首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The solar wind modulates the flux of galactic cosmic rays impinging on Earth inversely with solar activity. Cosmic ray ionisation is the major source of air's electrical conductivity over the oceans and well above the continents. Differential solar modulation of the cosmic ray energy spectrum modifies the cosmic ray ionisation at different latitudes, varying the total atmospheric columnar conductance. This redistributes current flow in the global atmospheric electrical circuit, including the local vertical current density and the related surface potential gradient. Surface vertical current density and potential gradient measurements made independently at Lerwick Observatory, Shetland, from 1978 to 1985 are compared with modelled changes in cosmic ray ionisation arising from solar activity changes. Both the lower troposphere atmospheric electricity quantities are significantly increased at cosmic ray maximum (solar minimum), with a proportional change greater than that of the cosmic ray change.  相似文献   

2.
《Journal of Atmospheric and Solar》2000,62(17-18):1577-1586
Cosmic rays are considered as a possible link coupling solar activity to atmospheric processes. The most intense types of cosmic ray flux modulations are briefly described as a source of variability in the ion production rate in the atmosphere. The ions may affect atmospheric phenomena through (1) charge-dependent chemical reactions, (2) charge-dependent droplet and ice crystal formation, and (3) as their influence on the current flowing in the global electric circuit. However, the latter two have still to be proved as the causes of correlations between changes in the large-scale meteorological parameters and cosmic ray flux variations.  相似文献   

3.
We present results obtained at El Leoncito (CASLEO, San Juan, Argentina) with the CARPET charged particles detector installed in April 2006. The observed modulation of the cosmic ray flux is discussed as a function of its time variability and it is related to longer solar activity variations and to shorter variations during solar and geomagnetic transient activity. Short period (few minutes, few hours) cosmic ray modulation events are observed during rain time (precipitation) and significant variations of the atmospheric electric field. Complementary observations of the atmospheric electric field indicate that its time variations play an important role in the detected cosmic ray event.  相似文献   

4.
5.
The distinguished directions, dependent on the solar wind velocity and IMF line position, exist in the interplanetary space, which results in the nonuniform distribution of phases and the amplitude-phase interrelation of the first cosmic ray anisotropy harmonic. The characteristics of the first anisotropy harmonics, determined for each hour using the global survey method based on the worldwide neutron monitor network from 1957 to 2010, were used to study long-period variations in the cosmic ray anisotropy. The longitudinal distributions of the cosmic ray vector anisotropy and the interrelation between the anisotropy amplitude and phase have been obtained for each year in this time interval. The results evidently demonstrate the anisotropy variations caused by the solar magnetic and activity cycles. The anisotropy distributions at different solar wind velocities have also been studied. Periods with a specific cosmic ray anisotropy behavior are distinguished and discussed. The obtained cosmic ray anisotropy variations agree with the convection-diffusion anisotropy model.  相似文献   

6.
The observations of solar activity (average monthly values of the international sunspot numbers and areas, solar radioemission flux at a wavelength of 10.7 cm) and galactic cosmic ray (GCR) intensity (average monthly values of the count rate of an omnidirectional Geiger counter at a maximum of the transition curve in the regions of Moscow and Murmansk and differences between these values) have been studied. The main aim of the studies was to assess the possibility of using the series of GCR values as an additional type of instrumental observations to predict solar activity. The results of an analysis made it possible to assess the degree of interrelation between the studied time series and, thereby, to confirm that GCRs, together with the characteristics of sunspot formation and solar radioemission flux at a wavelength of 10.7 cm, can be used to predict solar activity. The development of the current solar cycle has been predicted. It is assumed that the duration of this cycle will exceed the average value.  相似文献   

7.
The effect of solar and galactic cosmic ray variations on the duration of elementary synoptic processes (ESPs) in the Atlantic-European sector of the Northern Hemisphere has been studied. It has been found that solar cosmic ray (SCR) bursts result in an increase in the duration of ESPs, which belong to the western and meridional forms of atmospheric circulation. Forbush decreases in galactic cosmic rays (GCRs) are accompanied by an increase in the duration of ESPs, which belong to the meridional atmospheric circulation form, and in a decrease in the duration of ESPs, which are related to the western and eastern circulation forms. It has been assumed that the observed variations in the ESP duration are caused by the effect of short-period cosmic ray variations on the intensity of cyclonic processes at middle and high latitudes, namely, the regeneration of cyclones near the southeastern coast of Greenland after SCR bursts and the development of blocking anticyclones over the northeastern Atlantic, Europe, and Scandinavia during GCR Forbush decreases.  相似文献   

8.
A joint analysis of paleodata on variations in cosmic ray fluxes, solar activity, geomagnetic field, and climate during the period from ~10000 to ~100000 years ago has been performed. Data on the time variations in the concentration of 14C and 10Be cosmogenic isotopes, which are generated in the Earth’s atmosphere under the action of cosmic ray fluxes modulated by solar activity and geomagnetic field variations, were used to detect variations in solar activity and the geomagnetic dipole. Information about climate changes has been obtained mainly from variations in the concentration of stable isotopes in the natural archives. A performed analysis indicates that the variations in cosmic ray fluxes under the action of variations in the geomagnetic field and solar activity are apparently one of the most effective natural factors of long-term climate changeability on a large time scale.  相似文献   

9.
Ionization of the earth’s atmosphere by solar and galactic cosmic rays   总被引:1,自引:0,他引:1  
A brief review of the research of atmospheric effects of cosmic rays is presented. Numerical models are discussed, that are capable to compute the cosmic ray induced ionization at a given location and time. Intercomparison of the models, as well as comparison with fragmentary direct measurements of the atmospheric ionization, validates their applicability for the entire atmosphere and the whole range of the solar activity level variations. The effect of sporadic solar energetic particle events is shown to be limited on the global scale, even for the most severe event, but can be very strong locally in polar regions, affecting the physical-chemical properties of the upper atmosphere, especially at high altitudes. Thus, a new methodology is presented to study cosmic ray induced ionization of the atmosphere in full detail using realistic numerical models calibrated to direct observations.  相似文献   

10.
This work represents a physical interpretation of cosmic ray modulation in the 22nd–24th solar cycles, including an interpretation of an unusual behavior of their intensity in the last minimum of the solar activity (2008–2010). In terms of the Parker modulation model, which deals with regularly measured heliospheric characteristics, it is shown that the determining factor of the increased intensity of the galactic cosmic rays in the minimum of the 24th solar cycle is an anomalous reduction of the heliospheric magnetic field strength during this time interval under the additional influence of the solar wind velocity and the tilt angle of the heliospheric current sheet. We have used in the calculations the dependence of the diffusion tensor on the rigidity in the form K ij R 2?μ with μ = 1.2 in the sector zones of the heliospheric magnetic field and with μ = 0.8 outside the sector zones, which leads to an additional amplification of the diffusion mechanism of cosmic ray modulation. The proposed approach allows us to describe quite satisfactorily the integral intensity of protons with an energy above 0.1 GeV and the energy spectra in the minima of the 22nd–24th solar cycles at the same value of the free parameter. The determining factor of the anomalously high level of the galactic cosmic ray intensity in the minimum of the 24th solar cycle is the significant reduction of the heliospheric magnetic field strength during this time interval. The forecast of the intensity level in the minimum of the 25th solar cycle is provided.  相似文献   

11.
We report on the recent studies on the long-term influence of cosmic rays on the Earth's environment. While on short time-scales solar activity is the driver for atmospheric changes suspected to be due to cosmic rays, for long time-scales the heliosphere, i.e. the circumsolar region occupied by the expanding part of the Sun's atmosphere, has to be considered. The heliosphere is identified as an important shield against interstellar influences and hazards. It has been demonstrated by quantitative modelling that a change of the interstellar medium surrounding the heliosphere as a result of the Sun's quasi-Keplerian motion around the galactic center triggers significant changes of planetary environments caused by enhanced fluxes of neutral atoms as well as by the increased cosmic ray fluxes. We give a compilation of recent space science results of interest to the atmospheric science community.  相似文献   

12.
We study the cosmic ray modulation during different solar cycles and polarity states of the heliosphere. We determine (a) time lag between the cosmic ray intensity and the solar variability, (b) area of the cosmic ray intensity versus solar activity modulation loops and (c) dependence of the cosmic ray intensity on the solar variability, during different solar activity cycles and polarity states of the heliosphere. We find differences during odd and even solar cycles. Differences during positive and negative polarity periods are also found. Consequences and implications of the observed differences during (i) odd and even cycles, and (ii) opposite polarity states (A<0 and A>0) are discussed in the light of the modulation models, including drift effects.  相似文献   

13.
Seasonal and year-to-year variability in the intensity of the 557.7 nm line of atomic oxygen atmospheric emission and its dependence on solar activity in the 23rd solar cycle is considered. The experimental data of the 557.7 nm emission observations in Eastern Siberia obtained in 1997–2008 and the NRLMSIS-00 atmospheric model are used. For particular considered characteristics of the 557.7 nm emission, differences between the experimental data and model approximations for the 23rd solar cycle are noted. Possible causes of the discovered discrepancies are discussed.  相似文献   

14.
The effect of the 11-year solar cycle on the response of the stratospheric geopotential height and temperature fields at 10 and 30 hPa in winter to solar activity oscillations with periods related to the period of the Sun’s rotation (27.2 days) is discussed, applying methods of statistical spectral analysis to daily data for the period from 1965 to 1996. Atmospheric responses for three periodicities — 27.2 days (period of the Sun’s rotation), 25.3 days (periodicity caused by the modulation of the 27.2 days oscillation by annual atmospheric variation), and 54.4 days (doubled period of the solar rotation) — are studied. A significant effect of the 11-year solar cycle on the atmospheric response to the 27.2 days solar periodicity has not been found. We explain it by a frequency shift of the response from the 27.2 days to the 25.3 days periodicity via amplitude modulation. For the 25.3 days oscillation, prominent differences between the maximum and minimum of the 11-year solar cycle have been found in the coherence between the 10.7 cm solar radio flux and the height/temperature fields: the relationships are stronger at solar maximum than at the minimum of the 11-year cycle. The same differences, but to a greater extent, are revealed for the oscillation with a period of 54.4 days. Coherence and amplitude estimates for this doubled solar rotation periodicity exhibit strong differences between extrema of the 11-year solar cycle. Phase estimates also demonstrate a clear difference between high and low solar activity: on the average, the delay of the atmospheric response after the solar signal is smaller at solar maximum than at solar minimum. Thus, we conclude that the mechanism of the influence of the 11-year solar cycle on the winter middle stratosphere can include both a direct effect of the frequency corresponding to the doubled solar rotation periodicity and an indirect effect of modulation of the intensity of the interaction between the solar 27.2 days oscillation and seasonal atmospheric variations.  相似文献   

15.
Modulation of galactic cosmic rays in cycles 19–23 of solar activity has been determined based on observations of their long-term variations on the ground and in the near-Earth space. The extreme values of long-term variations in cosmic rays, obtained from the data of continuous cosmic radiation monitoring on the ground and in the near-Earth space in the last five solar cycles, have been analyzed. The results are compared with the extrema in the characteristics of solar magnetic fields and the sunspot numbers in these cycles. The similarities and differences in cosmic ray modulation between different cycles are discussed.  相似文献   

16.
Possible reasons for the temporal variability of solar activity (SA) and galactic cosmic ray (GCR) effects on the tropospheric circulation are studied. Long-term variations in the amplitude and sign of SA/GCR effects are shown to be closely related to the state of the stratospheric circumpolar vortex. A ??60-year periodicity was detected the vortex strength which affects the evolution of the large-scale atmospheric circulation. It is shown that the correlation coefficients between pressure in the troposphere and SA/GCR characteristics change the sign in the periods of transformations of the large-scale circulation caused by changes in the state of the vortex. The obtained results suggest an important part of the circumpolar vortex in the mechanism of solar-climate links.  相似文献   

17.
The spatial and temporal structure of the effects of solar activity (SA) and galactic cosmic ray (GCR) flux variations on the lower atmosphere circulation has been studied based on NCEP/NCAR reanalysis archive for 1948–2006 and MSLP (Climatic Research Unit, UK) data for 1873–2000. It has been shown that the GCR effects on pressure variations are characterized by a strong latitudinal and regional dependence, which is determined by specific features of the tropospheric circulation in the studied regions. The distribution of the correlation coefficients for mean yearly values of atmospheric pressure with the GCR flux intensity is closely related to the position of the main climatological fronts. The periodic (∼60 years) changes in the correlation sign of the pressure at high and middle latitudes with Wolf numbers have been revealed. It has been suggested that the changes of the sign of SA/GCR effects on atmospheric pressure are caused by the changes of the macrocirculation epochs, which, in turn, may be related to large-scale processes on the Sun.  相似文献   

18.
The Global Atmospheric Electrical Circuit and Climate   总被引:2,自引:1,他引:2  
Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescales.  相似文献   

19.
The effects of atmospheric nonequilibrium in the generation of wave perturbations due to the solar radiation flux are studied. Equations of nonequilibrium thermodynamics are used to perform an assessment of the channels of solar energy transformation into the atmosphere for different altitudes. As a result of calculations of the dispersion relation for a nonequilibrium atmosphere, we consider how the flux of solar radiation changes the spectrum of natural atmospheric oscillations at different altitudes and for different solar activities. A qualitative relation between the results of wave spectra calculations and the data of ionosphere dynamics observations for different intensities of the solar radiation flux has been established.  相似文献   

20.
We present a compelling similarity of impulsive nitrate enhancements observed in polar ice from the northern and southern hemispheres. This analysis concentrates on the period 1940–1950, during which time the first four recorded solar cosmic ray ground-level enhancements (GLEs) occurred. GLEs are strong solar proton events. We show that large and sudden enhancements in the nitrate records from both hemispheres were observed within weeks following the recorded solar cosmic ray ground-level event. The observation of impulsive nitrate enhancements simultaneously in both hemispheres shortly after a large fluence solar proton event is strong evidence in support of a causal connection and argues strongly for rapid transport of atmospheric nitrates generated through the polar atmosphere by energetic solar proton events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号