首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Magnesite forms a series of 1‐ to 15‐m‐thick beds within the ≈2·0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680‐m‐thick formation is composed of a stromatolite–dolomite–‘red bed’ sequence formed in a complex combination of shallow‐marine and non‐marine, evaporitic environments. Dolomite‐collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by δ13C values from +7·1‰ to +11·6‰ (V‐PDB) and δ18O ranging from 17·4‰ to 26·3‰ (V‐SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high δ13C values ranging from +9·0‰ to +11·6‰ and δ18O values of 20·0–25·7‰. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water‐derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high δ13C values reflect a combined contribution from both global and local carbon reservoirs. A 13C‐rich global carbon reservoir (δ13C at around +5‰) is related to the perturbation of the carbon cycle at 2·0 Ga, whereas the local enhancement in 13C (up to +12‰) is associated with evaporative and restricted environments with high bioproductivity.  相似文献   

2.
Rb–Sr systematics has been studied in 13C-rich carbonate rocks of the Paleoproterozoic (2.09 ± 0.07 Ga) Tulomozero Formation in the northern Onega Lake area, the SE Fennoscandian Shield. The formation is divided into eight members (A–F) consisting of greenschist-facies-grade, variegated sandstones, siltstones, mudstones, stromatolitic dolostones and subordinate crystalline limestones. Samples of carbonate rocks were obtained from two overlapping drillholes intersecting the entire thickness of the Tulomozero Formation. Prior to isotope analysis, the rocks powders were treated with 1N ammonium acetate for partial removal of the late epigenetic carbonate phases. Major resetting of the Rb–Sr systems in the Tulomozero carbonate rocks appears to take place during the Svecofennian regional metamorphic event, and it was screened by using Mn/Sr, Fe/Sr, Mg/Ca, and 18O/16O ratios. High Sr content (up to 2080 μg/g in limestones, and 530 μg/g in dolostones) coupled with low Fe/Mn (<0.40) ratios in the Tulomozero carbonate rocks of Members A, B (the lower part), D, F, and E are consistent with accumulation of original carbonate sediments in evaporitic lacustrine, playa, and sabkha environments. A decrease in the Sr content with concurrent increase in the Fe/Mn ratio (>0.40) in dolostones of the upper part of Member B, and of Members G and H is indicative of seawater influxes (sea transgression) into the Tulomozero basin. The 87Sr/86Sr values in the least altered (Mn/Sr < 2.0) marine dolostones are 0.70418–0.70442 and 0.70343–0.70409 for the earlier and late phases of the marine transgression, respectively. The decrease in the 87Sr/86Sr ratio in ca. 2.1 Ga seawater is attributable to an increase in hydrothermal flux Sr into the Palaeoproterozoic ocean.  相似文献   

3.
C and O isotope composition of Middle-Upper Miocene and Lower Pliocene carbonates from Kerch-Taman Region (Eastern Paratethys) have been studied in order to reconstruct palaeoenvironmental variability and post-sedimentation changes. The δ13C and δ18О values of the Upper Sarmatian to Lower Pliocene organogenic carbonates reflect the desalinization of paleobasins, global Late Miocene Cooling, and increase in seasonal temperature fluctuations. Isotopic composition of the Middle Sarmatian organogenic carbonates was strongly influenced by evaporation processes, high bioproductivity, and local submarine methane emissions. Warm climate and low bioproductivity together with unstable hydrological regime during the Late Chokrakian and the Karaganian times influenced the isotope composition of primary carbonates. Calcite shell of Spiratella sp. (δ13C =–0.4‰ and δ18О =–0.4‰) from Tarkhanian sediments was formed in warm marine environment. Dolomitization prevails over other secondary mineralization in the studied carbonate rocks. Two groups of secondary dolomites that are characterized by negative and positive δ13C values have been recognized. Lowe δ13C values (up to–31.4‰) in dolomites indicate the influence of both dissolved inorganic carbon (DIC) from oxidized organic matter (Сorg) and methane. Dolomites with positive δ13C values (7.0 and 7.8‰) associat with migration of CO2- and CH4-containing saline groundwater.  相似文献   

4.
High δ13C values up to 11%PDB occur in Paleoproterozoic dolostones from the Aravalli Supergroup, western India. Correlation of high δ13C with high δ18O up to 23%SMOW in the studied carbonates suggests that pre-metamorphic δ13C values were above 10%PDB. The data are consistent with worldwide positive excursions in the δ13C of marine bicarbonate. The positive excursion was contemporaneous with sedimentation.  相似文献   

5.
238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of cathodoluminescence and very low Mn (gener-ally<50 ppm) contents of the samples, it is thought that they contain information on the orig-inal sea water geochemistry. The results of isotopic analyses of these samples are presented interms of δ~(13)C and ~(87)Sr/~(86)Sr ratios versus geological time. The strontium data, consistent withother similar data based on samples from North America, Europe, Africa and other areas inAsia, support the notion of a global consistency in strontium isotope composition of marinecarbonates. The strontium data exhibit three intervals of relatively low ~(87)Sr/~(86)Sr ratios in thelate Middle Devonian to early Late Devonian, Early Carboniferous and Early Permian, corre-sponding to global eustatic high sea level stands. The lowest ~(87)Sr/~(86)Sr ratio recorded in theLate Permian was probably caused by substantial basalt eruptions in the Upper Yangtze Plat-form at the time. Three corresponding periods of relatively high δ~(13)C values at roughly the samethe intervals were caused by a relatively high rate of accumulation of organic carbon duringsea level rises at these times. The deposition of coal was probably responsible for the increaseof sea water δ~(13)C at other times. The δ~(13)C values drop dramatically near theDevonian/Carboniferous, Carboniferous/Permian and Permian/Triassic boundaries, con-sistent with other similar data, which further support the notion that geological time boundariesare associated with mass extinction and subsequent rejuvenation.  相似文献   

6.
Lower to Middle Devonian carbonates of the Prague Syncline, the Carnic Alps, the Montagne Noire, and the Cantabrian Mountains were investigated for δ13Ccarb and δ13Corg. These values were measured on bulk rocks, selected components and cements. Many carbonates exhibit primary marine values, but some are altered by diagenesis. A δ13C curve can be presented for the latest Pridolian to Emsian time interval. Several sharp or broad positive excursions are obvious in the woschmidti-postwoschmidti, sulcatus, kitabicus, Late serotinus, and kockelianus conodont zones. The excursion at the Silurian–Devonian boundary is known worldwide and therefore considered global in nature. Some of the others are described for the first time from central and southern Europe, and their global nature has to be verified by further investigations in other regions. Most excursions relate to and/or started during major regressions whereas sea-level highstands correspond to minimal δ13C values. Similar relationships between sea-level changes and δ13C have been observed from other early Palaeozoic intervals. The transgressive Chote? (?) and Ka?ák events are marked by positive isotope excursions, this type of combination is usually observed in late Palaeozoic to Cenozoic black shale events.  相似文献   

7.
《Precambrian Research》2002,113(1-2):43-63
Carbon, oxygen and strontium isotope compositions of carbonate rocks of the Proterozoic Vindhyan Supergroup, central India suggest that they can be correlated with the isotope evolution curves of marine carbonates during the latter Proterozoic. The carbonate rocks of the Lower Vindhyan Supergroup from eastern Son Valley and central Vindhyan sections show δ13C values of ∼0‰ (V-PDB) and those from Rajasthan section are enriched up to +2.8‰. In contrast, the carbonate rocks of the Upper Vindhyan succession record both positive and negative shifts in δ13C compositions. In the central Vindhyan section, the carbonates exhibit positive δ13C values up to +5.7‰ and those from Rajasthan show negative values down to –5.2‰. The δ18O values of most of the carbonate rocks from the Vindhyan Supergroup show a narrow range between –10 and –5‰ (V-PDB) and are similar to the ‘best preserved’ 18O compositions of the Proterozoic carbonate rocks. In the central Vindhyan and eastern Son Valley sections, carbonates from the Lower Vindhyan exhibit best-preserved 87Sr/86Sr compositions of 0.7059±6, which are lower compared to those from Rajasthan (0.7068±4). The carbonates with positive δ13C values from Upper Vindhyan are characterized by lower 87Sr/86Sr values (0.7068±2) than those with negative δ13C values (0.7082±6). A comparison of C and Sr isotope data of carbonate rocks of the Vindhyan Supergroup with isotope evolution curves of the latter Proterozoic along with available geochronological data suggest that the Lower Vindhyan sediments were deposited during the Mesoproterozoic Eon and those from the Upper Vindhyan represent a Neoproterozoic interval of deposition.  相似文献   

8.
The reliability of δ13C trends in Neoproterozoic carbonate-dominated successions for regional and global chemostratigraphic correlation is discussed. In the light of recent findings of a predominantly non-marine rare earth element and yttrium signature in most Neoproterozoic carbonates and a comparatively short oceanic residence time of carbon, trends towards enrichment in 13C seen in many of these carbonates are considered to reflect facies variations rather than temporal signals of ocean chemistry. Positive δ13CCarb excursions are explained by elevated bioproductivity and/or increased evaporation in shallow marine, near-coastal, temporarily restricted depositional environments. Examples are provided that illustrate that C isotope trends can be highly ambiguous temporal markers and are in the absence of other chemostratigraphic data, such as Sr isotope ratios, and radiometric age control of only limited use for stratigraphic correlation. The overall enrichment in 13C recorded by most Neoproterozoic carbonates, except for those in close stratigraphic proximity to glacial deposits, is suggested to reflect a dominance of microbially mediated carbonate formation in the Neoproterozoic. This might explain why C isotope chemostratigraphy in Neoproterozoic successions is less reliable than in Phanerozoic successions in which carbonates are, with only few exceptions, biogenic products of shelly fossils.  相似文献   

9.
The dominantly shallow-marine Vendian succession of NE Spitsbergen contains distinctive types of carbonate rock. Limestones deposited before Vendian glaciation resemble those described from other Upper Proterozoic successions, being high in Sr and inferred to have been originally aragonitic, including the distinctive 5–10 Jim equant polygonal calcite of cemented shrinkage cracks. In contrast, manganoan stromatolitic limestones within marginal-marine glacial-outwash deposits, and consisting of micrite, microspar and fascicular-optic calcite are interpreted as originally calcitic. The restriction of primary marine calcite to cold seawater is comparable with Recent and Permian carbonates, although the Precambrian example formed in a sea diluted with meltwater. There is good textural preservation of relatively 18O-rich oolitic dolostones which were cemented in a supratidal environment by artesian fluids. Nevertheless, early diagenetic replacement is inferred, immediately prior to a glacial episode. Post-glacial dolostones are either replacive marine, or evaporative lacustrine, but share rather more negative δ18O values, closer to the mean of Late Precambrian dolostones. The heaviest oxygen isotope values constrain seawater δ18O to no more negative than — 2 to — 4SMOW. The main reason for the pronounced oxygen isotopic depletion of most Late Precambrian carbonates is their initial metastable mineralogy. The possibility of determining palaeolatitudes of the enigmatic widespread Late Proterozoic glaciations by isotopic analysis of freshwater periglacial calcareous precipitates is raised. Significant carbon isotope variations reflect changes in depositional water chemistry: some of these could be global in extent.  相似文献   

10.
The results of isotope-geochemical studies of carbonates of different mineral types from manganese and host rocks of the Famennian manganiferous formation of Pai-Khoi are reported. Kutnahorite ores are characterized by δ13C values from–6.6 to 1.3‰ and δ18O from 20.0 to 27.4‰. Rhodonite–rhodochrosite rocks of the Silovayakha ore occurrence have δ13C from–5.2 to–2.9 and δ18O from 25.4 to 24.3‰. Mineralogically similar rocks of the Nadeiyakha ore occurrence show the lighter carbon and oxygen isotopic compositions: δ13C from–16.4 to–13.1 and δ18O from 24.8 to 22.5‰. Similar isotopic compositions were also obtained for rhodochrosite–kutnahorite rocks of this ore occurrence: δ13C from–13.0 to–10.4‰ and δ18O from 24.6 to 21.7‰. Siderorodochrosite ores differ in the lighter oxygen and carbon isotopic compositions: δ18O from 18.7 to 17.6‰ and δ13C from–10.2 to–9.3‰, respectively. In terms of the carbon and oxygen isotopic compositions, host rocks in general correspond to marine sedimentary carbonates. Geological-mineralogical and isotope data indicate that the formation of the manganese carbonates was related to the hydrothermal ore-bearing fluids with the light isotopic composition of oxygen and carbon dissolved in CO2. The isotopic features indicate an authigenic formation of manganese carbonates under different isotopegeochemical conditions.  相似文献   

11.
In the late Carnian (Late Triassic), a carbonate‐clastic depositional system including a distal alluvial plain, flood basin and sabkha, tidal flat and shallow carbonate lagoon was established in the Dolomites (Northern Italy). The flood basin was a muddy supratidal environment where marine carbonates and continental siliciclastics interfingered. A dolomite phase made of sub‐micrometre euhedral crystals with a mosaic microstructure of nanometre‐scale domains was identified in stromatolitic laminae of the flood basin embedded in clay. This dolomite is interpreted here as primary and has a nearly stoichiometric composition, as opposed to younger early diagenetic (not primary) dolomite phases, which are commonly calcian. This primary dolomite was shielded from later diagenetic transformation by the clay. The stable isotopic composition of dolomite was analyzed along a depositional transect. The δ13C values range between ca ?6‰ and +4‰, with the most 13C‐depleted values in dolomites of the distal alluvial plain and flood basin, and the most 13C‐enriched in dolomites of the tidal flat and lagoon. Uniform δ18O values ranging between 0‰ and +3‰ were found in all sedimentary facies. It is hypothesized that the primary dolomite with mosaic microstructure nucleated on extracellular polymeric substances secreted by sulphate reducing bacteria. A multi‐step process involving sabkha and reflux dolomitization led to partial replacement and overgrowth of the primary dolomite, but replacement and overgrowth were facies‐dependent. Dolomites of the landward, clay‐rich portion of the sedimentary system were only moderately overgrown during late dolomitization steps, and partly retain an isotopic signature consistent with bacterial sulphate reduction with δ13C as low as ?6‰. In contrast, dolomites of the marine, clay‐free part of the system were probably transformed through sabkha and reflux diagenetic processes into calcian varieties, and exhibit δ13C values of ca +3‰. Major shifts of δ13C values strictly follow the lateral migration of facies and thus mark transgressions and regressions.  相似文献   

12.
《Comptes Rendus Geoscience》2007,339(3-4):223-239
Neoproterozoic glacial and post-glacial sediments from the Volta Basin (West Africa) form a stratigraphic ‘Triad’ of tillites, carbonates and cherts. The carbonates that cap the tillites were studied in detail at Bwipe (Ghana), in the western part of the basin. They are made of finely-laminated dolostones with well-preserved sedimentary features, suggesting that dolomite formation was penecontemporaneous of deposition in a warm, arid peritidal environment, with microbial activity. Rare-earth element distribution display seawater-like patterns. Redox-sensitive trace elements indicate suboxic conditions. High Ba/Al ratios can be related to high organic productivity. δ13C values are nearly constant at −3.7‰ and δ18OPDB are about −6‰. 87Sr/86Sr ratios range between 0.7061 and 0.7073. The δ13C signatures are nearly similar to those of coeval cap dolostones from the northern part of the Basin. The dolostones change upwards to limestones with secondary textures, as well as more negative δ13C and higher 87Sr/86Sr ratio. Therefore, only the dolostones witness the post-glacial conditions in seawater. It is proposed that, due to a bloom of microbial productivity following ice thaw, organic matter likely accumulated at the water–sediment interface and was consumed by sulphate-reducing bacteria, leading to the precipitation of δ13C-negative dolomite. This microbially mediated model is supported by present-day field evidence from hypersaline lagoons in Brazil and by previously published culture experiments. It is consistent with the sedimentological and geochemical data from the Ghana cap dolostones and can be applied to other Neoproterozoic cap dolostones worldwide.  相似文献   

13.
The Cretaceous-Paleocene (K-T) transition has been recorded in sedimentary carbonate rocks in northwestern Argentina and southern Chile. In the Yacoraite Basin, Argentina, this transition has been preserved in a 2 m thick marly layer, at the base of the Tunal Formation, which overlies lacustrine/marine carbonates of the Yacoraite Formation (Cabra Corral dam). The K-T transition is also preserved at Maimara, where Tertiary sandstones overlie a 50 m thick limestone bed of the Yacoraite Formation. In the Magellan Basin, Chile, glauconitic sandstones with calcitic cement and limestone concretions of the Maastrichtian Punta Rocallosa Formation are overlain by sandstones, claystones, and limestones of the Chorillo Chico Formation. The K-T transition is preserved in the lower portion of the Chorillo Chico Formation.

Carbonates of the Yacoraite Formation display bulk-rock δ13C values from +1 to +2‰ PDB, with a negative incursion (?4‰ PDB) at the K-T transition. δ13C values in the Tunal Formation marls vary from ?3 to ?1‰ PDB. At Rocallosa Point, δ13C values in limestone strata, calcite cement, and limestone concretions vary from ?4 to ?33 ‰ PDB, and the lowest value in the Chorillo Chico Formation apparently marks the K-T transition. The δ18O fluctuations in the Yacoraite and Magellan carbonate rocks suggest a temperature drop at the K-T transition, followed by a temperature rise.

High 87Sr/86Sr ratios (0.7140-0.7156) characterize the studied profiles of the Yacoraite Formation, documenting an important 87Sr-enriched source of Sr to the water from which these carbonates precipitated. At the Magellan basin, 87Sr/86Sr ratios are closer to the expected values for the global Late Cretaceous-Paleocene ocean.  相似文献   

14.
An integrated mineralogical-geochemical and stable isotopic study of Pb-Zn deposits located at Kayar-Ghugra (Zn-Pb ± Ag), Rampura-Agucha (Zn-Pb, Ag), Dariba-Bethumni (Zn-Pb) and Zawar (Pb-Zn ± Cd, Ag) in Rajasthan is presented in this paper. The Kayar Zn-Pb deposit hosted by (i) phlogopite-tremolite bearing dolomitic carbonates and (ii) scapolite bearing calc-silicates, both belonging to Mesoproterozoic Delhi Supergroup exhibit distinctly different δ13C signatures being close to zero permil for the former reflecting deposition in pristine marine environment and much depleted isotopic values for the latter possibly related to post-depositional alterations. The Zn-Pb sulphides of Agucha, hosted in amphibolite facies to lower granulite facies metasedimentary units belonging to the Bhilwara Supergroup have δ34S values that indicate (i) H2S dominated regime characterized by low fO2, low pH, wherein the δ34S(fluid) responsible for mineralisation approximates the δ34S(sulphide); (ii) the role of seawater in the generation of Agucha ores; (iii) the process of a low temperature oxidation of sulphides in the hydrothermal fluids resulting in the formation of sulphate, by the interaction of ground water; (iv) isotopic disequilibrium in sulphatesulphide pairs that explain oxidation of H2S by acid groundwater (low pH) and deposition of sulphides at higher temperatures and (v) equilibrium isotopic fractionation of the coexisting sulphides reflecting in a higher concentration of H2S (>10?5m) in relation to the total metal content in the hydrothermal fluid $\left( {m_{H_2 S} \geqslant mS_{_{metals} } } \right)$ . Accordingly the concentration of sulphide-sulphate in the hydrothermal solution responsible for the mineralization in Agucha exceeds that of total metals. The sulphides of Bethumni-Rajpura-Dariba belt hosted in low to medium grade siliceous carbonates has a marginally positive (mean of +1.5‰) δ13C values. At Sindeswar, broad and widely scattered δ34S values indicate a polymodal sedimentary source of sulphur that recrystallised at rather low temperature of < 50°C possibly during the processes of low temperature bacterial reduction. The C and O-isotopic studies on mineralized and non-mineralized carbonates reveal (i) normal marine depositional signatures for non-mineralized carbonates with possible minor influence of biogenic carbon during deposition and (ii) ore zone carbonates exhibit depleted δ13C values presumably due either to the deeper mantle-like source of carbonates or due to post-depositional equilibration with isotopically light meteoric waters. In Zawar belt, sulphides hosted in dolomitic carbonate indicated (i) near identical δ34S values of disseminated galena and pyrite veinlets and depleted values of ?4.6 ‰ for late veins of massive galena of Zawar Mala (ii) pyritepyrrhotite veinlet having enhanced δ34S values when compared to the PbS-ZnS veinlet in Morchia-Magra, Balaria and Baroi mines. The carbon isotopic values for carbonates of Zawar Mala mine area are mostly depleted and those from Balaria and Baroi mines exhibit values of 13C close to zero. The generally depleted δ 18O clustering around ?15 ‰ tally well with the reported Paleoproterozoic carbonates and is attributed to the post-depositional equilibration reactions with isotopically light meteoric waters. It is summarized that the host carbonates for Zn-Pb deposits occurring in different tectono-stratigraphic units in Rajasthan have largely similar but bimodal distribution of δ 18O and δ13C isotopic ratios that suggest normal marine values and much depleted values. Whereas the former seems to be in general agreement with the nature of distribution in the Palaeoproterozoic carbonates the latter is attributed to (i) depositional conditions of the basins that includes absence or presence of biogenic activity (ii) isotopic re-equilibration under different metamorphic recrystallization events and/or (iii) interaction with isotopically lighter meteoric waters. In contrast to the uniformity in the C and O distribution pattern, the S-isotopic distribution in the deposits of Rampura-Agucha, Bethumni-Rajpura-Darbia and Zawar mine areas show marked variations reflecting complex deposit-specific ore-forming processes in the said deposits.  相似文献   

15.
The Ediacaran period was one of the most important times for the evolution of life. However, the scarcity of well-preserved outcrops of Ediacaran rocks still leaves ambiguity in decoding ambient surface environmental changes and biological evolution.The Ediacaran strata in South China are almost continuously exposed, comprise mainly carbonate rocks with subordinate black shales and sandstones, and they contain many fossils, suitable for study of environmental and biological changes in the Ediacaran. We conducted drilling through the Doushantuo Fm at four sites in the Three Gorges area to obtain continuous, fresh samples without surface alteration and oxidation. We analyzed 87Sr/86Sr and 88Sr/86Sr ratios of the fresh carbonate rocks, selected on the basis of microscopic observations and the geochemical signatures of Sr contents, Mn/Sr and Rb/Sr ratios, and δ18O values, with a multiple collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS).The chemostratigraphy of the 87Sr/86Sr ratios of the drilled samples displays a smooth curve and two large positive shifts during Ediacaran time. The combination of the detailed chemostratigraphies of δ13C, δ18O and 87Sr/86Sr values and Mn and Fe contents enables us to decode the surface environmental changes and their causes in the Ediacaran. The first large positive excursion of 87Sr/86Sr occurred together with negative δ13C and positive δ18O excursions. The higher 87Sr/86Sr values indicate an enhancement of continental weathering, whereas the positive δ18O excursion suggests global cooling. Global regression due to global cooling enhanced the oxidative decay of exposed marine organic sediments and continental weathering. Accelerated influx of nutrients promoted primary productivity, resulting in oxidation of dissolved organic carbon (DOC), whereas active sulfate reduction due to a higher sulfate influx from the continents caused remineralization of the large DOC, both of which caused a negative δ13C anomaly. The 580 Ma Gaskiers glaciation accounts for the close correlation among the positive 87Sr/86Sr, negative δ13C and positive δ18O excursions.The second large positive shift of 87Sr/86Sr firstly accompanied a positive δ13C excursion, and continued through the Shuram δ13C negative excursion. The positive correlation of δ13C and 87Sr/86Sr values is consistent with an enhanced continental weathering rate due to continental collisions that built Trans-Gondwana mountain chains, and with a higher primary activity due to the enhancement of continental weathering and consequent higher nutrient contents in seawater. The accompanied increase in Mn and Fe contents implies a gradual decline of the seawater oxygen content due to more active aerobic respiration and oxidation of reductive materials flowing in the oceans. In the Shuram excursion, higher 87Sr/86Sr values and a transition from increase to decrease in Mn and Fe contents were accompanied by the large negative δ13C excursion. The higher 87Sr/86Sr values are the first compelling evidence for enhanced continental weathering, which was responsible for the large δ13C anomaly through the remineralization of the DOC by more active sulfate reduction due to a higher sulfate influx. Higher Mn and Fe contents in the early and middle stages of the excursion suggest a decline in the oxygen content of seawater due to oxidative decay of the DOC, whereas in the late stages the decrease in Mn and Fe contents is consistent with oceanic oxygenation.The emergence of Ediacara biota after the Gaskiers glaciation and the prosperity of the latest Ediacaran is concomitant with the formation of more radiogenic seawater with high 87Sr/86Sr values, suggesting that enhanced continental weathering, and the consequent higher influx of nutrients, played an important role in biological evolution.  相似文献   

16.
Peritidal carbonates of the Lower Jurassic (Liassic) Gibraltar Limestone Formation, which form the main mass of the Rock of Gibraltar, are replaced by fine and medium crystalline dolomites. Replacement occurs as massive bedded or laminated dolomites in the lower 100 m of an ≈460‐m‐thick platform succession. The fine crystalline dolomite has δ18Ο values either similar to, or slightly higher than, those expected from Early Jurassic marine dolomite, and δ13C values together with 87Sr/86Sr ratios that overlap with sea‐water values for that time, indicating that the dolomitizing fluid was Early Jurassic sea water. Absence of massive evaporitic minerals and/or evaporite solution‐collapse breccias in these carbonate rocks indicates that the salinity of sea water during dolomitization was below that of gypsum precipitation. The occurrence of peritidal facies, a restricted microbiota and rare gypsum pseudomorphs are also consistent with penesaline conditions (salinity 72–199‰). The medium crystalline dolomite has some δ18Ο and δ13C values and 87Sr/86Sr ratios similar to those of Early Jurassic marine dolomites, which indicates that ambient sea water was again a likely dolomitizing fluid. However, the spread of δ18Ο, δ13C and 87Sr/86Sr values indicates that dolomitization occurred at slightly increased temperatures as a result of shallow (≈500 m) burial or that dolomitization was multistage. These data support the hypothesis that penesaline sea water can produce massive dolomitization in thick peritidal carbonates in the absence of evaporite precipitation. Taking earlier models into consideration, it appears that replacement dolomites can be produced by sea water or modified sea water with a wide range of salinities (normal, penesaline to hypersaline), provided that there is a driving mechanism for fluid migration. The Gibraltar dolomites confirm other reports of significant Early Jurassic dolomitization in the western Tethys carbonate platforms.  相似文献   

17.
Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. On the basis of petrographic and geochemical features, four matrix replacement dolomites and one type of cement dolomite are identified. Matrix replacement dolomites include (1) micritic dolomites (MD1); (2) fine–coarse euhedral floating dolomites (MD2); (3) fine–coarse euhedral dolomites (MD3); and (4) medium–very coarse anhedral mosaic dolomites (MD4). Dolomite cement occurs in minor amounts as coarse saddle dolomite cement (CD1) that mostly fills vugs and fractures in the matrix dolomites. These matrix dolomites have δ18O values of ?9.7‰ to ?3.0‰ VPDB (Vienna Pee Dee Belemnite); δ13C values of ?0.8‰ to 3.5‰ VPDB; 87Sr/86Sr ratios of 0.708516 to 0.709643; Sr concentrations of 50 to 257 ppm; Fe contents of 425 to 16878 ppm; and Mn contents of 28 to 144 ppm. Petrographic and geochemical data suggest that the matrix replacement dolomites were likely formed by normal and evaporative seawater in early stages prior to chemical compaction at shallow burial depths. Compared with matrix dolomites, dolomite cement yields lower δ18O values (?12.9‰ to ?9.1‰ VPDB); slightly lower δ13C values (?1.6‰–0.6‰ VPDB); higher 87Sr/86Sr ratios (0.709165–0.709764); and high homogenization temperature (Th) values (98°C–225°C) and salinities (6 wt%–24 wt% NaCl equivalent). Limited data from dolomite cement shows a low Sr concentration (58.6 ppm) and high Fe and Mn contents (1233 and 1250 ppm, respectively). These data imply that the dolomite cement precipitated from higher temperature hydrothermal salinity fluids. These fluids could be related to widespread igneous activities in the Tarim Basin occurring during Permian time when the host dolostones were deeply buried. Faults likely acted as important conduits that channeled dolomitizing fluids from the underlying strata into the basal carbonates, leading to intense dolomitization. Therefore, dolomitization, in the Keping Uplift area is likely related to evaporated seawater via seepage reflux in addition to burial processes and hydrothermal fluids.  相似文献   

18.
The paleohydrological and sedimentological characteristics of a playa lake in northern Kuwait (Arabian Gulf) are reconstructed using sedimentological, geochemical, and isotopic techniques. The sequence consists of up to 8 cycles of S-poor, alluvial sediments capped by a thin organic soil interbedded with gravity-fall calcrete sediments. The succession is locally derived from mainly Quaternary sediments and is regressive with upsection filling of the subsiding basin by cycles of sheetwash flow in response to climatic change. There is no natural, open-water lake water as indicated by low total organic carbon (TOC) data, but the presence of incised calcrete yardangs suggests that more extensive open-water conditions were operative in the past. Stable isotope (δ18O‰ and δ13C‰) values of the authigenic carbonates indicate the following three distinct processes: evaporation, meteoric fluid infiltration, and rapid per-descensum flow (rapid downward movement of water and playa sediment through pipes) through a porous, clastic sequence. Because evaporites are scarce, other factors besides evaporation action control chemical and isotopic compositions of the per-decensum lake fluids. Consequently, the isotopic composition cannot be interpreted exclusively as an indicator of salinity or evaporation ratio. The degassing of CO2 during groundwater discharge may explain the enriched carbon isotope values for the authigenic carbonates precipitated in the sediments. Hydrologically closed lake water bodies tend to show low negative carbonate oxygen and carbon isotopic signatures. Isotopically negative δ13C values imply a strong input of soil-zone carbon to the groundwater of the top 60 cm of the sediment. Lakes that are hydrologically closed and evaporate or equilibrate with atmospheric CO2 will tend to have low negative δ18O and δ13C values in the carbonates as reported by Talbot (Chem Geol: Isotope Geosci Sect 80(4):261–279, 1990). Biologically active lakes will tend toward lower δ13C of dissolved carbon due to the photosynthetic effects of 12C withdrawal as reported by Dunagan and Driese (J Sed Res 69:772–783, 1999). Increased biological activity during sedimentation may account for low carbon isotope values where plants were abundant, but in shrinkage-dominated systems (those of clay-rich soil subjecting to wet-dry conditions), carbon isotopes will be largely inherited from the calcretic limestones in the land extending landward of the coast and not influenced by coastal processes (known as hinterland), such as Umm Ar-Rimam depression. This basin does not fit the classic shallow playa-type basins of the Arabian Peninsula but rather the recharge playas of the southwestern USA.  相似文献   

19.
Carbonate δ13C values provide a useful monitor of changes in the global carbon cycle because they can record the burial ratio of organic to carbonate carbon. The most pronounced isotope excursions in the geologic record occur during the Neoproterozoic and have assumed a central role in the interpretation of biogeochemical events preceding the Ediacaran and Cambrian radiations. The most profound negative carbon isotope excursion is best recorded in the Ediacaran-aged Shuram Formation of Oman and has potential equivalents worldwide including the Wonoka Formation of South Australia and other sections in China, India, Siberia, Canada, Scandinavia and Brazil. All these excursions are less well understood than those in the Phanerozoic because of their unusual magnitude, long duration (> 1 Ma) and the difficulty in correlating Neoproterozoic basins to confirm independently that they do indeed record global change in the mixed ocean reservoir. Alternatively, these δ13C anomalies could reflect diachronous diagenetic processes. Currently none of these excursion are firmly time constrained and critical to their interpretation is a coherent reproducibility and synchroneity at the global ocean scale. Here we use available strontium isotope record as an independent chronometer to test the timing and synchroneity of the Shuram δ13C and its potential equivalents. The use of the 86Sr/87Sr ratio allows the reconstruction of a coherent, global δ13C record calibrated independently against time. The calibrated δ13C curve indicates that the Shuram negative anomaly spans several tens of millions of years and reaches values below −10‰. This carbon isotopic anomaly therefore represents a meaningful oceanographic event that fundamentally challenges our understanding of the carbon cycle as defined in the Phanerozoic.  相似文献   

20.
Summary The eastern Pyrenees host a large number of talc-chlorite mineralizations of Albian age (112–97 Ma), the largest of which occur in the St. Barthelemy massif. There talc develops by hydrothermal replacement of dolostones, which were formed by alteration of calcite marbles. This alteration is progressive. Unaltered calcite marbles have oxygen isotope composition of about 25‰ (V-SMOW). The δ18O values decrease down to values of 12‰ towards the contact with dolostones. This 18O depletion is accompanied by Mg enrichment, LREE fractionation and systematic shifts in the Sr isotope compositions, which vary from 87Sr/86Sr = 0.7087–0.7092 in unaltered calcite marbles to slightly more radiogenic compositions with 87Sr/86Sr = 0.7094 near dolomitization fronts. Dolostones have δ18O values (about 9‰) lower than calcitic marbles, higher REE content and more radiogenic Sr isotope composition (87Sr/86Sr = 0.7109 to 0.7130). Hydrothermal calcites have δ18O values close to dolostones but substantially lower δ13C values, down to −6.5‰, which is indicative of the contribution of organic matter. The REE content of hydrothermal calcite is one order of magnitude higher than that of calcitic marbles. Its highly radiogenic Sr composition with 87Sr/86Sr = 0.7091 to 0.7132 suggests that these elements were derived from silicate rocks, which experienced intense chlorite alteration during mineralization. The chemical and isotopic compositions of the calcite marbles, the dolostones and the hydrothermal calcites are interpreted as products of successive stages of fluid-rock interaction with increasing fluid-rock ratios. The hydrothermal quartz, calcite, talc and chlorite are in global mutual isotopic equilibrium. This allows the calculation of the O isotope composition of the infiltrating water at 300 °C, which is in the δ18O = 2–4.5‰ range. Hydrogen isotope compositions of talc and chlorite indicate a δD = 0 to −20‰. This water probably derived from seawater, with minor contribution of evolved continental water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号