首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 760 毫秒
1.
近地小行星(10302) 1989 ML和(4660) Nereus作为下一代深空探测的候选目标一直备受关注. 在考虑太阳系主要天体的动力学背景下, 通过计算最大Lyapunov指数(MLE)及MEGNO (Mean Exponential Growth factor of Nearby Orbits)指数讨论它们的稳定性. 同时, 对每个小行星, 在其观测误差范围内按多元正态分布各选取1000个克隆粒子, 通过统计分析显示这两个小行星在10万年内可能的运动范围, 给出半长径-偏心率空间中的出现次数分布图, 并统计小行星与地球或其他大行星之间的密近交汇及碰撞的概率. 此外还对这两个小行星的标称轨道进行长期共振、Kozai共振及平运动共振的动力学分析. 综上得出结论, 1989 ML处在平运动共振主导的区域, 发生密近交汇的概率较小, 从而其轨道相对较稳定; 而Nereus处在地球的密近交汇区域, 轨道极不稳定.  相似文献   

2.

The paper is focused on studying the motion of asteroid 3200 Phaethon which approached the Earth in December 2017. We consider the dynamics of asteroid 3200 Phaethon, reveal its encounters with planets, mean motion and secular resonances, and estimate the predictability time and the causes of chaoticity. A peculiar feature in the dynamics of the object is that it passes through the unstable orbital resonance 3/7 with Venus and exhibits a gamut of apsidal-nodal resonances with Mercury, Venus, Earth, Mars, and Jupiter, as well as a large number of close encounters with terrestrial planets. These properties result in a chaotic character of the motion beyond a time interval between the years 1780 and 2350.

  相似文献   

3.
The dynamics of near-Earth asteroids near mean motion resonances with the Earth or other planets is considered. The probability domains of the motion of some near-Earth asteroids close to low-order resonances are presented. The investigations have been carried out by means of a numerical integration of differential equations, taking into account the perturbations from the major planets and the Moon. For each investigated object an ensemble of 100 test particles with orbital elements nearby those of the nominal orbit has been constructed and its evolution has been retraced over the time interval (–3000, +3000 years). The initial set of orbits has been generated on the basis of probable variations of the initial orbital elements obtained from the least square analysis of observations.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
The aim of this paper is to show that in the case of a low probability of asteroid collision with the Earth, the appropriate selection and weighting of the data are crucial for the impact investigation and for analysing the impact possibilities using extensive numerical simulations. By means of the Monte Carlo special method, a large number of 'clone' orbits have been generated. A full range of orbital elements in the six-dimensional parameter space, that is, in the entire confidence region allowed by the observational material, has been examined. On the basis of 1000 astrometric observations of (99942) Apophis, the best solutions for the geocentric encounter distance of  6.065 ± 0.081 R  (without perturbations by asteroids) or  6.064 ± 0.095 R  (including perturbations by the four largest asteroids) were derived for the close encounter with the Earth on 2029 April 13. The present uncertainties allow for special configurations ('keyholes') during this encounter that may lead to very close encounters in future approaches of Apophis. Two groups of keyholes are connected with the close encounter with the Earth in 2036 (within the minimal distance of  5.7736−5.7763 R  on 2029 April 13) and 2037 (within the minimal distance of  6.3359–6.3488 R  ). The nominal orbits for our most accurate models run almost exactly in the middle of these two impact keyhole groups. A very small keyhole for the impact in 2076 has been found between these groups at the minimal distance of 5.97347   R  . This keyhole is close to the nominal orbit. The present observations are not sufficiently accurate to eliminate definitely the possibility of impact with the Earth in 2036 and for many years after.  相似文献   

5.
The orbital evolutions of the asteroid 3040 Kozai and model asteroids with similar orbits have been investigated. Their osculating orbits for an epoch 1991 December 10 were numerically integrated forward within the interval of 20,000 years, using a dynamical model of the solar system consisting of all inner planets, Jupiter, and Saturn.The orbit of the asteroid Kozai is stable. Its motion is affected only by long-period perturbations of planets. With change of the argument of perihelion of the asteroid Kozai, the evolution of the model asteroid orbits changes essentially, too. The model orbits with the argument of perihelion changed by the order of 10% show that asteroids with such orbital parameters may approach the Earth orbit, while asteroids with larger changes may even cross it, at least after 10,000 years. Long-term orbital evolution of asteroids with these orbital parameters is very sensitive on their angular elements.  相似文献   

6.
Tabaré Gallardo 《Icarus》2006,184(1):29-38
The aim of this work is to present a systematic survey of the strength of the mean motion resonances (MMRs) in the Solar System. We know by applying simple formulas where the resonances with the planets are located but there is no indication of the strength that these resonances have. We propose a numerical method for the calculation of this strength and we present an atlas of the MMRs constructed with this method. We found there exist several resonances unexpectedly strong and we look and find in the small bodies population several bodies captured in these resonances. In particular in the inner Solar System we find one asteroid in the resonance 6:5 with Venus, five asteroids in resonance 1:2 with Venus, three asteroids in resonance 1:2 with Earth and six asteroids in resonance 2:5 with Earth. We find some new possible co-orbitals of Earth, Mars, Saturn, Uranus and Neptune. We also present a discussion about the behavior of the resonant disturbing function and where the stable equilibrium points can be found at low and high inclination resonant orbits.  相似文献   

7.
We study the global dynamics of the jovian Trojan asteroids by means of the frequency map analysis. We find and classify the main resonant structures that serve as skeleton of the phase space near the Lagrangian points. These resonances organize and control the long-term dynamics of the Trojans. Besides the secondary and secular resonances, that have already been found in other asteroid sets in mean motion resonance (e.g. main belt, Kuiper belt), we identify a new type of resonance that involves secular frequencies and the frequency of the great inequality, but not the libration frequency. Moreover, this new family of resonances plays an important role in the slow transport mechanism that drives Trojans from the inner stable region to eventual ejections. Finally, we relate this global view of the dynamics with the observed Trojans, identify the asteroids that are close to these resonances and study their long-term behaviour.  相似文献   

8.
The search for asteroids that maintain stable motion in the zone between the Earth and Mars has been performed. The near-Earth object 2013 RB6, which has avoided close encounters with the planets for a long period of time, has been found. Integration of the equations of motion of the object shows that its dynamical lifetime in the zone between the Earth and Mars significantly exceeds 100 Myr. 2013 RB6 moves away from orbital resonances with the planets, but is in the secular resonance ν5. Solving the question of its origin requires further observations.  相似文献   

9.
Observations and results of orbit determination of the first known Mars Trojan asteroid (5261) Eureka are presented. We have numerically calculated the evolution of the orbital elements, and have analyzed the behavior of the motion during the next 2 Myr. Strong perturbations by planets other than Mars seem to stabilize the eccentricity of the asteroid by stirring the high order resonances present in the elliptic restricted problem. As a result, the orbit appears stable at least on megayear timescales. The difference of the mean longitudes of Mars and Eureka and the semimajor axis of the asteroid form a pair of variables that essentially behave in an adiabatic manner, while the evolution of the other orbital elements is largely determined by the perturbations due to other planets.  相似文献   

10.
田伟 《天文学报》2021,62(2):16-62
作为一颗与地球共轨道的小行星,(469219)Kamo'oalewa是一个具有很高研究价值的近地小天体,也是中国首次小行星探测计划的目标天体之一.针对其轨道特性,建立了兼顾太阳、地球和月球非球形引力作用的小行星动力学模型.并在该模型的基础上,利用国际小行星中心(Minor Planet Center,MPC)提供的2004|2018年间的光学观测数据对该小行星的轨道进行确定.拟合后观测残差的均方根误差约为0:2″(与美国喷气推进实验室的Horizons在线历表系统相当),其中2004年期间数据的观测残差有所改进.最后,对小行星(469219)Kamo'oalewa的轨道误差进行了详细分析,并预报了2020-2025年期间该小行星的轨道误差.  相似文献   

11.
An essential role in the asteroidal dynamics is played by the mean motion resonances. Two-body planet–asteroid resonances are widely known, due to the Kirkwood gaps. Besides, so-called three-body mean motion resonances exist, in which an asteroid and two planets participate. Identification of asteroids in three-body (namely, Jupiter–Saturn–asteroid) resonances was initially accomplished by Nesvorný and Morbidelli (Nesvorný D., Morbidelli, A. [1998]. Astron. J. 116, 3029–3037), who, by means of visual analysis of the time behaviour of resonant arguments, found 255 asteroids to reside in such resonances. We develop specialized algorithms and software for massive automatic identification of asteroids in the three-body, as well as two-body, resonances of arbitrary order, by means of automatic analysis of the time behaviour of resonant arguments. In the computation of orbits, all essential perturbations are taken into account. We integrate the asteroidal orbits on the time interval of 100,000 yr and identify main-belt asteroids in the three-body Jupiter–Saturn–asteroid resonances up to the 6th order inclusive, and in the two-body Jupiter–asteroid resonances up to the 9th order inclusive, in the set of ~250,000 objects from the “Asteroids – Dynamic Site” (AstDyS) database. The percentages of resonant objects, including extrapolations for higher-order resonances, are determined. In particular, the observed fraction of pure-resonant asteroids (those exhibiting resonant libration on the whole interval of integration) in the three-body resonances up to the 6th order inclusive is ≈0.9% of the whole set; and, using a higher-order extrapolation, the actual total fraction of pure-resonant asteroids in the three-body resonances of all orders is estimated as ≈1.1% of the whole set.  相似文献   

12.
An obstacle to the asteroid mass determination lies in the difficulty in isolating the gravitational perturbation exerted by a single asteroid on the planets, being strongly correlated and mixed up with those of many other asteroids. This hindrance may be avoided by the method of analysis presented here: an asteroid mass is estimated in correspondence with its close encounters with Mars where the acceleration it induces on the planet can be sufficiently disentangled from those generated by the remaining asteroid masses to calculate. We test this technique in the analysis of range observations to Mars Global Surveyor and Mars Express performed from 1999 to 2007. For this purpose, we adopt the dynamical model of the planetary ephemeris INPOP06 (Fienga et al., 2008), which includes the gravitational influences of the 300 most perturbing asteroids of the Martian orbit. We obtain the solutions of 10 asteroid masses that have the largest effects on this orbit over the period examined: they are generally in good agreement with determinations recently published.  相似文献   

13.
共轨运动天体与摄动天体的半长径相同,处于1:1平运动共振中.太阳系内多个行星的特洛伊天体即为处于蝌蚪形轨道的共轨运动天体,其中一些高轨道倾角特洛伊天体的轨道运动与来源仍未被完全理解.利用一个新发展的适用于处理1:1平运动共振的摄动函数展开方式,对三维空间中的共轨运动进行考察,计算不同初始轨道根数情况下共轨轨道的共振中心、共振宽度,分析轨道类型与初始轨道根数的关系.并将分析方法所得结果与数值方法的结果相互比较验证,得到了广阔初始轨道根数空间内共轨运动的全局图景.  相似文献   

14.
We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this sys-tem can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790 AU ≤ a ≤ 5.900 AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and sev-eral stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.  相似文献   

15.
Many asteroids with a semimajor axis close to that of Mars have been discovered in the last several years. Potentially some of these could be in 1:1 resonance with Mars, much as are the classic Trojan asteroids with Jupiter, and its lesser-known horseshoe companions with Earth. In the 1990s, two Trojan companions of Mars, 5261 Eureka and 1998 VF31, were discovered, librating about the L5 Lagrange point, 60° behind Mars in its orbit. Although several other potential Mars Trojans have been identified, our orbital calculations show only one other known asteroid, 1999 UJ7, to be a Trojan, associated with the L4 Lagrange point, 60° ahead of Mars in its orbit. We further find that asteroid 36017 (1999 ND43) is a horseshoe librator, alternating with periods of Trojan motion. This asteroid makes repeated close approaches to Earth and has a chaotic orbit whose behavior can be confidently predicted for less than 3000 years. We identify two objects, 2001 HW15 and 2000 TG2, within the resonant region capable of undergoing what we designate “circulation transition”, in which objects can pass between circulation outside the orbit of Mars and circulation inside it, or vice versa. The eccentricity of the orbit of Mars appears to play an important role in circulation transition and in horseshoe motion. Based on the orbits and on spectroscopic data, the Trojan asteroids of Mars may be primordial bodies, while some co-orbital bodies may be in a temporary state of motion.  相似文献   

16.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some “fast-track” dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.  相似文献   

17.
A simple method for numerical integration of the equations of motion of small bodies of the Solar System is proposed, which is especially efficient in studying the orbits with small perihelion distances. The evolution of orbits of 121 numbered asteroids with perihelion distances q < 1.2 AU is investigated over the time interval of years 2000–2100 with allowance made for the gravitational influence of nine planets and three largest asteroids. The circumstances of close encounters of asteroids with the Earth and other terrestrial planets are presented.  相似文献   

18.
Masses of 19 asteroids have been determined from the analysis of their gravitational effect on the motion of perturbed bodies. The following asteroids were selected as perturbed bodies: (1) those which had single close encounters with the perturbing asteroid; (2) those whose mean motion was in a 1 : 1 commensurability with that of the perturber and which had close or moderate recurrent encounters with the perturber. The perturber mass was determined from observations of several tens of perturbed asteroids that were selected from these two groups. The selection criterion was the error of the mass determined from observations of only one asteroid. Positional observations of the asteroids on the interval 1900–2002 were used. The masses were determined with errors by an order-half an order of magnitude smaller than the masses found. The results are compared with those of other authors.  相似文献   

19.
Abstract— The main asteroid belt has lost >99.9% of its solid mass since the time at which the planets were forming, according to models for the protoplanetary nebula. Here we show that the primordial asteroid belt could have been cleared efficiently if much of the original mass accreted to form planetsized bodies, which were capable of perturbing one another into unstable orbits. We provide results from 25 N‐body integrations of up to 200 planets in the asteroid belt, with individual masses in the range 0.017–0.33 Earth masses. In the simulations, these bodies undergo repeated close encounters which scatter one another into unstable resonances with the giant planets, leading to collision with the Sun or ejection from the solar system. In response, the giant planets' orbits migrate radially and become more circular. This reduces the size of the main‐belt resonances and the clearing rate, although clearing continues. If ~3 Earth masses of material was removed from the belt this way, Jupiter and Saturn would initially have had orbital eccentricities almost twice their current values. Such orbits would have made Jupiter and Saturn 10–100x more effective at clearing material from the belt than they are on their current orbits. The time required to remove 90% of the initial mass from the belt depends sensitively on the giant planets' orbits, and weakly on the masses of the asteroidal planets. 18 of the 25 simulations end with no planets left in the belt, and the clearing takes up to several hundred million years. Typically, the last one or two asteroidal planets are removed by interactions with planets in the terrestrial region  相似文献   

20.
We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5 Gyr of solar system history. Its chemistry and mineralogy were established within the first 10 Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7–2 Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100‐km), carbonaceous asteroid. It was delivered to near‐Earth space via a combination of Yarkovsky‐induced drift and interaction with giant‐planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1‐in‐2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS‐REx will return samples from the surface of this intriguing asteroid in September 2023.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号