首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
热带西太平洋雨水的氢、氧同位素组成   总被引:7,自引:0,他引:7  
测定了西太平洋(7.5°~31°N,123°~132°E)1989年9~10月间雨水的δD和δ18O值,结果表明该区雨水的氢、氧同位素组成呈观与中、高纬度地区明显不同的分布特征.雨水的δ值与降水点的纬度没有直接的因果关系,而与季风流场明显相关.沿季风流动方向雨水的δ值逐渐减低,这可用降水云团的瑞利分馏过程解释.雨水δD和δ18O的分布大致反映了研究区季风流场的特征.  相似文献   

2.
简述海鲶科鱼类研究概况,并结合作者的调查研究列出了西太平洋海鲶科鱼类的主要种及其检索表;又描绘各个种的地理分布区,通过分析比较认为印度—西太平洋是该科鱼类的分布区;中日海域是该区的一个分布边缘;最后讨论了有关于印度—西太平洋海鲶科鱼类的起源与分化问题。  相似文献   

3.
分别于2014年10月和2015年6月对南海北部陆坡区进行了调查,研究了其溶存氧化亚氮(N_2O)的分布、产生并估算了其海-气交换通量。结果表明:秋季南海北部表层海水中溶解N_2O浓度为(8.19±0.79)nmol/L,饱和度为132.5%±13.4%;夏季表层海水中溶解N_2O浓度为(7.72±0.56)nmol/L,饱和度为135.5%±9.7%。夏季由于受到珠江冲淡水的影响,表层N_2O浓度随盐度升高呈降低趋势,秋季调查区域东北部受到穿过吕宋海峡的黑潮分支表层水的影响,N_2O浓度较低。结合文献资料,南海北部陆坡区表层N_2O浓度季节变化特征为春末秋季夏季,同一季节,南海陆坡区的N_2O浓度高于其他区域。温度是影响N_2O分布的重要因素,ΔN_2O与表观耗氧量(apparent oxygen utilization,AOU)和NO_3~ˉ的显著相关说明硝化作用是南海水体中N_2O产生的主要机制,由此估算硝化作用的N_2O产率分别为秋季0.033%,夏季0.035%。利用N2000和W2014公式分别估算了该区域秋季和夏季N_2O的海-气交换通量:秋季为1.81—23.81(11.11±6.52,平均值±SD,下同)(N2000)和1.73—24.38(11.30±6.81)(W2014),夏季为1.01—21.57(7.04±6.10)(N2000)和0.75—22.69(6.94±6.49)(W2014),单位均为μmol/(m~2·d)。初步估算出南海北部陆坡N_2O释放量为0.055Tg/a,约占全球海洋总释放量的0.39%,远高于其面积比,说明南海北部陆坡是N_2O释放的活跃海域,是大气N_2O的重要源。  相似文献   

4.
根据执行TOGA/COARE研究计划在热带西太平洋进行考察的结果,对调查海区海-气界面热量交换进行了分析。结果表明:冬季在热带扰动的影响下,调查海区海-气热量交换非常强烈,在风速较小、天气情况良好的情况下,调查海区海水得到的热量远大于失去的热量,调查海区海水对大气加热的变化与表层海水温度的变化并不一致,热带太平洋信风的加强对暖池的建立似乎是至关重要的。  相似文献   

5.
通过对大洋钻探(ODP)第130航次807站A孔井深12.54~16.38m沉积物中浮游和底栖有孔虫的稳定同位素δ18 O以及浮游有孔虫壳体的Mg/Ca测试,揭示了中更新世气候转型期(800~1 000kaBP)西太平洋暖池表层海水温度和氧同位素的变化。研究发现,中更新世时期ODP 807站的表层海水温度在25.1~30.9℃之间浮动,平均为28.4℃,接近现代暖池区实测温度值,冰期/间冰期之间的温度差值在1.5~5℃左右,与晚第四纪时的温差相近;同时,表层海水温度和底栖有孔虫氧同位素呈现同步变化的趋势,没有明显的超前或滞后的相位关系,区别于前人在暖池区的研究结果。间冰期时,表层海水温度上升伴随着温跃层变深、盐度降低,与现代西太平洋暖池La Ni珘na状态类似;冰期时则类似于El Ni珘no状态。中更新世气候转型期,西太平洋暖池的表层海水温度、温跃层深度变化受低纬热带驱动影响,都显示出强烈的岁差周期(16.8ka),而底层水氧同位素更多受到高纬的影响。  相似文献   

6.
南海海水中DO的平面、垂直分布以及海-气交换通量   总被引:2,自引:0,他引:2  
根据1998年7月和1999年1月南海两个航次的综合调查结果,对溶解氧(DO)的平面、垂直分布以及海-气交换通量进行了研究,结果表明:表层海水是DO浓度最高的含氧层,在次表层20~75 m处普遍存在着DO浓度的最大值(440μm o l/dm3),同时该层还出现了pH值的最大值和活性磷酸盐浓度的最小值,其位置在温跃层的下界附近。对夏季表层DO和活性磷酸盐进行相关性分析可知,其相关系数为-0.915(n=288),两者呈显著负相关;同时,DO和pH值垂向变化趋势相一致,相关系数为0.951(n=288),两者呈强烈正相关。通过计算,得到1998年夏季和1999年冬季海面溶解氧的海-气交换通量:夏季释放通量为-0.346~0.226 m o l/(m2.d);冬季为-0.234~3.123 m o l/(m2.d)。由于夏季南海海水生物的初级生产力相对要高于冬季,因此夏季溶解氧向上通量的区域较冬季广,同时,海-气交换的通量随区域的变化也有所不同。  相似文献   

7.
对西太平洋暖池核心区MD01—2386柱状样最上部5m进行了高分辨率的浮游有孔虫Globigerinoides ruber和Pulleniatina obliquiloculata的氧、碳稳定同位素分析,结合AMS^14C测年,研究表明其属于末次盛冰期-全新世的沉积。赤道西太平洋海区末次盛冰期以来δ^18O值显著降低,但有几次回返事件。表层浮游有孔虫G.ruber比次表层温跃层属种P.obliquiloculata对于环境变化的响应要快,但后者变化的幅度较大。这两个种的氧、碳同位素差值反映出温跃层深度自末次盛冰期以来逐渐加深,并存在周期性的回返事件,说明西太平洋暖池晚第四纪冰期旋回存在气候不稳定性。  相似文献   

8.
印尼海道的两度关闭与西太平洋暖池的形成和兴衰   总被引:4,自引:0,他引:4  
世界海洋表层水温最高的西太平洋暖池,是全球驱动大气环流的最大热源之一,也是全球热盐环流传输带的热源。新生代晚期印尼海道的关闭是暖池得以形成的基本条件。在印尼海道区划出了对印度尼西亚穿越流起阻挡作用的5道屏障,分析了5道屏障的形成过程和年代,据此提出了印尼海道两度关闭的模式。板块运动导致印尼海道关闭,有利于暖池发展,同时也存在不利的负面影响,本区构造运动对暖池的演变具有特有的双向复合控制作用;由此出发勾勒了近1000多万年来西太平洋暖池的形成和兴衰史:11~9MaBP为原始暖池形成期,9~6MaBP为暖池演化的第一衰退期,6MaBP以来为现代暖池的孕育和发展期,其间在1~0.2MaBP穿插着暖池演化的第二衰退期。上述暖池兴衰史的演化模式,得到了暖池区ODP1143站浮游有孔虫组合所反映的古海水温跃层深度的验证。  相似文献   

9.
王洋  方念乔 《海洋科学》2020,44(9):21-28
80 Ma以来的海水Os同位素标准曲线具有K/T(白垩纪/第三纪)界线低值、E/O(始新世/渐新世)界线低值和中新世“挠曲”3个特征形态,这可以解释为陨击事件或超基性岩风化事件造成的陆、幔源物质供给关系的变化。将海水Os同位素标准曲线与多金属结壳Os同位素组成曲线进行对比,根据形态和取值的贴合程度可以为结壳进行年代厘定。由于取样精度的限制和生长间断的广泛存在,仅以此3个特征比对曲线存在不确定性。本研究综合对比中、西太平洋6块结壳的Os同位素组成曲线,总结出了4种记录在结壳中的海水Os同位素曲线的特征规律:K/T界线之前的“早期异常(波动)”;E/O界线之后曲线上升过程中的“小停顿”;E/O界线之后曲线上升过程末尾的“异常偏高点”;“中新世‘挠曲’错后”至10 Ma左右。这些新的特征形态可作为年代控制点,使得结壳年代框架的厘定可以更准确可靠。这4种特征形态可以初步解释为地质历史时期海洋中、幔源物质的供应关系变化或是看作随着数据的积累而对标准曲线的细化和校正。  相似文献   

10.
姜涛  刘洪波  杨健 《海洋科学》2015,39(6):48-53
为了解长江口刀鲚(Coilia nasus)耳石中碳、氧稳定同位素的特征及其可能反映出的生态学意义,作者利用稳定同位素质谱分析技术,首次对长江口刀鲚幼鱼的耳石进行碳、氧稳定同位素的初步研究。结果显示,δ13C和δ18O分别为–12.1±1.8(‰VPDB)和–7.9±1.2(‰VPDB),总体上δ13C波动较大,而δ18O波动较小。基于个体的δ13C和δ18O散点分布可将本研究中的刀鲚归为两个组,可能起源于长江中两个不同孵化场水域的群体,其中δ18O显示出两组刀鲚所经历环境积温上的差异,反映出两者起源水域温度环境的不同;而δ13C的差异说明两组刀鲚在饵料组成上的有所差异。  相似文献   

11.
The composition and distribution of helium and oxygen isotopes in samples of seawater obtained at depths from surface to 300 m in the western Pacific(7°-26°N,122°-130°E) were discussed in detail.The results show that both δ18O and δ3He isoline extend eastward in the Pacific side of the Bashi Channel, which may suggest that the South China Sea water intrudes into the western Pacific by the Bashi Channel.  相似文献   

12.
An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration of sea water is found to be lower on the Pacific side than on the SCS side at depths between 700 and 1500 m (intermediate layer) , while the situation is reversed above 700 m (upper layer) and below 1 500 m (deep layer). The evidence suggests that water exits the SCS in the intermediate layer but enters it from the Pacific in both the upper and the deep layers, supporting the earlier speculation that the Luzon Strait transport has a sandwiched structure in the vertical. Within the SCS basin, the oxygen distribution indicates widespread vertical movement, including the upwelling in the intermediate layer and the downwelling in the deep layer.  相似文献   

13.
Satellite-tracked Lagrangian drifters are used to investigate the transport pathways of near-surface water around the Luzon Strait. Particular attention is paid to the intrusion of Pacific water into the South China Sea(SCS).Results from drifter observations suggest that except for the Kuroshio water, other Pacific water that carried by zonal jets, Ekman currents or eddies, can also intrude into the SCS. Motivated by this origin problem of the intrusion water, numerous simulated trajectories are constructed by altimeter-based velocities. Quantitative estimates from simulated trajectories suggest that the contribution of other Pacific water to the total intrusion flux in the Luzon Strait is approximately 13% on average, much smaller than that of Kuroshio water. Even so, over multiple years and many individual intrusion events, the contribution from other Pacific water is quite considerable. The interannual signal in the intrusion flux of these Pacific water might be closely related to variations in a wintertime westward current and eddy activities east of the Luzon Strait. We also found that Ekman drift could significantly contribute to the intrusion of Pacific water and could affect the spreading of intrusion water in the SCS. A case study of an eddy-related intrusion is presented to show the detailed processes of the intrusion of Pacific water and the eddy-Kuroshio interaction.  相似文献   

14.
Tropical cyclones (TCs) that affect the South China Sea (SCS) can be generated in either the SCS or the northwestern Pacific (NWP). Using satellite measurements, the Sverdrup theory and a 1.5-layer nonlinear reduced gravity model, the present paper investigates the effects of SCS and NWP TCs on the summer SCS upper layer ocean circulation. Both SCS and NWP TCs enhance the summer mean circulation pattern of the cyclonic gyre in the northern SCS and the anti-cyclonic gyre in the southern SCS. However, the effect of SCS TCs is much larger than that of NWP TCs, although the number of SCS TCs is smaller than NWP TCs. This is because the SCS TCs-induced wind stress curl pattern is favorable for enhancing the summer SCS mean circulation.  相似文献   

15.
通过对南海深海区硝酸氮、活性磷酸盐垂直分布的研究,分析了南海垂向耗氧和贫氧水体中硝酸氮、活性磷酸盐和表观耗氧量之间的关系.结果表明垂向上次表层、中层和深层水团中氧的消耗与营养盐再生比值均小于理论值,由此推断水体的混合为有机物再矿化提供氧的补充,但水团混合对水柱中硝酸氮、活性磷酸盐的影响不大,在次表层和中层水团中造成营养盐浓度变化主要是由于有机物再矿化的结果;在深层水团中有机物再矿化对水柱中营养盐梯度变化已不占主导地位.  相似文献   

16.
文章报道了一批新的海底底水温度(BWT)数据,其中南海(SCS)158个站位、东印度洋(EIO)30个站位及西太平洋(WPO)37个站位。基于这批新的BWT数据,获得南海和西太平洋海域底水温度与水深经验关系,可为地球物理和物理海洋提供准确、可靠的海底温度边界。这将有助于海底油气资源调查与评估。同时,这批实测数据表明:1)水深超过3500m的海域,其底水温度在南海约为2.47℃,比东印度洋(~1.34℃)和西太平洋(~1.60℃)稍微偏高。这与大洋传送带模式所预测的情况比较吻合。该模式认为:低温高盐的海水,从北大西洋格陵兰岛和冰岛附近海域下沉到深层,然后向南流动,再与南极洲周围海域的低温高盐海水一同向北进入印度洋和太平洋。而南海是一个相对比较封闭的热带边缘海,其内部海水与印度洋和菲律宾海交换有限,导致海水温度整体高于印度洋和太平洋。2)台西南盆地水深在2700~3000m的部分站位,其底水温高达约3.00℃,明显高于其周边同水深海域底水温度(平均值约为2.33℃)。这可能是台西南盆地海底水热活动导致的结果。3)在东印度洋和西太平洋水深超过4800m海域,底水温度随着水压增大稍有升高,其升高率分别为10.6mK·MPa~(-1)和12.0mK·MPa~(-1)。这与理论估算的深层底水绝热压力温度梯度范围较为吻合。这也意味着东印度洋和西太平洋深层底水,主要由绝热自压作用导致其温度随着深度的增大而升高。  相似文献   

17.
Cold deep water in the South China Sea   总被引:1,自引:0,他引:1  
Two deep channels that cut through the Luzon Strait facilitate deep (>2000 m) water exchange between the western Pacific Ocean and the South China Sea. Our observations rule out the northern channel as a major exchange conduit. Rather, the southern channel funnels deep water from the western Pacific to the South China Sea at the rate of 1.06 ± 0.44 Sv (1 Sv = 106 m3s−1). The residence time estimated from the observed inflow from the southern channel, about 30 to 71 years, is comparable to previous estimates. The observation-based estimate of upwelling velocity at 2000 m depth is (1.10 ± 0.33) × 10−6 ms−1, which is of the same order as Ekman pumping plus upwelling induced by the geostrophic current. Historical hydrographic observations suggest that the deep inflow is primarily a mixture of the Circumpolar Deep Water and Pacific Subarctic Intermediate Water. The cold inflow through the southern channel offsets about 40% of the net surface heat gain over the South China Sea. Balancing vertical advection with vertical diffusion, the estimated mean vertical eddy diffusivity of heat is about 1.21 × 10−3 m2s−1. The cold water inflow from the southern channel maintains the shallow thermocline, which in turn could breed internal wave activities in the South China Sea.  相似文献   

18.
1998年夏、冬季南海的水团及其与太平洋的水交换   总被引:3,自引:4,他引:3  
根据 1998年夏季和冬季 2个航次的实测资料 ,对南海的水团进行划分和分析 ,并利用1997年 7月和 12月的实测资料 ,对巴士海峡 (吕宋海峡 )和民都洛水道附近的温盐分布进行分析。1998年冬季的资料分析结果表明 ,可将南海外海水划分为 6个水团 ,即南海表层水团 (S)、南海次表层水团 (U)、南海次 -中层混合水团 (UI)、南海中层水团 (I)、南海深层水团 (D)和南海底盆水(B)。 1998年夏季还可在南海中鉴别出黑潮表层水团 (KS)和黑潮次表层水团 (KU) ,但在冬季观测期间无黑潮水越过 119.5°E经线进入南海 ;夏季有苏禄海水在 5 0~ 75 m层经民都洛水道侵入南海。然而 ,1997年夏季和冬季的资料分析表明 :夏、冬两季都有大洋水通过吕宋海峡北段进入南海 ,南段有南海水流入太平洋。这些现象可能与 1998年前后的厄尔尼诺有关。  相似文献   

19.
The outflow from the Sea of Okhotsk to the North Pacific is important in characterising the surface-to-intermediate-depth water masses in the Pacific Ocean. The two basins are separated by the Kuril Islands with numerous straits, among which the Bussol and the Kruzenshterna Straits are deeper than 1000 m. The physics governing the transport between the two basins is complicated, but when the semidiurnal and diurnal tides are subtracted, the observed density and velocity structures across the Bussol Strait suggest a significant contribution from geostrophic balance. Using a two-layer model with the interface at 27.5σ θ , part of the upper layer transport that is not driven by tides is estimated using two previously unexplored data sets: outputs from the Ocean General Circulation Model for Earth Simulator (OFES), and historical hydrographic data. The Pacific water flows into the Sea of Okhotsk through the northeastern straits. The greatest inflow is through the Kruzenshtern Strait, but the OFES results show that the contributions from other shallower straits are almost half of the Kruzenshtern inflow. Similarly, the outflow from the Sea of Okhotsk is through the southwestern straits of the Kuril Islands with the largest Bussol Strait contributing 60% of the total outflow. The OFES and hydrographic estimates agree that the exchange is strongest in February to March, with an inflow of about −6 to −12 Sv (negative indicates the flow from the North Pacific, 1 Sv = 106 m3s−1), and an outflow from the Sea of Okhotsk of about +8 to +9 Sv (positive indicates the flow from the Sea of Okhotsk), which is weakest in summer (−3 to +1 Sv through the northeastern straits and +0 to +3 Sv through the southwestern straits). The estimated seasonal variation is consistent with a simple analytic model driven by the difference in sea surface height between the two basins.  相似文献   

20.
Basic patterns of the reversal of the Kuroshio water toward the shelf, intrusion of the shelf mixed waterinto the Kuroshio and uplifting of the near-bottom nutrient-rich water into the upper layer by the pumping of the frontal eddy are analyzed on the basis of satellite infrared images and hydrologic, chemical and biological observations. Results show that the Kuroshio frontal eddies play a very important role in the exchange between the shelf water and the Kuroshio water. The estimation of the average volume transports for three frontal eddy events indicates that the shelf mixed water entrained by an eddy into Kuroshio is 0.44×10~6 m3/s and the reversal Kuroshio water onto the shelf region only 0.04×10~6 m3/s. Along the whole shelf edge, the volume transport of the shelf mixed water entrained by the eddies into the Kuroshio is 1.8×10~6 m3/s. The nutrient (NO3-N) flux pumped to the euphotic zone and input to the continental shelf through a column with 1 m wide is 974 μmol/(s·m) when there is frontal eddy and only 79 μmol/(s·m) in the case of no frontal eddy. Yearly nutrient (NO3-N) flux input to the shelf area caused by the frontal eddy is 1.7×10~5 t/a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号