首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Springfield (Western Kentucky No. 9) coal of the Carbondale Formation (Middle Pennsylvanian) in the Western Kentucky Coal Field of the Illinois Basin was sampled in eleven mines from one to three channels of three equal benches. The rank of the coal is high-volatile C bituminous in the Moorman Syncline and in the Henderson Basin and high-volatile B bituminous in the Webster Syncline. The percentage of total vitrinite macerals and of total vitrinite plus liptinite was found to decrease significantly from the bottom bench through to the top bench. In a comparison of the sources of variation within the set of maceral data it was found that the only significant variation in the vitrinite and vitrinite plus liptinite percentages was between the benches. Both the rank of the coal and the maceral percentages are varying in a predictable manner.  相似文献   

2.
The quantitative maceral study of the Queen seam from Mailaram coalfield of Godavari valley has displayed alternate coal bands rich in vitrinite/liptinite or inertinite. The random vitrinite reflectance (Ro max. %) of these coals, from top part ranges from 0.50 to 0.64%. However, the bottom part of the seam has indicated lower reflectance, between 0.49 and 0.52%. Thus, the Queen seam, in general, has attained high volatile bituminous C rank. The study indicates that the depositional site has been a slowly sinking basin that witnessed alternate dry (oxidizing) and wet (reducing) spells. This subsequently caused fluctuation in water table of the basin and the formation of oxic and anaoxic moor condition, where accumulated vegetal resource transformed into mixed and fusic coal types in due course of time. Being high in liptinite and vitrinite contents and low mineral matter, the Queen seam of Mailaram coalfield has high economic potential.  相似文献   

3.
The applicability of the reflectance micro-Fourier Transform infra-red spectroscopy (FTIR) technique for analyzing the distribution of functional groups in coal macerals is discussed. High quality of spectra, comparable to those obtained using other FTIR techniques (KBr pellet and transmission micro-FTIR), indicate this technique can be applied to characterizing functional groups under most conditions. The ease of sample preparation, the potential to analyze large intact samples, and ability to characterize organic matter in areas as small as 20 μm are the main advantages of reflectance micro-FTIR. The quantitative aspects of reflectance micro-FTIR require further study.The exaples from the coal seams of the Mist Mountain Formation, British Columbia show that at high volatile bituminous rank, reflectance micro-FTIR provides valuable information on the character of aliphatic chains of vitrinite and liptinite macerals. Because the character of aliphatic chains influences bond disassociation energies, such information is useful from a hydrocarbon generation viewpoint. In medium volatile bituminous coal liptinite macerals are usually not detectable but this technique can be used to study the degree of oxidation and reactivity of vitrinite and semifusinite.  相似文献   

4.
This paper presents geological settings, stratigraphy, coal quality, petrography, reserves and the tectonic history of the Mongolian coal-bearing basins. This is based on a synthesis of the data from nearly 50 coal deposits. The results of ultimate and proximate analyses, and calorific value, maceral composition and vitrinite reflectance data is given.The coal deposits of Mongolia tend to become younger from west to east and can be subdivided into two provinces, twelve basins, and three areas. Main controlling factor of coal rank is the age of the coal bearing sequences. Western Mongolian coal-bearing province contains mostly high rank bituminous coal in strata from Late Carboniferous. The basins in southern Mongolia and the western part of central Mongolia have low rank bituminous coal in strata from the Permian. The northern and central Mongolian basins contain mainly Jurassic subbituminous coal, whereas the Eastern Mongolian province has Lower Cretaceous lignite. The Carboniferous, Permian and Jurassic coal-bearing sequences were mainly deposited in foreland basins by compressional tectonic event, whereas Cretaceous coal measures were deposited in rift valleys caused by extensional tectonic event. Petrographically, Mongolian coals are classified as humic type. Vitrinite/huminite groups of Carboniferous, Permian, and Cretaceous coal range from 44.9% to 82.9%. Inertinite group varies between 15.0% and 53.3%, but liptinite group does not exceed more than 7%. Jurassic coals are characterized by high percentages of vitrinite (87.3% to 96.6%) and liptinite groups (up to 11.7%). This might be explained by paleoclimatic conditions. Mongolian coal reserves have been estimated to be 10.2 billion tons, of which a predominant portion is lignite in the Eastern Mongolian province and coking coal in the South Gobi basin.  相似文献   

5.
The study of coal succession from bore hole No. Q-448 of Yellendu area of the Godavari valley coalfield, Andhra Pradesh reveals that the coals of Queen seam are high volatile bituminous C in rank and have vitrinite reflectance (Ro max %) varying between of 0.52 and 0.62%. The petrographic constitution however, suggests that the depositional site appears to be a slowly sinking and tectonically controlled basin, having received continuous supply of vegetal matter rich resource at regular intervals. The formation of inertinite rich coal suggests, oxidising enviornment of deposition. The dominence of vitrinite and liptinite constituents in these coals postulates the existence of alternating cold and humid spells. The present study indicates that these coals originated under an alternate oxic and anoxic moor condition.  相似文献   

6.
A detailed macro- and micro-petrological investigation of 8 coal seam profiles of Eocene age from the sub-Himalayan zone of Jammu was undertaken in order to characterize them petrographically and to focus on their evolution. The quantitative data suggest that these coals are vitrinite rich, with low concentrations of inertinite and rare occurrences of liptinite. According to microlithotype concentration these coals may be characterized as vitrinite rich, with minor amounts of clarite, vitrinertite and trimacerite. The dominant minerals are clays, siderite and pyrite (occurring mostly as disseminations, cavity filling and in framboidal state). These coals are vitric in type, low volatile bituminous in rank and ashy in grade.The petrographic character and the presence of teleutospores suggest that, similar to other Tertiary coal deposits in the world, the angiosperm flora contributed chiefly to the development of coal facies in the area. The maceral and microlithotype composition shows that these coals originated from the low forest and undisturbed (in situ) peat in foreland basins under limno-telmatic depositional conditions. The water was brackish with regular influxes of fresh water.  相似文献   

7.
An attempt has been made to study the petro-chemical characteristics of some high sulphur sub-bituminous coal samples from Makum coalfield, Assam, India. The proximate and ultimate analyes were carried out and forms of sulphur were determined and their relationships with the Maceral constituents (vitrinite, liptinite, and inertinite) were investigated. The macerals (vitrinite+liptinite+inertinite) have significant relationships (R2>0.500) with volatile matter and carbon, whereas weak correlations were seen with rest of the physico-chemical characteristics of the coals. The study reveals that these coals are rich in vitrinites and sulphur and are aromatic in nature. These coals have good hydrocarbon potential.  相似文献   

8.
Forty-two bench samples of the Sewickley coal bed were collected from seven localities in the northern Appalachian Basin and analyzed palynologically, petrographically, and geochemically. The Sewickley coal bed occurs in the middle of the Pittsburgh Formation (Monongahela Group) and is of Late Pennsylvanian age. Palynologically, it is dominated by spores of tree ferns. Tree fern spore taxa in the Sewickley include Punctatisporites minutus, Punctatosporites minutus, Laevigatosporites minimus, Spinosporites exiguus, Apiculatasporites saetiger, and Thymospora spp. In fact, Punctatisporites minutus was so abundant that it had to be removed from the standard counts and recorded separately (average 73.2%). Even when Punctatisporites minutus is removed from the counts, tree fern spores still dominate a majority of the assemblages, averaging 64.4%. Among the tree fern spores identified in the Sewickley coal, Thymospora exhibits temporal and spatial abundance variation. Thymospora usually increases in abundance from the base to the top of the bed. Thymospora is also more abundant in columns that are thick (>100 cm) and low in ash yield (<12.0%, dry basis). Calamite spores (e.g. Calamospora spp., Laevigatosporites minor, and L. vulgaris) are the next most abundant plant group represented in the Sewickley coal, averaging 20%. Contributions from all other plant groups are minor in comparison.Petrographically, the Sewickley coal contains high percentages of vitrinite (average 82.3%, mineral matter-free (mmf)), with structured forms being more common than unstructured forms. In contrast, liptinite and inertinite macerals both occur in low percentages (average 7.7% and 10.0%, respectively). Geochemically, the Sewickley coal has a moderate ash yield (average 12.4%) and high total sulfur content (average 3.4%).Four localities contained a high ash or carbonaceous shale bench. These benches, which may be coeval, are strongly dominated by tree fern spores. Unlike the lower ash benches, they contain low percentages of vitrinite, which mainly occurs as unstructured vitrinite, and higher liptinite and inertinite contents.The accumulated data suggest that the Sewickley paleomire was probably a rheotrophic, planar mire that had a consistent water cover. This is supported by the high vitrinite contents, moderate ash yields, and high total sulfur contents. The high ash and carbonaceous shale benches probably represent either periods of dryness and substrate exposure, or flooding of the mire surface, the duration of which is unknown.  相似文献   

9.
The coal deposits of Meghalaya occur in the Lakadong Sandstone (25–250 m thick) of Eocene age. The coal-bearing formations are understood to have been deposited over platform areas in estuarine and lagoonal environments and subjected to recurrent marine transgressions and regressions during the Eocene period. There are three major groups of coalfields in Meghalaya, viz. Garo Hills (West Daranggiri and Siju Coalfields), Khasi Hills (Langrin and Mawlong–Shella Coalfields) and minor coalfields (Laitryngew, Cherrapunji and Bapung Coalfields). Pillar coal samples have been collected from 10 seams at 15 locations and have been subjected to a detailed petrographic examination for their characterization. An effort has been made to trace the path of their evolution based on coal petrography-based models. The quantitative petrographic analysis shows that these coals are vitrinite rich (45.0–92.9%, mean 73.4% mmf basis) with low concentration of inertinite (0.0–13.8%, mean 3.0% mmf basis), whereas the liptinite occurs in appreciable concentration (5.5–53.1%, mean 22.5% mmf basis). Further, these coals are rich in vitrite (51.6–100%, mean 78.3% mmf basis). The volatile matter (from 38.5% to 70.0%, d.a.f.) and vitrinite reflectance (Rom from 0.37% to 0.68%) characterize these coals, as per German (DIN) and North American classification, approximately as sub-bituminous ‘C' to high volatile ‘C' bituminous. The occurrence of teleutospore (single, double and triple celled) suggests that these coals have originated from a characteristic Tertiary flora. The maceral and microlithotype composition in the coal petrography-based depositional models suggest that the coals of Garo Hills were formed in reed to open water swamps in telmatic to limnic conditions. The coals of Khasi Hills were dominated by forest swamps and telmatic to limno-telmatic conditions. In addition, the occurrence of large-size resins suggests prolific growth of conifers in the swamps.  相似文献   

10.
This paper attempts to characterize the coals of Satpura Gondwana basin using a large number of pillar coal samples drawn from the working coal mines of Pench, Kanhan, and Tawa (Pathakhera) Valley Coalfields of this basin. This westernmost Gondwana basin of Peninsular India is graben/half-graben type and occupies an area of 12 000 km2 with sedimentary fills (>5000 m) ranging in age from Permian to Cretaceous. The Barakar Formation (Permian) is exclusively coal-bearing with a total coal reserve of nearly 2000 Mt. The results show that the coals of this basin are equally rich in inertinite (22.8–58.7%, 24.5–62.0% mmf basis) and vitrinite (24.4–52.4%, 24.4–56.0% mmf basis). The concentration of liptinite ranges from 8.8% to 23.2% (9.0–26.0% mmf basis). The dominant microlithotypes of these coals are inertite and vitrite with comparatively low concentrations of vitrinertite and clarite. The vitrinite reflectance (Rom% values) suggests that the Pench Valley (0.30–0.58%) coals are subbituminous C to high volatile C bituminous in rank, while the Kanhan and Tawa Valley coals (0.52–0.92%) are subbituminous A to high volatile A bituminous in rank. The localized enhancement of rank in the latter two basins has been attributed to the extraneous heat flow from deep-seated igneous intrusions in the basin. The microlithotype composition of these coals is suggestive of their evolution in limno-telmatic zones, under fluvio-lacustrine control with the development of upper deltaic and lower deltaic conditions near the fresh water lacustrines. The floral input is characteristic of forest swamps with intermittent floods, leading to the development of reed moor and open moor facies, particularly in the Pench Valley basin. The Gelification Index (GI) and Tissue Preservation Index (TPI) are suggestive of terrestrial origin with high tree density. Further, moderately high GI and exceedingly high telovitrinite based TPI along with high ash content, particularly for the coals of Kanhan and Tawa Valley Coalfields, are indicative of the recurrence of drier conditions in the forested swamps. Furthermore, lateral variation in TPI values is indicative of increase in the rate of subsidence vis-à-vis depth of the basin from east to west (Pench to Tawa Valley Coalfield). The Ground Water Index (GWI) suggests that these coals have evolved in mires under ombotrophic to mesotrophic hydrological conditions. The Vegetation Index (VI) values are indicative of the dominance of herbaceous plants in the formation of Pench Valley coals and comparatively better forest input in the formation of Kanhan and Tawa Valley coals.  相似文献   

11.
This work presents the results from evaluating the gases sorbed by coal samples extracted from the Paleocene Guasare Coalfield (Marcelina Formation, northwestern Venezuela), as well as by their distinct maceral concentrates. The aim of this work has been to obtain an initial experimental main value of the gas content per unit weight of high volatile bituminous A coal samples from the open-pit Paso Diablo mine. An additional goal was to study differences in the CH4 storage ability of the distinct maceral groups forming part of the coal matrix. Both the coal samples and the maceral concentrates were studied by thermogravimetric analysis (TGA) in order to determine the temperature to be used in subsequent experiments. On-line analyses of hydrocarbons (C1, C2, C3) and CO2 yielded gas concentrations, plus δ13C values. Thermogenic gas is prevalent in the Guasare coals with vitrinite reflectance (%Ro) values from 0.65% to 0.88%. The amount of gas retained in the coals and maceral concentrates was measured with a special device that allows determination of the volume of gas sorbed by a solid sample subjected to controlled thermal treatment. The average coalbed gas concentration obtained was 0.51 cm3/g. The following list of maceral concentrates shows the relative capacity for the volume of sorbed gas per unit weight: inertinite > low-density vitrinite > liptinite ≈ high-density vitrinite. It is concluded that the gas volumes retained in the distinct maceral concentrates are not controlled by porosity but rather by their microscopic morphology.  相似文献   

12.
Seams from the St. Rose and Chimmey Corner coalfields, Nova Scotia, Canada, were sampled and examined for petrographic and geochemical composition. Rank determinations indicate a rank of high volatile C-B bituminous. Seams show regular alternations of dull and bright microbanded lithotypes, with dull lithotypes predominant in the central portion of the main seam (No. 5 seam). Brighter lithotypes are dominated by vitrinite (>80%), with minor inertinite (avg. 12%) and minor liptinite. Duller lithotypes contain greater amounts of inertinite (up to 40%) and liptinite (primarily sporinite). Mineral matter consists of epigenetic pyrite, with lesser amounts of clay and quartz. Cabonates are common in the Chimney Corner seams. Elemental composition of the seams is similar to other Canadian coals and fall within world coal ranges, with the exception of high concentrations of Cl, Zn, Ni, Mo, Pb, Cu and As.Depositional environment of the seams as indicated by maceral composition, lithotypes and geology suggest a predominance of wet forest to reed moor conditions, in a fluvial-lacustrine setting. Periodic episodes of flooding and drying are indicated by lithotype, maceral and mineral variations.  相似文献   

13.
The coal seams of Sawang Colliery, East Bokaro Coalfields are bituminous to sub-bituminous in nature and categorized as high gaseous seams (degree II to degree III level). These seams have the potential for coal bed methane (CBM) and their maturity increases with increasing depth, as a result of enhanced pressure-temperature conditions in the underground. The vitrinite maceral group composition of the investigated coal seams ranges from 62.50–83.15%, whereas the inertinite content varies from 14.93–36.81%. The liptinite content varies from 0.66% to 3.09%. The maximum micro-pores are confined within the vitrinite group of macerals. The coal seams exhibit vitrinite reflectance values (Ro% calculated) from 0.94% (sample CG-97) to 1.21% (sample CG-119). Proximate analyses of the investigated coal samples reveal that the moisture content (M%) ranges from 1.28% to 2.98%, whereas, volatile matter (VM%) content is placed in the range of 27.01% to 33.86%. The ash content (A%) ranges from 10.92% to 30.01%. Fixed carbon (FC%) content varies from 41.53% to 55.93%. Fuel ratio variation shows a restricted range from 1.53 to 1.97. All the coal samples were found to be strongly caking and forming coke buttons. The present study is based on the adsorption isotherm experiments carried out under controlled P-T conditions for determination of actual gas adsorption capacity of the coal seams. This analysis shows that the maximum methane gas adsorbed in the coal sample CG-81 is 17 m3/t (Std. daf), at maximum pressure of 5.92 MPa and experimental temperature of 30°C. The calculated Langmuir regression parameters PL and VL range from 2.49 to 3.75 MPa and 22.94 to 26.88 m3/t (Std. daf), respectively.  相似文献   

14.
Mercury emissions from US coal-fired power plants will be regulated by the US Environmental Protection Agency (USEPA) before the end of the decade. Because of this, the control of Hg in coal is important. Control is fundamentally based on the knowledge of the amounts of Hg in mined, beneficiated, and as-fired coal. Eastern Kentucky coals, on a reserve district level, have Hg contents similar to the USA average for coal at mines. Individual coals show greater variation at the bench scale, with Hg enrichment common in the top bench, often associated with enhanced levels of pyritic sulfur. Some of the variation between parts of eastern Kentucky is also based on the position relative to major faults. The Pine Mountain thrust fault appears to be responsible for elemental enrichment, including Hg, in coals on the footwall side of the thrust.Eastern Kentucky coals shipped to power plants in 1999, the year the USEPA requested coal quality information on coal deliveries, indicate that coals shipped from the region have 0.09 ppm Hg, compared to 0.10 ppm for all delivered coals in the USA. On an equal energy basis, and given equal concentrations of Hg, the high volatile bituminous coals from eastern Kentucky would emit less Hg than lower rank coals from other USA regions.  相似文献   

15.
The Tertiary North East Indian coals, classified as sub-bituminous rank, have found less industrial application owing to their physico-chemical attributes. These coals are characterized by low ash (<15%), high volatile matter (>35%) and high sulphur (2.9-4.46%). Majority of the sulphur occurs in organic form affixed to the coal matrix owing to marine influence, is difficult to remove. The coal maceral analysis shows the dominance of vitrinite (>75%) with lesser amounts of liptinite and inertinite. Reflectance measurements (Rmax) of these sub-bituminous coals fall in the range of 0.57 to 0.65. In this study, the petrographical (maceral), thermal and other physico-chemical analyses of some low rank Tertiary sub-bituminous coals from north-east India were carried out to assess their potential for combustion, liquefaction and coal bed methane formation. The petrofactor, conversion (%) and oil yield (%), combustion efficiency of the coal samples were determined. The respective linear correlations of conversion (%) of the coals with their vitrinite contents, petrofactor and oil yield values have been discussed. The relative combustion efficiency of the coals was measured from the thermo gravimetric analysis (TGA) of coals. The influence of maceral composition upon gas adsorption characteristics of these high volatile coals showed the increase in methane adsorption with vitrinite enrichment. Both the maceral and mineral matter contents were observed to have important influence on the gas adsorption characteristics.  相似文献   

16.
The research work details the maceral organization of eleven coal seams intersected at a maximum depth of 446.45 m from Bhupalpalli area of the Mulug coal belt, in Warangal district of Godavari valley. Samples for petrographic study have been collected from ten coal seams intersected between 106 m and 299 m depth range from Bore-hole No. 618 which includes, IA and its underlying I, II, Index below II, IIIB, IIIA, III, IVA, IV and Index below IV respectively. However, the coal samples from the bottom most V seam were collected from Bore-hole No. 616 encountered between 445.65 m and 446.45 m. The study has revealed that V seam is marked by vitric type and seam IVA contains coal of fusic nature. The seams I, II, Index below II, IIIB, IIIA and IV, however, are represented by mixed type of coal. Whereas, the seams IA and III have the prevalence of vitric as well as mixed coal types. IA seam has witnessed alternate oxic and anoxic moor condition and also wet moor with intermittent moderate to high flooding. All the other seams have been deposited during alternate oxic and anoxic moor conditions. The coal seams of the study area have shown a wide range of variation in vitrinite reflectance (Ro mean %). The top of III, basal part of IV and the entire Index below IV have recorded high vitrinite reflectance (Ro mean %), which ranges between 0.66-0.67% thus they have reached high volatile bituminous B stage, all the other seams show lower reflectance and therefore have attained high volatile bituminous C rank.  相似文献   

17.
Cretaceous coals and coal measure sequences in the area around the Obi/Lafia part of the Middle Benue Trough of Nigeria were studied petrographically. The Turonian-Santonian Awgu Formation and the Maastrichtian Lafia Formation constitute the sedimentary successions in both outcrop and borehole profiles of this area.Maceral analyses of 32 coal samples from this area allow subdivision of the coal beds into three different coal facies: the vitrinite-fusinite coal facies, the trimaceritic coal facies and the shaly coal facies. In the vitrinite-fusinite coal facies, vitrinite constitutes, on average 67.3%, liptinite 4.2%, inertinite 17.1% and mineral matter 11.4%. The trimaceritic coal facies has 42.3% vitrinite, 22.4% liptinite, 23.8% inertinite and 11.5% mineral matter. In the shaly coal facies, vitrinite constitutes 29.9%. Liptinite, inertinite and mineral matter are 13.8%, 22.0% and 34.3%, respectively.Correlation of the distribution of microfossils in the interseam sediments with the tissue preservation, gelification, groundwater and vegetation indices of the coal facies indicates that the vitrinite-fusinite coal facies was deposited in wet forest swamp subenvironments along and within lagoons. The trimaceritic facies was deposited in limno-telmatic clastic marsh subenvironments in lower delta plains. The shaly coal facies shows characteristics of various subenvironments but generally tends to be more marine than the other two facies.  相似文献   

18.
The petrographic and palynologic compositions of coal seams of the acler formation (Upper Carboniferous, Westphalian A) from northwestern and southeastern part of the Lower Silesian Coal Basin (LSCB) were examined. Coals studied are highly volatile bituminous coal, where Ro ranges from 0.91% to 1.09%. Seam 430 from the northwestern part of the basin contains high vitrinite percentage with rather low inertinite and liptinite contents, while percentage of mineral matter is variable. This petrographic composition is associated either with a predominance of Lycospora in miospore assemblage, or with a miospore assemblage of mixed character. The abundance of Lycospora reflects vegetation composed of the arborescent lycopsids while the mixed miospore assemblage is connected with diverse palaeoplant communities, namely, arborescent lycopsids, calamites and ferns. Seams 409 and 412/413 from the southeastern part of the LSCB are rich in inertinite and liptinite, while the vitrinite content is moderate. Their characteristic feature is the occurrence of a diagnostic crassisporinite (densosporinite). Amount of the mineral components in these coals is very low. Densosporites and related crassicingulate genera are main components of these miospore assemblages and were produced by herbaceous and/or sub-arborescent lycopsids. These petrographic and palynologic features were the basis for distinguishing three maceral–miospore associations: an arborescent lycopsid and mixed associations, occurring in the seam 430 and a herbaceous and/or sub-arborescent lycopsid association which was recorded in seams 409 and 412/413. The first two assemblages are interpreted as having been deposited in a planar rheotrophic mire, whereas the herbaceous and/or sub-arborescent lycopsid association is thought to have developed in an ombrotrophic, domed mire.  相似文献   

19.
A large collection of well-characterized coals, documented in the Center for Applied Energy Research's (CAER) database, was used to estimate the CO2 content of maceral concentrates from Kentucky and Illinois high volatile bituminous coals. The data showed no correlation between CO2 versus coal ranks and between CO2 versus maceral content. Subsequently, eight sets of low-ash density-gradient centrifugation (DGC) maceral concentrates from five coal beds were examined, spanning in the high volatile rank range. Heating value was not determined on the concentrates, but instead was calculated using the Mott–Spooner formula. There was a good correlation between predicted CO2 and maceral content for the individual iso-rank (based on vitrinite reflectance, analyzed on whole (parent) coal) sets. In general, the predicted CO2 increases from liptinite-rich through vitrinite-rich to inertinite-rich concentrates (note: no “concentrates” are absolutely monomaceral).  相似文献   

20.
The maceral and microlithotype composition of selected coals has been investigated with respect to the grinding properties, specifically Hardgrove grindability index (HGI), of the coals. The study expands upon previous investigations of HGI and coal petrology by adding the dimension of the amount and composition of the microlithotypes. Coal samples, both lithotypes and whole channels, were selected from restricted rank ranges based on vitrinite maximum reflectance: 0.75–0.80% Rmax, 0.85–0.90% Rmax and 0.95–1.00% Rmax. In this manner, the influence of petrographic composition can be isolated from the influence of rank. Previous investigations of high volatile bituminous coals demonstrated that, while rank is an important factor in coal grindability, the amount of liptinite and liptinite-rich microlithotypes is a more influential factor. In this study, we provide further quantitative evidence for the influence of microlithotypes on HGI and, ultimately, on pulverizer performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号