首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 390 毫秒
1.
新疆北部积雪开始和结束时间的特征分析   总被引:5,自引:4,他引:1  
基于1961-2006年全疆32个测雪站的逐日积雪深度资料,分析了北疆区域积雪开始和结束时间的气候分布和时间变化特征.结果表明:积雪开始和结束时间存在明显的区域差异,这种差异主要是由地形高度变化引起的.积雪开始时间以12a和6a左右的周期振荡为主,积雪结束时间则以5a和8a左右的周期振荡为主.在不同海拔,积雪开始时间均呈偏晚趋势,积雪结束时间在较低海拔地区(≤1000m)呈偏晚趋势,而在较高海拔地区(1001~2000m)呈偏早趋势.积雪开始时间相对结束时间的趋势变化更为显著.积雪开始和结束时间和海拔关系密切,积雪开始时间随海拔升高而提前,积雪结束时间则随海拔升高而推迟.  相似文献   

2.
利用1978-2005年逐日中国积雪深度数据集,分析了我国积雪空间分布特征和季节时空分布特征,并运用趋势线分析方法和均方根差模拟了积雪深度和积雪日数的变化趋势及异常空间变化特征.结果表明:青藏高原东南、青藏高原西部和南部、新疆北部和东北山区为我国积雪空间分布四大高值区.近28 a来,积雪深度和积雪日数呈增加趋势,20世纪80年代青藏高原明显增加和明显减少趋势并存,90年代整体明显增加,2000-2005年整体基本不变.青藏高原中东部、新疆北部以及东北山区为积雪深度异常变化敏感区,而青藏高原西部则为积雪日数异常变化敏感区.  相似文献   

3.
1981-2010年青藏高原积雪日数时空变化特征分析   总被引:2,自引:0,他引:2  
全球气候变暖大背景下, 作为冰冻圈最为活跃和敏感因子, 青藏高原积雪变化备受国内外关注. 本文利用青藏高原(以下简称高原)1981-2010年地面观测积雪日数资料, 较系统地分析了近30年来高原积雪日数的时空变化特点. 主要结论如下: (1) 近30年内高原平均年积雪日数出现了非常显著的减少趋势, 减少幅度达4.81 d·(10a)-1, 其中冬季减幅最为明显, 为2.36 d·(10a)-1, 其次是春季(2.05 d·(10a)-1), 而夏季最少(0.21 d·(10a)-1); (2) 30年间, 积雪日数较少的年份多数出现在本世纪初10年内, 且2010年属于异常偏少年, 高原积雪日数在1997年左右发生了由多到少的气候突变; (3) 在空间上, 北部柴达木盆地及其附件区域部分气象台站观测的年积雪日数出现了不显著的增加趋势之外, 高原91.5%的气象站年积雪日数呈减少趋势, 且高寒内陆中东部和西南喜马拉雅山脉南麓等高原历年积雪日数高值区域减少最为明显; (4) 由于受到气象台站所在地理位置、地形地貌、地表类型、海拔高度、局地气候以及大气环流等综合影响, 高原平均年积雪日数的空间差异很大, 最多达146 d, 最少的则不足1 d, 平均仅为38 d, 其中高寒内陆中东部是积雪日数最长的区域, 而东南部海拔和纬度较低的干热河谷地区积雪日数最少.  相似文献   

4.
40余年来中国地区季节性积雪的空间分布及年际变化特征   总被引:19,自引:8,他引:11  
王澄海  王芝兰  崔洋 《冰川冻土》2009,31(2):301-310
利用全国700余个气象站的地面积雪观测资料,分析了中国地区季节性积雪年际的时空变化特征.结果表明:新疆北部,东北-内蒙古地区和青藏高原西南和南部地区为我国季节性积雪的3个高值区,也是积雪年际变化变化大的地区,也即为中国积雪年际异常变化的敏感区.综合积雪深度和积雪日数的变化趋势,可大致分为3种变化类型:1)增加和减小同步,主要在新疆天山以北、青藏高原东部地区、内蒙古高原中东部到大兴安岭以西的地区,减少区人体在内蒙古西部、黄土高原和长江中下游地区;2)积雪深度增加但积雪日数减少,主要在东北平原东部的部分地区,长江上游的部分地区;3)积雪深度减小而积雪口数增加,主要位于青藏高原中部的部分地区.中国地区积雪总体上呈现出平缓的增长趋势,积雪深度和积雪日数的年代际变化趋势在20世纪60年代呈现为稍有增加;70年代有所下降;80年代又增加;90年代又有略有增加的趋势.  相似文献   

5.
1961-2012年中国5类主要冰冻天气的气候及变化特征   总被引:1,自引:0,他引:1  
张志富  希爽  余予  范邵华  冯明农 《冰川冻土》2015,37(6):1435-1442
利用1960/1961-2011/2012年中国有冰冻天气观测且序列完整的1 600多站逐日冰冻现象数据, 研究了中国地区冰冻天气的时空气候变化特征. 结果表明: 年平均霜日数超过180天的地区主要分布在青藏高原东北部、天山、大-小兴安岭一带. 霜日数在我国中北部和青藏高原地区以增加趋势为主, 长江流域及其以南地区为减少趋势. 全国平均的霜日数为显著增长趋势, 超过0.05的显著性水平, 线性增长率达到2.03 d·(10a)-1, 霜日发生频率增强; 年平均积雪日数超过90 d的地区分布在青藏高原东北部、天山、大-小兴安岭一带. 积雪日数无明显时间变化趋势; 年平均结冰日数超过210 d的地区分布在青藏高原、大兴安岭及天山部分地区. 结冰日数全国范围以减少趋势为主. 全国平均结冰日数有明显的年代际变化趋势, 1980-1990年为结冰日数最多年份; 年平均雾凇日数超过30 d的地区主要在天山地区、大兴安岭地区以及四川峨眉山. 雾凇日数以减少趋势为主, 长江中下游部分地区有增加趋势. 全国平均雾凇日数有显著减少趋势, 超过0.01的显著性水平, 线性递减率达到0.60 d·(10a)-1; 年平均雨凇日数主要分布在南方云贵高原地区以及长江中下游地区的一些高山区域. 雨凇日数在华北平原地区以减少趋势为主, 长江中下游地区部分站点有增加趋势. 全国平均雨凇日数随时间有弱的增加趋势.  相似文献   

6.
利用MODIS逐日无云积雪产品与AMSR-E雪水当量产品进行融合, 获取了青藏高原500 m分辨率的高精度雪水当量产品, 通过研究青藏高原积雪时空动态变化特征, 分析了积雪覆盖日数、雪水当量以及总雪量的季节及年际变化. 结果表明: 青藏高原地区降雪主要集中在高海拔山区, 而高原腹地降雪较少, 降雪在空间上分布极为不均; 2003-2010年期间, 平均积雪日数呈显著减少趋势, 稳定积雪区面积在逐渐扩大, 常年积雪区面积在不断缩小. 与积雪日数时空变化相比, 雪水当量增加的区域与积雪日数增加的区域基本一致, 但喜马拉雅山脉在积雪日数减少的情况下雪水当量却在逐年增加, 表明该地区温度升高虽然导致部分常年积雪向季节性积雪过渡, 但降雪量却在增加. 总的积雪面积年际变化呈波动下降的趋势, 但趋势不显著, 且减少的比例很少. 最大积雪面积呈现波动上升后下降的趋势, 平均累积积雪总量呈明显的波动下降趋势, 年递减率为1.0×103 m3·a-1.  相似文献   

7.
河套及其邻近不稳定积雪区积雪日数时空变化规律研究   总被引:11,自引:8,他引:3  
惠英  李栋梁  王文 《冰川冻土》2009,31(3):446-456
利用河套及其邻近地区(30°~43°N,102°~120°E)240个地面气象观测站1951-2006年的积雪日数资料,采用EOF/REOF进行分解,分析了该区积雪的时空异常分布情况.结果表明:河套及其邻近地区积雪日数有3个主要的分布型,第1种类型为全区一致地偏多(偏少)型,相似年份有13 a;第2种类型为南多(少)北少(多)的南北相反分布型,相似年份有7 a;第3种类型为东多(少)西少(多)的东西相反分布型,相似年份有2 a.对年积雪日数进行REOF分解可将研究区域分为6个气候分区.利用Morlet小波分析表明,研究区域年积雪日数变化存在准18 a周期.在全球变暖的大背景下,研究区域的年积雪日数整体呈减少的趋势,减少最显著的在高纬度和高海拔地区.  相似文献   

8.
青藏高原是气候变化的敏感区,其积雪在区域水文循环和气候系统中具有重要作用。本文利用1980—2020年逐日无云积雪覆盖遥感数据,分析了该地区近40年的积雪面积、积雪覆盖日数的分布特征和变化趋势。结果表明:青藏高原地区积雪分布具有明显的空间分异和垂直地带性分布特征,阿姆河流域、印度河流域、塔里木盆地、恒河流域、怒江流域和雅鲁藏布江流域的高海拔山区是积雪广泛分布的地区。在水文年内,高原地区积雪覆盖率呈单峰变化,8月上旬积雪面积最小,1月中下旬达到最大,分别占高原总面积的5.2%和38.6%;40年间,高原地区平均积雪面积以3.9×104 km2·(10a)-1的趋势显著减少(P<0.05);积雪覆盖日数以0.47 d·a-1的趋势显著减少,高原71.4%的区域积雪覆盖日数呈减少趋势,呈显著减少的区域约占55.3%;17.1%的区域积雪覆盖日数呈显著增加趋势,且主要分布在5 200 m以上的高海拔山区,在海拔5 200~5 900 m之间的区域,积雪覆盖日数的增加率随海拔升高而增加。  相似文献   

9.
基于不同积雪日定义的积雪资料比较分析   总被引:11,自引:4,他引:7  
利用天气现象定义与积雪深度定义两种方法对全国884个台站的积雪日资料进行统计处理, 分别整理出每一台站各个积雪年的积雪日数、积雪深度、 初终雪间隔日数3个要素的两套数据, 并进行对比分析. 结果表明: 在全国东部大部分地区及新疆地区, 两种数据差别不大, 但在东北及青藏高原两套数据的差别较大. 在积雪日数的比较中, 两种数据在东北及青藏高原的差别基本都在10 d以上, 积雪深度的差别在0.4 cm以上, 初终雪间隔日数的差别以青藏高原最明显, 大部分地区的差别在15 d以上, 甚至有达到30 d以上的区域. 对青藏高原东北边坡代表站的积雪平均值进行M-K突变检验发现, 积雪深度定义的积雪日数与间隔日数减少趋势略大于天气现象定义统计的数值;而在积雪深度的比较中则相反. 两种定义的积雪间隔日数均在1987年出现突变.  相似文献   

10.
中国西部积雪日数类型划分及与卫星遥感结果的比较   总被引:12,自引:6,他引:6  
何丽烨  李栋梁 《冰川冻土》2011,33(2):237-245
根据中国105°E以西地区232个地面气象台站1951-2004年积雪日数观测资料和1980-2004年SMMR、SSM/I逐日雪深资料,划分中国西部积雪类型并分析其年代际变化,并对两种资料的结果进行了比较.结果表明:北疆、天山和青藏高原东部地区年平均积雪日数大于60 d,为稳定积雪区;南疆盆地中心、四川盆地和云南省南...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号