首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China.  相似文献   

2.
The Puguang (普光) gas field is the largest gas field found in marine carbonate in China.The Puguang gas field experienced complicated evolution history from paleo-oil pool to gas pool.The purpose of this article is to reveal the evolution history of Puguang gas field through systematic study on the relationship between paleo-oil-water contact (POWC) and present-day gas-water contact (PGWC).POWC was recognized by observing the change of relative content of residual solid bitumen in the cores,and PGWC was observed using log and drilling stem test data.Two types of relationship between POWC and PGWC were observed in the Puguang gas field:POWC is above PGWC,and POWC is below PGWC.The former is normal as oil cracking may cause gas-water contact to move downward.The latter can be interpreted by lateral gas re-migration and re-accumulation caused by changes in structural configuration.The relationship between POWC and PGWC suggests that during oil charge,the southwestern and northwestern parts of the Puguang gas field were structurally lower than the northeastern and southeastern parts.Thrusting from Xuefengshan (雪峰山) since Yanshanian movement and from Dabashan (大巴山) since Himalayan movement resulted in the relative uplift of the southwestern and northwestern parts of the Puguang structure,which significantly changed the structural configuration.Based on the paleo-structure discussed in this article,the most probable migration directions of paleo-oil were from the northwest to the southeast and from the southwest to the northeast.Consequently,the evolution history of the Puguang gas field can be divided into three stages,namely,oil charging (200-170 Ma),cracking oil to gas (155-120 Ma),and gas pool adjustment (1200-0Ma).  相似文献   

3.
Solid bitumens were found throughout the carbonate reservoirs in the Puguang gas field,the largest gas field SO far found in marine carbonates in China,confirming that the Puguang gas field evolved from a paleo-oil reservoir.The fluid conduit system at the time of intensive oil accumulation in the field Was reconstructed,and petroleum migration pathways were modeled using a 3-D model and traced by geochemical parameters.The forward modeling and inversion tracing coincided with each other and both indicated that oils accumulated in the Puguang-Dongyuezhai structure originated from a generative kitchen to the northwest of the Puguang gas field.The deposition of organic-rich Upper Permian source rocks dominated by sapropelic organic matter in the Northeast Sichuan Basin, the development of fluid conduit system that was vertically near-source rock and laterally near-generative kitchen,and the focusing of oils originated from a large area of the generative kitchen,were the three requirements for the formation of the giant paleo-oil reservoir from which the giant Puguang gas field evolved.The Puguang gas field had experienced a three-stage evolution.The post-accumulation processes,especially the organic-inorganic interaction in the hydrocarbon-water-rock system,had not only profoundly altered the composition and characteristics of the petroleum fluids,but also obviously changed the physicochemical conditions in the reservoir and resulted in complicated precipitation and solution of carbonate minerals.  相似文献   

4.
Solid bitumens were found throughout the carbonate reservoirs in the Puguang gas field, the largest gas field so far found in marine carbonates in China, confirming that the Puguang gas field evolved from a paleo-oil reservoir. The fluid conduit system at the time of intensive oil accumulation in the field was reconstructed, and petroleum migration pathways were modeled using a 3-D model and traced by geochemical parameters. The forward modeling and inversion tracing coincided with each other and both indicated that oils accumulated in the Puguang-Dongyuezhai structure originated from a generative kitchen to the northwest of the Puguang gas field. The deposition of organic-rich Upper Permian source rocks dominated by sapropelic organic matter in the Northeast Sichuan Basin, the development of fluid conduit system that was vertically near-source rock and laterally near-generative kitchen, and the focusing of oils originated from a large area of the generative kitchen, were the three requirements for the formation of the giant paleo-oil reservoir from which the giant Puguang gas field evolved. The Puguang gas field had experienced a three-stage evolution. The post-accumulation processes, especially the organic-inorganic interaction in the hydrocarbon-water-rock system, had not only profoundly altered the composition and characteristics of the petroleum fluids, but also obviously changed the physicochemical conditions in the reservoir and resulted in complicated precipitation and solution of carbonate minerals.  相似文献   

5.
四川盆地普光大型气藏基本特征及成藏富集规律   总被引:121,自引:12,他引:121       下载免费PDF全文
普光气田是在四川盆地近期发现的规模最大、埋藏最深、资源丰度最高的气田,2005年初向国家储委上交飞仙关组探明储量1144×108m3,普光气田已初步落实的三级储量超过3500×108m3。普光气田下三叠统飞仙关组储层岩性以单一的白云岩为主,发育鲕粒白云岩、残余鲕粒白云岩等储层;储层物性以中孔中渗、高孔高渗储层为主,为优质储层。深埋藏条件下的孔隙形成可能与深部热水溶蚀作用有关。临近主力生烃凹陷、优质储层发育、适时的古隆起可能是普光大型气田形成的有利条件。  相似文献   

6.
四川盆地普光大型气田的发现与勘探启示   总被引:102,自引:3,他引:102  
普光气田是四川盆地近期发现的规模最大、埋藏最深、资源丰度最高的气田。在对普光气田的勘探及气藏基本特征研究的基础上,笔者总结了普光大型气田的发现与勘探启示,即成熟盆地的勘探需要有新思路;勘探技术是促进勘探发展的技术保障;大型富油气盆地油气成藏类型多,成藏条件复杂,立体勘探能有效降低勘探风险。  相似文献   

7.
普光气田是一个储量规模大、埋藏深、资源丰度高的整装海相气田。气田发现于2003年,至2005年底累计探明储量2510.7×108m3。普光背斜构造的气藏圈闭面积为45.6km2,主要含气层段为下三叠统飞仙关组及上二叠统长兴组礁滩相白云岩。烃源岩为下志留统龙马溪组和上二叠统龙潭组泥岩和页岩。论述了气田的发现和勘探过程及气藏的基本地质特征,总结了它对我国碳酸盐岩和成熟盆地油气勘探的启示。  相似文献   

8.
近年来在四川盆地川东北地区和塔里木盆地塔中地区发现了深部礁滩体优质储层,为我国深部海相碳酸盐岩油气勘探带来了希望。虽然这些礁滩体分布范围广,储层性质好,探明油气储量大,但是这两个盆地的礁滩体储层却存在较大的差异:川东北礁滩体储层比塔中礁滩体储层厚度大,孔渗性好,前者岩性为白云岩,而塔中则为灰岩。对比研究认为这些差异性受控于以下因素:高能沉积环境和海平面升降变化过程对储层的发育厚度和孔渗性能具有决定性的控制作用;膏岩一定程度上控制了白云岩化作用的发生,白云化过程改善了储层的孔渗性能;烃类的充注时间、储层的埋藏演化、以及烃类流体与岩石的相互作用等对次生孔、洞、缝的形成与保存具有明显的控制作用。由于川东北礁滩体发育时期海平面升降过程相对稳定,水体能量较高,有利于发育厚层礁滩体;白云岩化程度较高,重结晶现象比较普遍;油气充注较早且储层早期快速深埋,后期又处于抬升状态,利于次生孔隙的形成和保持,因此川东北深部礁滩体的储集性能明显优于塔中奥陶系深部礁滩体储层。  相似文献   

9.
Abstract: Based on the technology of balanced cross-section and physical simulation experiments associated with natural gas geochemical characteristic analyses, core and thin section observations, it has been proven that the Puguang gas reservoir has experienced two periods of diagenesis and restructuring since the Late Indo-Chinese epoch. One is the fluid transfer controlled by the tectonic movement and the other is geochemical reconstruction controlled by thermochemical sulfate reduction (TSR). The middle Yanshan epoch was the main period that the Puguang gas reservoir experienced the geochemical reaction of TSR. TSR can recreate the fluid in the gas reservoir, which makes the gas drying index higher and carbon isotope heavier because C2+ (ethane and heavy hydrocarbon) and 12C (carbon 12 isotope) is first consumed relative to CH4 and 13C? (carbon 13 isotope). However, the reciprocity between fluid regarding TSR (hydrocarbon, sulfureted hydrogen (H2S)?, and water) and reservoir rock results in reservoir rock erosion and anhydrite alteration, which increases porosity in reservoir, thereby improving the petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.  相似文献   

10.
A scientific exploration well(CK1) was drilled to expand the oil/gas production in the western Sichuan depression, SW, China. Seventy-three core samples and four natural gas samples from the Middle–Late Triassic strata were analyzed to determine the paleo-depositional setting and the abundance of organic matter(OM) and to evaluate the hydrocarbon-generation process and potential. This information was then used to identify the origin of the natural gas. The OM is characterized by medium n-alkanes(n C_(15)–n C_(19)), low pristane/phytane and terrigenous aquatic ratios(TAR), a carbon preference index(CPI) of ~1, regular steranes with C_(29) C_(27) C_(28), gammacerane/C_(30) hopane ratios of 0.15–0.32, and δD_(org) of-132‰ to-58‰, suggesting a marine algal/phytoplankton source with terrestrial input deposited in a reducing–transitional saline/marine sedimentary environment. Based on the TOC, HI index, and chloroform bitumen "A" the algalrich dolomites of the Leikoupo Formation are fair–good source rocks; the grey limestones of the Maantang Formation are fair source rocks; and the shales of the Xiaotangzi Formation are moderately good source rocks. In addition, maceral and carbon isotopes indicate that the kerogen of the Leikoupo and Maantang formations is type Ⅱ and that of the Xiaotangzi Formation is type Ⅱ–Ⅲ. The maturity parameters and the hopane and sterane isomerization suggest that the OM was advanced mature and produced wet–dry gases. One-dimensional modeling of the thermal-burial history suggests that hydrocarbon-generation occurred at 220–60 Ma. The gas components and C–H–He–Ar–Ne isotopes indicate that the oilassociated gases were generated in the Leikoupo and Maantang formations, and then, they mixed with gases from the Xiaotangzi Formation, which were probably contributed by the underlying Permian marine source rocks. Therefore, the deeply-buried Middle–Late Triassic marine source rocks in the western Sichuan depression and in similar basins have a great significant hydrocarbon potential.  相似文献   

11.
深层海相天然气成因与塔里木盆地古生界油裂解气资源   总被引:2,自引:1,他引:2  
我国海相地层时代老,演化程度偏高,高过成熟干酪根热降解生气潜力有限。针对深层海相天然气成因,提出了有机质接力成气机理,具体包含3方面涵义,生气母质的转换、生气时机的接替和气源灶的变迁。源内分散液态烃型气源灶继承了原生气源灶的特征,而源外分散和聚集型液态烃气源灶与原生气源灶相比,则发生了空间上的迁移。上述三部分液态烃在高—过成熟阶段均可裂解成气,但后者通常埋藏较前者浅,裂解成气的时机晚于前者,有利于晚期成藏。通过不同有机质丰度、不同岩性烃源岩生排烃模拟实验研究,建立了不同有机质丰度烃源岩的排油率图版,为源内、源外分散液态烃分配比例和数量研究提供了依据;从3个方面,生烃潜力评价指标S1、热成因沥青和储层的荧光特征,论证了塔里木盆地古生界地层中分散可溶有机质的数量、分布、裂解程度,肯定了塔里木盆地古生界海相烃源岩有机质接力成气的现实性;并用正演研究思路计算了塔里木盆地中下寒武统分散可溶有机质裂解成气数量。有机质接力成气机理的应用大大提高了塔里木盆地台盆区古生界找气的潜力和希望。  相似文献   

12.
普光气田是中国石化已成功开发的一个大型整装海相气田。对普光气田超深井钻井实践进行了全面的总结,将其划分为3个阶段:探索阶段、发展阶段和气体钻井阶段,机械钻速由探索阶段的0.99 m/h提高到发展阶段的1.70 m/h,再提高到气体钻井阶段的2.61 m/h,提速效果十分显著。并对加快中国石化超深井钻井技术的进步提出了一些建议。  相似文献   

13.
四川盆地东北部气田海相碳酸盐岩储层固体沥青研究   总被引:27,自引:2,他引:27       下载免费PDF全文
秦建中付小东  刘效曾 《地质学报》2007,81(8):1065-1071,I0001
川东北地区海相碳酸盐岩生物礁滩相储层中普遍存在着固体沥青.本文以普光气田上二叠统长兴组和下三叠统飞仙关组储层中固体沥青为研究对象,在显微镜下观察固体沥青的产状特征,测定固体沥青含量和计算固体沥青与储层孔隙的体积比率,分析固体沥青的成因及形成期次,推算古油藏的密度.普光气田飞仙关组固体沥青主要呈环边状附于鲕粒白云岩、残余鲕粒白云岩晶间溶孔,溶蚀孔壁,沥青含量在1.11%~5.73%之间,均值2.92%;长兴组生物礁储层固体沥青多呈团块状充填于各种溶蚀孔洞中,沥青含量0.31%~11.72%之间,均值3.57%.两套储层中的固体沥青含量都有随埋深而减少的趋势.飞仙关组储层中固体沥青与储层孔隙的体积比约为22%,长兴组为43%~56%.普光气田储层固体沥青为热演化成因并为两期形成,飞仙关储层固体沥青为轻质油古油藏裂解形成,长兴组储层固体沥青为稠油古油藏裂解形成.  相似文献   

14.
This paper is mainly concentrated on the geochemical characteristics and origin of gas of Kekeya field in the Tarim basin, NW China. This study shows that Permian mudstone is the main source rock of oil and gas. Based on the carbon isotopes of C1--C4, the carbon isotope of gas in Kekeya field is a little heavier than that in the typical marine-derived gas. The relationship between carbon isotopes of methane and ethane is coincident with Faber equation of gas derived from organic matter Ⅰ/Ⅱ. The majority of gas maturity is estimated, based on the formula, at 1.8%-2.2% besides K2 and K18 wells. In addition, the gas derived from 0.9%-1.2% Ro source rocks may also bemixture. ^40Ar/^36Ar and ^3He/^4He ratios from the gas samples also support the mixing process. Moreover, the gas in this region is mainly generated from more mature source rocks although the low mature gas exists.  相似文献   

15.
The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is mainly composed of methane (88.99%–98.01%), and the dryness coefficient varies between 0.908 and 0.997. The gas generally displays positive alkane carbon and hydrogen isotopic series. The geochemical characteristics and gas-source correlation indicate that the gases stored in the 5~(th) member of the Upper Triassic Xujiahe Formation are coal-type gases which are derived from source rocks in the stratum itself. The gases reservoired in the 4~(th) member of the Xujiahe Formation and Jurassic strata in the Xinchang gas field are also coal-type gases that are derived from source rocks in the 3~(rd) and 4~(th) members of the Xujiahe Formation. The gases reservoired in the 2~(nd) member of the Upper Triassic Xujiahe Formation are mainly coal-type gases with small amounts of oil-type gas that is derived from source rocks in the stratum itself. This is accompanied by a small amount of contribution brought by source rocks in the Upper Triassic Ma'antang and Xiaotangzi formations. The gases reservoired in the 4~(th) member of the Middle Triassic Leikoupo Formation are oil-type gases and are believed to be derived from the secondary cracking of oil which is most likely to be generated from the Upper Permian source rocks.  相似文献   

16.
Sichuan Basin is one of the structurally stable and gas-rich basins, being regarded as one of China's important natural gas industry bases. Puguang and Jiannan gas fields, located in the eastern Sichuan Basin are two large fields with gas derived from Permian and Lower Triassic marine carbonate. The genesis of marine carbonate natural gas was examined using carbon isotope composition and hydrocarbon components of natural gas samples from the eastern and western Sichuan Basin, and compared with that of acidolysis gas derived from marine source rock in the eastern Sichuan Basin. It is concluded that the natural gas in the marine carbonate reservoir originated from pyrolysis of the earlier crude oil and light-oil, and then mixed with kerogen pyrolysis gas of the Permian and Lower Silurian source rock.  相似文献   

17.
准噶尔盆地油气源、油气分布与油气系统   总被引:1,自引:0,他引:1  
准噶尔盆地是中国西部典型的多旋回叠合盆地,发育有石炭系、二叠系、三叠系、侏罗系、白垩系和古近系6套烃源岩,同时存在6大类原油和3大类天然气,广泛分布于盆地不同地区。西北缘原油总体相似,碳同位素组成轻(δ~(13)C-29‰),胡萝卜烷、类异戊二烯烷烃、三环萜烷、伽马蜡烷丰富,甾烷以C_(28)、C_(29)为主,基本没有重排甾烷,为第二类原油,来源于二叠系湖相烃源岩。腹部绝大多数原油与西北缘原油相似,但胡萝卜烷、类异戊二烯烷烃、伽马蜡烷等有差异,来源于不同凹陷的二叠系湖相烃源岩;少量原油碳同位素组成重(δ~(13)C-28‰~-26‰),Pr/Ph大于2.5,三环萜烷以C_(19)、C_(20)为主,藿烷丰富而伽马蜡烷极低,以C_(29)规则甾烷及重排甾烷为主,为第四类原油,来源于侏罗系煤系烃源岩。东部存在5种类型原油,第一类原油碳同位素组成特别重(δ~(13)C-26‰),来源于石炭系烃源岩;第二类原油与腹部地区绝大多数原油十分相似,来源于二叠系湖相烃源岩;第三类原油碳同位索组成轻,重排甾烷、Ts、C_(29)Ts及C_(30)重排藿烷异常丰富,来源于中上三叠统湖相烃源岩;第四类原油源于侏罗系煤系烃源岩;混合类原油为二叠系、三叠系、侏罗系原油的混合,各自贡献平均分别为20%、15%和65%。南缘存在4类典型原油,为第二、第四、第五和第六类原油,其中第二、第四类分别源于二叠系和侏罗系;第五类原油碳同位素组成轻(δ~(13)C-29‰)、Pr/Ph1.0、伽马蜡烷丰富且有两个异构体、Ts、C_(29)Ts、C_(30)重排藿烷、C_(27)~C_(29)异胆甾烷及C_(30)甲基甾烷丰富,来源于白垩系湖相烃源岩;第六类原油主要为中低成熟原油,碳同位素组成δ~(13)C~28‰~-26‰,C_(27)、C_(28)、C_(29)甾烷呈"V"型分布,甲藻甾烷异常丰富,来源于古近系湖相烃源岩。准噶尔盆地天然气有油型气、混合气和煤型气,前两类主要来源于二叠系湖相烃源岩和石炭系海相烃源岩,煤型气主要来源于石炭系和侏罗系煤系烃源岩。不同类型油气分布与不同时代烃源灶具有良好对应关系:石炭系油气主要分布于陆东-五彩湾;二叠系油气主要分布于西北缘、腹部与东部;三叠系原油仅分布于东部;侏罗系原油主要分布于东部与南部;白垩系原油仅分布于南缘中部;古近系原油仅分布于南缘西部。按照盆地构造特征及不同时代烃源灶与油气关系,将准噶尔盆地划分为西部、中部、东部、南部及乌伦古5个油气系统及15个子油气系统。  相似文献   

18.
庆深气田储层火山岩是由多期火山喷发叠置形成,分布在白垩系下统的营城组,以酸性喷发岩为主。火山岩离子探针(SHRIMP)锆石U-Pb年龄测定结果表明,储层火山岩年代集中在111~115 Ma,介于早白垩世晚期阿普第阶(Aptian)和阿尔布阶(Albian)的分界线附近。对比兴城与升平两个天然气产区的储层火山岩的形成年代,发现它们是同一时代的火山作用产物,并不是以前所认为的兴城地区火山岩属于营城组一段,升平地区火山岩属于营城组三段。这一结果对于松辽盆地火山岩气藏的勘探开发具有实际意义。  相似文献   

19.
INTRODUCTIONTheYinggehaiandQiongdongnanbasinsaretwoofthefourmajorTertiarybasinsdevelopedinthenortherncontinen-talshelfoftheSo...  相似文献   

20.
通过岩心观察、铸体薄片鉴定、扫描电镜以及物性测试分析,可知长兴组储集岩的主要岩石类型为晶粒白云岩、生屑白云岩、生物礁白云岩;主要储集空间类型为晶间孔、晶间溶孔、粒间溶孔及裂缝;喉道类型主要为片状、孔隙缩小型、缩颈型喉道。储层的发育主要受控于沉积相、白云岩化及溶蚀作用,储层主要发育于生物礁礁盖的潮坪及浅滩环境,主要分布于研究区东部长兴组上段的晚期浅滩和西部的礁盖中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号