K and Fe) are also discussed. The analysis of our data indicates that the maximum lithium abundance decreases with decreasingT eff, and also decreases with increasing age. The sun is just one of the stars with low lithium abundance. One of the sample stars shows a high lithium abundance of as much as 2.34 dex. The plot of lithium abundance versus [Ca/H] is similar to that versus [Fe/H]. Lithium seems depleted more quickly than potassium in the cool solar-type stars. The correlation between the lithium abundance and the other stellar characteristics, such as absolute visual magnitude, does not seem very strong. The large scatter present at each color cannot be uniquely attributed to different initial compositions or to pure age effect. Other complex mechanisms may exist to provide different amounts of lithium depletion for stars with properties similar to the sun.  相似文献   

6.
We model the evolution of the abundances of light elements in carbon-enhanced metal-poor (CEMP) stars, under the assumption that such stars are formed by mass transfer in a binary system. We have modelled the accretion of material ejected by an asymptotic giant branch star on to the surface of a companion star. We then examine three different scenarios: one in which the material is mixed only by convective processes, one in which thermohaline mixing is present and a third in which both thermohaline mixing and gravitational settling are taken in to account. The results of these runs are compared to light element abundance measurements in CEMP stars (primarily CEMP- s stars, which are rich in s -processes elements and likely to have formed by mass transfer from an AGB star), focusing on the elements Li, F, Na and Mg. None of the elements is able to provide a conclusive picture of the extent of mixing of accreted material. We confirm that lithium can only be preserved if little mixing takes place. The bulk of the sodium observations suggest that accreted material is effectively mixed but there are also several highly Na and Mg-rich objects that can only be explained if the accreted material is unmixed. We suggest that the available sodium data may hint that extra mixing is taking place on the giant branch, though we caution that the data are sparse.  相似文献   

7.
《New Astronomy》2007,12(4):265-270
Surface lithium abundance and rotation velocity can serve as powerful and mutually complementary diagnostics of interior structure of stars. So far, the processes responsible for the lithium depletion during pre-main sequence evolution are still poorly understood. We investigate whether a correlation exists between equivalent widths of Li (EW(Li)) and rotation period (Prot) for weak-line T Tauri stars (WTTSs). We find that rapidly rotating stars have lower EW(Li) and the fast burning of Li begins at the phase when star’s Prot evolves towards 3 days among 0.9M to 1.4M WTTSs in Taurus–Auriga. Our results support the conclusion by Piau and Turch-Chiéze about a model for lithium depletion with age of the star and by Bouvier et al. in relation to rotation evolution. The turn over of the curve for the correlation between EW(Li) and Prot is at the phase of zero-age main sequence (ZAMS). The EW(Li) decreases with decreasing Prot before the star reaches the ZAMS, while it decreases with increasing Prot (decreasing rotation velocity) for young low-mass main sequence stars. This result could be explained as an age effect of Li depletion and the rapid rotation does not inhibit Li destruction among low-mass PMS stars.  相似文献   

8.
New spectral observations of chemically peculiar (CP) magnetic stars were obtained using an NES echelle spectrometer with a BTA telescope in the Special Astrophysical Observatory (Russian Academy of Sciences). Several stars were shown to have anomalous Li abundances. Testing and monitoring the stars with Doppler shifts Vsini > 10 km/s indicated that the lithium 6708 Å line was variable in the spectra of some roaAP-CP stars. To distinguish variable features in the spectra, the dispersogram technique was used. The most peculiar among the stars studied is HD 12098. The strong and variable lithium 6708 Å line was detected in the spectrum of this star. The star has been shown to have greatly different lithium abundances in two rotation phases corresponding to opposite surface areas. As mentioned earlier, a similar behavior of the Li blend was found in the spectra of HD 83368 and HD 60435 which have lithium spots on their surface. Spectral observations of slowly rotating CP stars with the Doppler shifts Vsini < 10 km/s revealed the strong and nonvariable lithium 6708 Å line in the spectra of these stars. Quantitative spectral analysis using the Li I 6708 Å resonance doublet and the Li I 6103 Å line shows the lithium abundance, as determined by the 6103 Å line, to be somewhat greater than that determined by the 6708 Å line. A higher ratio of 6Li/7Li amounting to ~0.3–0.5 was found in these stars. 6Li production is assumed to be due to spallation reactions on the surface of magnetic CP stars; this isotope ratio remained in strong magnetic fields.  相似文献   

9.
The main outcome of the primordial nucleosynthesis is the ability to account for the abundances of D, 3He, 4He and 7Li with the proper choice of the nuclear density parameter ωB. The relative advantages/disadvantages of D and 7Li as the proper `baryometer' are discussed. In favour of D, the main arguments are the relative simplicity of the formation/destruction schema, but this is challenged by the large uncertainties on the choice of its actual `primordial' abundance and on the galactic evolution scheme. In favour of 7Li there are the confirmation of the so called `Spite plateau' and the observation of 6Li at the surface of at least one (may be two) Population II stars, but the paucity of such stars such as the possibility of scenarios in which the 7Li abundance could be affected even in these stars cannot be overlooked. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We present high-resolution spectroscopic observations for a sample of 21 young, solar-type stars near the Sun recently discovered in the X-ray wavelength range during the ROSAT all-sky survey. Based on these observations, we derive the lithium (Li) abundances of these 21 sample stars. Using the lithium abundances and the X-ray luminosity, we investigated the relationship between the Li abundances and the X-ray activity. We found a clear correlation between the lithium abundances and the X-ray luminosity: as the X-ray luminosity became stronger, the lithium abundance decreases in our sample stars. Our sample results provide further evidence that a correlation appears to exist between Li abundances, X-ray activity and age for a large number of solar-type stars. The results also confirm the presence of very active young stars close to the Sun, in agreement with recent findings from UV and X-ray surveys.  相似文献   

11.
频繁的超新星爆发可用以解释活动星系核与类星体的超高金属丰度。星团中的恒星与吸积盘相互作用导致致密天体中子星和黑洞的形成率很高,这些致密天体与红巨星很容易形成双星系统,而后形成(NS/BH,NS/BH) 双星由于引力辐射最终导致并合而形成伽玛射线爆发。我们估计了伽玛射线爆的爆发频率,发现与观测相符。  相似文献   

12.
熊大闰  邓李才 《天文学报》2005,46(3):258-272
重新审查了昴星团成员星的活动性和在同一颜色处Li丰度的弥散.发现大多数的研究者低估了昴星团恒星的活动性.重新研究了恒星的活动性(包括黑子活动)和星团中恒星的不均匀红化效应对Li丰度弥散的影响.得到的主要结论是:没有坚实的证据说明观测到的Li丰度弥散是代表具相同有效温度星团成员大气Li丰度存在真实的差异.相反,假若不是全部,其大部的视Li丰度弥散是活动星的大气效应所致.Li丰度一恒星自转关联很可能只是Li丰度-恒星活动性关联的一种反映。  相似文献   

13.
First-ascent red giants with strong and very strong Li lines have just been discovered in globular clusters. Using the stellar internal prompt (7)Li enrichment-mass-loss scenario, we explore the possibility of (7)Li enrichment in the interstellar matter of the globular cluster M3 produced by these Li-rich giants. We found that enrichment as large as 70% or more compared to the initial (7)Li content of M3 can be obtained during the entire life of this cluster. However, because M3 will cross into the Galactic plane several times, the new (7)Li will be very probably removed by ram pressure into the disk. Globular clusters appear then as possible new sources of (7)Li in the Galactic disk. It is also suggested that the known Na/Al variations in stars of globular clusters could be somehow related to the (7)Li variations and that the cool bottom process mixing mechanism acting in the case of (7)Li could also play a role in the case of Na and Al surface enrichments.  相似文献   

14.
Studies in extragalactic astronomy, galactic structure and the late stages of stellar evolution provide ample motivation for surveys of fields in the Galactic Halo. Apart from white dwarfs, blue stars had been regarded as luminous objects confined to star-forming regions in the Galactic Plane; finding them at high galactic latitudes attracted immediate interest, because their luminosities were intermediate between those of white dwarfs and blue Main Sequence stars. The study of blue stars away from the Galactic Plane was initiated by Greenstein; in due course effective temperatures (T e ff), surface gravities (log g) and abundances showed these stars form what appeared to be a blue extension of the known Horizontal Branch (HB) in the Hertzsprung–Russell Diagram. Extended Horizontal Branch (EHB) stars were identified with Extreme Horizontal Branch stars in globular clusters. It was realised that HB and EHB stars must have formed as a consequence of mass-loss on the Giant Branch, either at or before the helium flash. Mass-loss on the Giant Branch leading to the formation of EHB stars was considered more likely for stars in binary systems. The scene was then set for three decades of EHB star research.  相似文献   

15.
The stars that will be detectable in the Magellanic Clouds by the DENIS and 2MASS near infrared surveys are enumerated. All thermally-pulsing AGB stars will be observable in I, J, H and K, along with the top two magnitudes of both the early-AGB and the first giant branch. All carbon stars will be visible, and normal (N type) C stars will be easily distinguished by their large J-K colours. However, it will not be possible to separate faint, warm C stars from K and M stars using the photometry alone. Photometry of AGB stars in clusters will allow an accurate evaluation of the AGB tip luminosities as a function of initial mass. Random phase K magnitudes of LPVs and Cepheids should provide a better measure of the LMC tilt and distortions in the SMC. The K survey should turn up 100 to 150 objects undergoing superwind mass loss, these objects being OH/IR stars and the dust-enshrouded C star equivalents of OH/IR stars. It is shown that crowding should not be a problem even in the LMC bar.  相似文献   

16.
This paper extends our previous study of planet/brown dwarf accretion by giant stars to solar-mass stars located on the red giant branch. The model assumes that the planet is dissipated at the bottom of the convective envelope of the giant star. The evolution of the giant is then followed in detail. We analyse the effects of different accretion rates and different initial conditions. The computations indicate that the accretion process is accompanied by a substantial expansion of the star, and, in the case of high accretion rates, hot bottom burning can be activated. The possible observational signatures that accompany the engulfing of a planet are also extensively investigated. They include the ejection of a shell and a subsequent phase of IR emission, an increase in the 7Li surface abundance and a potential stellar metallicity enrichment, spin-up of the star because of the deposition of orbital angular momentum, the possible generation of magnetic fields and the related X-ray activity caused by the development of shear at the base of the convective envelope, and the effects on the morphology of the horizontal branch in globular clusters. We propose that the IR excess and high Li abundance observed in 4–8 per cent of the G and K giants originate from the accretion of a giant planet, a brown dwarf or a very low-mass star.  相似文献   

17.
Spectroscopic studies of stars with and without planetary systems have concluded that planet hosts are more metal‐rich. This enrichment is also seen in the other chemical elements studied and is likely to be primordial in nature. Interesting trends of different chemical elements begin to appear as the number of extrasolar planets continues to grow. I present our current knowledge concerning the observed abundance trends of chemical elements in planet hosts and their possible implications. In most cases the abundance trends of planet host stars are identical to those of the comparison sample. However, some exceptions (such as Li) have been reported too. No clear correlation was found between orbital parameters of planets and host star metallicity. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
High-dispersion near-infrared spectra have been taken of seven highly evolved, variable, intermediate-mass (4–6 M) asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud in order to look for C, N and O variations that are expected to arise from third dredge-up and hot-bottom burning. The pulsation of the objects has been modelled, yielding stellar masses, and spectral synthesis calculations have been performed in order to derive abundances from the observed spectra. For two stars, abundances of C, N, O, Na, Al, Ti, Sc and Fe were derived and compared with the abundances predicted by detailed AGB models. Both stars show very large N enhancements and C deficiencies. These results provide the first observational confirmation of the long-predicted production of primary nitrogen by the combination of third dredge-up and hot-bottom burning in intermediate-mass AGB stars. It was not possible to derive abundances for the remaining five stars: three were too cool to model, while another two had strong shocks in their atmospheres which caused strong emission to fill the line cores and made abundance determination impossible. The latter occurrence allows us to predict the pulsation phase interval during which observations should be made if successful abundance analysis is to be possible.  相似文献   

19.
The chemical species containing carbon, nitrogen, and oxygen in atmospheres of giant planets, brown dwarfs (T and L dwarfs), and low-mass stars (M dwarfs) are identified as part of a comprehensive set of thermochemical equilibrium and kinetic calculations for all elements. The calculations cover a wide temperature and pressure range in the upper portions of giant planetary and T-, L-, and M-dwarf atmospheres. Emphasis is placed on the major gases CH4, CO, NH3, N2, and H2O but other less abundant gases are included. The results presented are independent of particular model atmospheres, and can be used to constrain model atmosphere temperatures and pressures from observations of different gases. The influence of metallicity on the speciation of these key elements under pressure-temperature (P-T) conditions relevant to low-mass object atmospheres is discussed. The results of the thermochemical equilibrium computations indicate that several compounds may be useful to establish temperature or pressure scales for giant planet, brown dwarf, or dwarf star atmospheres. We find that ethane and methanol abundance are useful temperature probes in giant planets and methane dwarfs such as Gl 229B, and that CO2 can serve as a temperature probe in more massive objects. Imidogen (NH) abundances are a unique pressure-independent temperature probe for all objects. Total pressure probes for warmer brown dwarfs and M dwarfs are HCN, HCNO, and CH2O. No temperature-independent probes for the total pressure in giant planets or T-dwarf atmospheres are identified among the more abundant C, N, and O bearing gases investigated here.  相似文献   

20.
The lithium abundances of planet-harbouring stars have been compared with the lithium abundances of open clusters and field stars. Young (chromospherically active) and subgiant stars have been eliminated from the comparison because they are at different stages of evolution and Li processing than the planet-harbouring stars, and hence have systematically higher Li abundances. The analysis showed that the Li abundances of the planet-harbouring stars are indistinguishable from those of non-planet-harbouring stars of the same age, temperature and composition. This conclusion is opposite to that arrived at by Gonzalez & Laws; it is believed that the field-star sample used by them contained too wide a range of ages, evolutionary types and temperatures to be accommodated by the model that they adopted to describe the dependence of Li on the parameters. The Li abundance does not appear set to provide key insights into the formation and evolution of planetary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号