首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A tropical squall line that passed over the ship array of the Global Atmospheric Research Programme’s Atlantic Tropical Experiment (GATE) on 9-10 August 1974 is analyzed. This squall line was similar to squall systems that passed over the GATE ship array on four other days. It began as a purely convective cloud line, then developed an associated stratiform cloud and precipitation area. The stratiform rain built up to a maxi-mum amount over a period of 8 h, then gradually diminished over a 6 h period. This stratiform rain is esti-mated to have accounted for 32% of the squall system’s total precipitation. As in other GATE squall lines, the upper-level cloud shield from which the stratiform rain fell, was advected slowly forward of the line during the system’s lifetime, the leading line of corrective clouds consisted of transient smaller-scale convective elements, which lent the line an irregular shape and pulsatory movement, and the stratiform portion of the system was characterized by the development of a mid-level mesoscale vortex similar to that seen in other GATE eases.  相似文献   

2.
The relationship between surface rain rate and depth of rain system(rain depth) over Southeast Asia is examined using 10-yr Tropical Rainfall Measuring Mission(TRMM) precipitation radar(PR) measurements.Results show that,in general,a large surface rain rate is associated with a deep precipitating system,but a deep rain system may not always correspond with a large surface rain rate.This feature has a regional characteristic.Convective rain develops more frequently over land than over the ocean,while stratiform rain can extend to higher altitudes over the ocean than over land.A light surface rain rate has the largest probability to occur,regardless of rain depth.A convective rain system is more likely associated with a stronger surface rain rate than a stratiform rain system.Results show that precipitation systems involve complex microphysical processes.Rain depth is just one characteristic of precipitation.A linear relationship between surface rain rate and rain depth does not exist.Both deep convective and stratiform rain systems have reflectivity profiles that can be divided into three sections.The main difference in their profiles is at higher levels,from 4.5 km up to 19 km.For shallow stratiform rain systems,a two-section reflectivity profile mainly exists,while for convective systems a three-section profile is more common.  相似文献   

3.
Using the numerical model of mixed convective-stratiform clouds(MCS)in the paper(Hong1997)and the averaged stratification of torrential rain processes,the evolution processes,interaction of the two kinds of clouds,structure and the precipitation features in the MCS toproduce heavy rain are simulated and studied,and the physical reasons of producing torrential rainare analysed.The results indicate that the stratiform cloud surrounding the convective cloudbecomes weakened and dissipates in the developing and enhancing of the convective cloud,and therainfall rate and water content in the stratiform cloud increase as the distance from the convectivecloud becomes larger.The numerical experiments find out that the stratiform cloud provides abenificial developing environment for the convective cloud,i.e.,the saturated environment and theconvergence field in the stratiform cloud help to lengthen the life cycle of the convective cloud,produce sustained rainfall with high intensity and intermittent precipitation with ultra-highintensity.These and the ice phase microphysical processes are the main factors for the torrentialrain formation and the MCS is a very effective precipitation system.  相似文献   

4.
The Bayes Decision (BD) method was used to distinguish the corrective and stratiform components of cloud sys-tems from GMS-4 satellite data. A technique originally developed by Adler and Negri (1988, hereafter abbreviated AN) was improved for estimating the convective and stratiform cloud precipitation areas and rates of cloud systems from GMS satellite imagery. It has been applied to a tropical cyclonic cloud cluster observed over east coast area of China on September 23, 1992, which brought about flood disaster in that region. Overlaid 6-hour surface rainfall ob-servations show that the rainfall areas and amounts match with results from improved AN technique. The successful application of the Adler and Negri’s technique to convective and stratiform clouds provides encouragement for the use of this method over large region of mid-latitude China where radar data are not fully covered.  相似文献   

5.
A long-lived and loosely organized squall line moved rapidly across Urumqi, the capital city of Xinjiang Uygur Autonomous Region of China on 26 June 2005, generating hail and strong winds. The squall line was observed by a dual Doppler radar system in a field experiment conducted in 2004 and 2005 by the Chinese Academy of Meteorological Sciences and the local meteorological bureau in northwestern China. The 3D wind fields within the squall line were retrieved through dual Doppler analyses and a variational Doppler radar analysis system (VDRAS). The formation and structure of the squall line as well as the genesis and evolution of embedded convective cells were investigated. During its life period, the squall line consisted of six storm cells extending about 100 km in length, and produced hail of about 25 mm in diameter and strong surface winds up to 11 m s-1. Radar observations revealed a broad region of stratiform rain in a meso-β cyclone, with the squall line located to the west of this. Two meso-γ scale vortices were found within the squall line. Compared to typical squall lines in moist regions, such as Guangdong Province and Shanghai, which tend to be around 300--400 km in length, have echo tops of 17--19 km, and produce maximum surface winds of about 25 m s-1 and temperature variations of about 8oC this squall line system had weaker maximum reflectivity (55 dBZ), a lower echo top (13 km) and smaller extension (about 100 km), relatively little stratiform rainfall preceding the convective line, and a similar moving speed and temperature variation at the surface.  相似文献   

6.
The diurnal cycles of precipitation over north China during summer in four strong rainfall years are examined using two-dimensional cloud-resolving modeling data. The diurnal signals are analyzed in terms of precipitation budget, fractional rainfall coverage and rain intensity over convective and stratiform rainfall area. The analysis of precipitation budget shows that the diurnal cycles of convective and stratiform precipitation mainly correspond respectively to those of water vapor convergence and transport of hydrometeor from convective rainfall area to stratiform rainfall area in 1964, 1994 and 1995, whereas they mainly correspond to those of water vapor convergence in 2013. The diurnal cycles of convective and stratiform precipitation are mainly associated with those of rain intensity in 1964, 1994 and 1995. In 2013, the diurnal cycle of stratiform precipitation is mainly related to that of fractional rainfall coverage over stratiform rainfall area. The multiple peaks of convective precipitation mainly correspond to the rain intensity maxima associated with strong water vapor convergence.  相似文献   

7.
Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.  相似文献   

8.
The structure of radar echo in stratiform cloud which was found in mei-yu frontal cloud system is generally inhomogeneous, especially in the structure of bright band echoes. The inhomogeneous structure of warm region in stratiform cloud and the shower feature of precipitation are closely related to the inhomogeneous structure of bright band and convective cells embedded in stratiform cloud.During Summer time the mei-yu cloud system is an important precipitating system in the southern part of China. To study its structure is of great significance for weather forecast and understanding the physical processes of cloud and precipitation. Therefore, we have observed mei-yu frontal cloud system by use of 711 type radar (3 cm) and airplane at Tunxi, Anhui Province since 1979. It was found that the structure of stratiform cloud, especially the structure of its warm region appears to be inhomogeneous1),2). This is a significant feature of cloud structure in mei-yu frontal cloud system. In this paper, we shall fu  相似文献   

9.
In this study,two convective-stratiform rainfall partitioning schemes are evaluated using precipitation and cloud statistics for different rainfall types categorized by applying surface rainfall equation on grid-scale data from a two-dimensional cloud-resolving model simulation.One scheme is based on surface rainfall intensity whereas the other is based on cloud content information.The model is largely forced by the large-scale vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The results reveal that over 40% of convective rainfall is associated with water vapor divergence,which primarily comes from the rainfall type with local atmospheric drying and water hydrometeor loss/convergence,caused by precipitation and evaporation of rain.More than 40% of stratiform rainfall is related to water vapor convergence,which largely comes from the rainfall type with local atmospheric moistening and hydrometeor loss/convergence attributable to water clouds through precipitation and the evaporation of rain and ice clouds through the conversion from ice hydrometeor to water hydrometeor.This implies that the separation methods based on surface rainfall and cloud content may not clearly separate convective and stratiform rainfall.  相似文献   

10.
In this research,a novel dual-model system,one-dimensional stratiform cold cloud model(1DSC) coupled to Weather Research and Forecast(WRF) model(WRF-1DSC for short),was employed to investigate the effects of cloud seeding by silver iodide(AgI) on rain enhancement.Driven by changing environmental conditions extracted from the WRF model,WRF-1DSC could be used to assess the cloud seeding effects quantitatively.The employment of WRF-1DSC,in place of a one-dimensional two-moment cloud seeding model applied to a three-dimensional mesoscale cloud-resolving model,was found to result in massive reduction of computational resources.Numerical experiments with WRF-1DSC were conducted for a real stratiform precipitation event observed on 4-5 July 2004,in Northeast China.A good agreement between the observed and modeled cloud system ensured the ability of WRF-1DSC to simulate the observed precipitation process efficiently.Sensitivity tests were performed with different seeding times,locations,and amounts.Experimental results showed that the optimum seeding effect(defined as the percentage of rain enhancement or rain enhancement rate) could be achieved through proper seeding at locations of maximum cloud water content when the updraft was strong.The optimum seeding effect was found to increase by 5.61% when the cloud was seeded at 5.5 km above ground level around 2300 UTC 4 July 2004,with the maximum AgI mixing ratio(X s) equaling 15 ng kg 1.On the other hand,for an overseeded cloud,a significant reduction occurred in the accumulated precipitation(-12.42%) as X s reached 100 ng kg 1.This study demonstrates the potential of WRF1DSC in determining the optimal AgI seeding strategy in practical operations of precipitation enhancement.  相似文献   

11.
安徽滁州夏季一次飑线过程的雨滴谱特征   总被引:1,自引:3,他引:1       下载免费PDF全文
选取2014年7月31日安徽滁州一次飑线过程,使用地基雨滴谱仪资料分析此次过程的雨滴谱特征。根据雷达回波和地面降水强度将这次降水过程划分为对流降水、过渡性降水和层云降水,并以10 mm·h-1为临界值将对流降水进一步划分为对流前沿降水、对流中心降水、对流后沿降水。结果表明:对流中心降水、过渡性降水、层云降水的质量加权直径均比较稳定,平均值分别为1.8 mm, 1.0 mm, 1.7 mm。对流降水的标准化截距相比层云降水更大。对流中心降水各粒径段雨滴数浓度均较高;层云降水小雨滴浓度较低,且有少量大雨滴;过渡性降水由小雨滴组成。当雨水含量相同时,层云降水的质量加权直径相比对流降水更大。当雨强相同时,层云降水的反射率因子相比对流中心降水更大。更为精细的降水类型划分可有效改善Z-I关系。  相似文献   

12.
利用风暴尺度、云分辨的数值模式ARPS模拟了 1993年2月 22日 TOGACOARE试验期间在赤道南太平洋观测到一次热带海洋飑线过程的发生发展过程,验证该模式的模拟热带对流系统的能力,并详细地分析了该次飑线的结构特征和动力学形成机制。通过数值敏感性试验研究了不同的云微物理过程对热带飑线的结构和发展演变过程的影响,所考虑的云微物理过程分为包含六种水相态的冰相过程和 Kessler暖雨过程。模拟结果表明,云分辨模式ARPS采用合适的物理过程可以较成功地模拟出热带飑线的三维结构及其演变过程。数值敏感性试验结果表明,在对流上升过程中,由于与冻结作用有关的冰相微物理过程能释放更多的潜热,这种潜热能产生垂直方向上的浮力梯度从而较明显地加强系统的深对流,有利于对流系统组织性的对流带的长时间维持;相比之下,暖雨过程中飑线的生命周期缩短,而系统倾斜结构更明显,层状云区的发展比较旺盛。  相似文献   

13.
Abstract

This paper presents the synoptic and meso‐scale aspects of the intense convective activity of 2 September 1974 in the Eastern Atlantic. Two main features were evident in the GATE B‐scale array: a broad convective band associated with the 700‐mb trough, and long and narrow lines of convection oriented SE‐NW. One of these lines, which moved across the B‐scale array and was penetrated by several aircraft, is described in detail. The structure of the cloud and precipitation fields, obtained from the analysis of satellite and radar data, indicates that intense precipitation occurred mainly at the leading edge of the line where new cells were continuously generating. Cross‐sections through the line (from boom, aircraft and tethered balloon data) show a gust front at the surface, a downdraft region associated with the rain area, and a wind shift in the lowest 300 m. The circulations around and within this line appear to be similar to a class of tropical squall‐lines studied at length by Zipser, (1977) and Houze (1977) with the important difference that the horizontal gradients of the dynamic and thermodynamic variables across the line were typically weaker.  相似文献   

14.
三维雷达反射率资料用于层状云和对流云的识别研究   总被引:8,自引:0,他引:8  
肖艳姣  刘黎平 《大气科学》2007,31(4):645-654
基于层状云和对流云的雷达反射率分布的三维形态特征,提出了识别层状云和对流云的6个候选识别参数,它们分别是:组合反射率及其水平梯度,反射率因子等于35 dBZ的回波顶高及其水平梯度、垂直累积液态水含量及其密度。通过分析候选识别参数分布图和选取的反射率垂直剖面图,用人机交互方式挑选“真实的”层状云和对流云区,统计这6个候选识别参数分布的概率密度特征;最后确定把分布概率密度更集中的组合反射率水平梯度、35 dBZ的回波顶高的水平梯度和垂直累积液态水含量密度作为识别参数,利用模糊逻辑法进行层状云和对流云的识别。用三个个例进行了识别试验,并把用模糊逻辑法识别的结果与用改进的巅峰值法识别的结果进行了比较,结果表明:用模糊逻辑法和改进的巅峰值法都能合理地识别大部分层状云和对流云;由于改进的巅峰值法只考虑了反射率分布的二维形态特征,它容易把对流核的外围识别成层状云,把厚实的层状云识别成对流云,而考虑了反射率分布的三维形态特征的模糊逻辑法在这两个方面有很大改善。  相似文献   

15.
利用双多普勒雷达研究强飑线过程的三维风场结构   总被引:13,自引:1,他引:12  
山东齐河CINRAD/SA和滨州CINRAD/SC雷达相距125.5 km,组成了双多普勒雷达观测网,利用2004年6月21-22日的一次强飑线过程的多普勒天气雷达探测资料,分析了双雷达观测资料的质量控制结果,并根据双多普勒雷达反演的三维风场研究了飑线的三维结构.结果表明,两部雷达探测的回波在水平位置上有2.0 km的差别,回波强度滨州雷达低5.2 dBz,回波结构也有一定的差别,径向速度在可比较的区域一致性很好.飑线不同位置的水平风场结构有很大不同,在飑线北端,低层是气旋性辐合风场,飑线南端是反气旋性辐合风场,而中部沿强对流窄带的前部是偏西和东南风的风场辐合.中高层云中风逐渐转为西北风,强对流回波带上空对应辐散风场;垂直于强对流带方向的风场垂直结构表明成熟阶段,强对流窄带前部的低层是入流气流,即东风气流,它与对流带后部的西风相遇后向上倾斜上升,在中高层向前流出形成飑前砧状云.减弱阶段,低层的西风分量增强并向前穿过强对流回波带,导致前面的入流气流风速减弱、下边界抬高,这一垂直风场结构和演变特征与美国中纬度飑线的结构基本一致.  相似文献   

16.
基于中国气象局龙门云物理野外科学试验基地2DVD(Two-Dimensional Video Disdrometer)雨滴谱观测资料, 分析广东地区2017年5月4日(槽前型飑线)和2017年8月22日(东风型飑线)两次不同飑线系统不同降水类型的雨滴谱特征。根据雨强和雷达反射率随时间变化将降水分成对流降水和层云降水, 同时以20 mm/h为阈值将对流降水划分为对流前沿、对流中心和对流后沿。结果表明, 两次飑线系统在不同降水时期的微物理特征参数变化有所差异。槽前型飑线过程中, 对流降水的粒子分布较为分散, 中等粒径的粒子比重较高, 且对流区前半部分粒子尺寸大于“大陆性”对流特征, 后半部分粒子尺寸小于“海洋性”对流特征; 层云降水的粒子分布较为集中, 小粒径粒子居多。而东风型飑线整个降水时期基本上是由高浓度中小粒径粒子组成, 降水粒子粒径分布较为集中, 对流降水粒子介于“海洋性”和“大陆性”对流区之间。   相似文献   

17.
中国东部云-降水对应关系的分析与模式评估   总被引:2,自引:1,他引:1  
为评估和改进模式中不同类型云与降水的对应关系,利用1998—2007年卫星-台站融合降水资料和国际卫星云气候计划的卫星观测云资料,采用诊断方法分析了中国东部季风区冬季层云、夏季对流云、层云与降水的水平分布及季节变化对应关系,并评估了BCC_AGCM模式的T42和T106分辨率版本对云-降水对应关系的模拟能力。观测资料分析结果表明,中国东部冬季云带和雨带都稳定少动,降水主要来自雨层云和高层云,南部沿海层云和层积云也对降水有贡献;夏季,中国东部表现为层积混合云降水特征,对流云带与降水带具有较好的对应关系,并具有一致的移动特征。对流降水主要来自深对流云和卷层云,深对流云云量和降水中心完全吻合,卷层云云带则表现出比深对流云主体和降水带偏北的现象;层云降水主要来自高层云和层积云。模式评估结果表明,中、低分辨率版本的BCC_AGCM模式均模拟出了冬季层云和稳定少动的降水带、夏季深对流云、卷层云和降水带的对应关系及随季风推进的移动特征。与T42模式版本相比,T106模式版本在夏季对流云云量的模拟及其与降水带的对应关系方面有所改善,说明改进的BCC_AGCM积云对流参数化方案与高分辨率模式网格更匹配,但冬季层云云量模拟误差变大,与降水带的对应关系变差,其原因值得进一步分析研究。  相似文献   

18.
Yafei YAN  Yimin LIU 《大气科学进展》2019,36(10):1089-1102
Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models.  相似文献   

19.
利用2019年5~10月布设于三江源地区隆宝高寒湿地的激光雨滴谱仪观测资料,分析高原山区夏秋季层状云降水和对流云降水雨滴微物理特征、平均雨滴谱分布、下落速度及Z-R关系。结果表明:三江源隆宝地区夏秋季对流云降水和层状云降水的雨滴微物理特征具有一定程度的相似性,对流云降水雨滴微物理参量略大于层状云降水;层状云降水和对流云降水雨滴谱均呈单峰型分布,雨滴数浓度随着降水粒子直径的增大呈先增加后减少的趋势,M-P分布和Gamma分布对隆宝地区层状云降水和对流云降水的拟合均较好,相对而言,Gamma分布拟合能更好地反映实际雨滴谱拟合线弯曲特性;隆宝地区不同尺度雨滴粒子下落速度不同,对流云降水粒子落速范围略大于相同尺度上的层状云降水,传统粒子下落速度拟合存在明显的低估现象,观测点的高海拔和较低空气密度是造成观测速度大于其下落速度的主要原因;三江源隆宝地区层状云降水Z-R关系为Z=418R1.90,对流云降水Z-R关系为Z=630R2.12,传统的雷达估测方法会低估该地区降水。  相似文献   

20.
利用局地分析和预报系统(Local Analysis and Prediction System, LAPS),结合多源资料,分析了2018年3月4日暖区强飑线成熟阶段的热动力结构和大风形成机制。结果表明:暖区内层结不稳定范围向东扩展和强的垂直风切变,驱动飑线组织化加强并向前移动和发展。成熟阶段飑线热动力结构呈现出两支强入流和冷池的典型特征,即前侧入流在低层(0~3.0 km)辐合上升,部分气流在高层翻转流向系统前侧,无后向流出;后侧中层(4.0~5.5 km)入流进入云体后部,在水凝物强烈相变降温作用下,密度增大转而下沉;下沉气流区降雨蒸发冷却增强了雷暴冷池。相比于飑线南段单一的对流线,北段弓形特点突出,后侧入流下降,加之存在尾随层状云,有更大的潜在冷却作用,促进气流加速下沉增强地面雷暴高压,最终导致更强的极端大风。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号