首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Detailed facies analysis of a 350 m long core of upper Campanian–Maastrichtian chalk at Stevns Peninsula, eastern Denmark, shows that four mudstone and wackestone chalk facies account for close to 95% of the succession, and that bioturbated mudstone chalk alone accounts for nearly 55% of the sediment. Sedimentation took place in deep water, below the photic zone and storm‐wave base, and is characterized by decimetre to metre‐scale variations in facies and trace fossil assemblages indicating repeated shifts in depositional environment. Integration of facies with published data on sea‐surface temperature and accumulation rates suggests that sea‐surface temperature is the most important parameter in controlling stratification of the water column and thereby, indirectly, the observed variations in depositional facies. However, bioturbated mudstone chalk occurs in all stratigraphic levels independent of accumulation rates and sea temperatures and is interpreted to represent a very broad set of deep water environmental conditions with an ample supply of calcareous nannofossil debris and intense bioturbation. Longer term shifts in deposition are best expressed by distribution of clay, flint and bioturbated micro‐wackestone, bioturbated wackestone and laminated mudstone chalk facies, whereas the trace fossil assemblages appear less useful. The data set indicates overall shallowing over time with two distinctive events of clay influx to the basin during the late Campanian–earliest Maastrichtian and late Maastrichtian.  相似文献   

2.
The characteristic rhythmic bedding of the Upper Cretaceous pelagic carbonate sequences of the United Kingdom is interpreted as the result of orbital variations. A 23,000 year and a 41.500 year cycle have been recognised and can be used to confirm the dating of late Cretaceous events, especially in the Cenomanian.  相似文献   

3.
《China Geology》2021,4(2):274-287
As cyclical orbital movements of Earth, Milankovitch cycles can be recorded in sedimentary strata. The time they reflect can be used to accurately divide and compare strata. Milankovitch cycles recorded in strata enrich the stratigraphic theory, especially the theories of cycle stratigraphy, and thus they are widely used in geological survey engineering nowadays. This study explored the characteristics of the Milankovitch cycles recorded in the eastern depression of the North Yellow Sea Basin, highlighting their control over high-frequency stratigraphic sequences. The Eocene Milankovitch cycles in the depression were calculated based on the method proposed by J. Laskar, and their parameters primarily include eccentricity cycles of 125 ka and 99 ka, obliquity cycles of 51 ka and 39 ka, and precession cycles of 23 ka and 19 ka. Spectral analysis of gamma-ray (GR) and spontaneous potential (SP) log curves of the Eocene strata was carried out to divide and compare stratigraphic sequences, revealing that the spectral peaks correspond well to astronomical cycles. This indicates that the strata in the depression fully record Milankovitch cycles. Furthermore, there are long-, medium-, and short-term stratigraphic cycles in the eastern depression, with a thickness of 13.03–15.89 m, 3.70–5.21 m, and 2.17–2.94 m, respectively. The sedimentation rates of the Eocene strata were calculated to be 121.2–127.12 m/Ma accordingly. From the uplift to the center of the lacustrine basin along the slope in the eastern depression, both the sedimentation duration and the sediment thickness increase, while the sedimentation rate remains relatively stable. The Eocene strata can be divided into six stages of high-frequency sequences by continuous wavelet transformation, namely E6–E1 from bottom to top. The sedimentation duration and sedimentation rates of the sequences were calculated using spectral analysis with each of the sequences as a separate window. Moreover, the impacts of climate change on the sedimentary environment in the eastern depression were analyzed. It can be concluded that E6 was a lowstand system tract, E5 and E4 were lacustrine expansion system tracts, E3 was a highstand system tract, and E2 and E1 were lacustrine contraction system tracts. All these verify that Milankovitch cycles serve as an effective approach for the analysis of sedimentary cycles.  相似文献   

4.
Comparison of chalk on the Ontong Java Plateau and chalk in the Central North Sea indicates that, whereas pressure dissolution is controlled by effective burial stress, pore-filling cementation is controlled by temperature. Effective burial stress is caused by the weight of all overlying water and sediments as counteracted by the pressure in the pore fluid, so the regional overpressure in the Central North Sea is one reason why the two localities have different relationships between temperature and effective burial stress. In the chalk of the Ontong Java Plateau the onset of calcite-silicate pressure dissolution around 490 m below sea floor (bsf) corresponds to an interval of waning porosity-decline, and even the occurrence of proper stylolites from 830 m bsf is accompanied by only minor porosity reduction. Because opal is present, the pore-water is relatively rich in Si which through the formation of Ca–silica complexes causes an apparent super-saturation of Ca and retards cementation. The onset of massive pore-filling cementation at 1100 m bsf may be controlled by the temperature-dependent transition from opal-CT to quartz. In the stylolite-bearing chalk of two wells in the Gorm and Tyra fields, the nannofossil matrix shows recrystallization but only minor pore-filling cement, whereas microfossils are cemented. Cementation in Gorm and Tyra is thus partial and has apparently not been retarded by opal-controlled pore-water. A possible explanation is that, due to the relatively high temperature, silica has equilibrated to quartz before the onset of pressure dissolution and thus, in this case, dissolution and precipitation of calcite have no lag. This temperature versus effective burial stress induced difference in diagenetic history is of particular relevance when exploring for hydrocarbons in normally pressured chalk, while most experience has been accumulated in the over-pressured chalk of the central North Sea.  相似文献   

5.
Forty-seven samples from Upper Cretaceous sections penetrated by the Kachi-1 and Inga-1 wells in the South Yellow Sea Basin have been analysed for their spore and pollen content. Thirty-five species of 18 spore genera and 54 species of 28 pollen genera are documented. One new monotypic genus, Diporocolpopollenites, and its type species, D. kachiensis sp. nov., are erected, and Dilwynites Harris, 1965, and its type species, D. granulatus Harris, 1965, are emended. There are also three new combinations: Ephedripites eocaenicus (Selling, 1944), E. praeclarus (Chlonova, 1961), and Retitricolpites anguloluminosus (Anderson, 1960). Two palynological zones are erected: anAquilapollenites attenuatus Assemblage Zone, which encompasses deposits that are considered to be latest Campanian–Early Maastrichtian in age, and an Aquilapollenites eurypteronus Assemblage Zone for sections that have been dated as Late Maastrichtian. The assemblages are typical of the Yenisey-Amur Subprovince of the Aquilapollenites (floral) Province. Lowland floodplain to shallow, commonly mesotrophic, lacustrine environments of deposition are indicated. The climate was probably wet subtropical, with rainfall being somewhat higher during the Late Maastrichtian than through the latest Campanian–Early Maastrichtian.  相似文献   

6.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

7.
The Elk Butte Member of the Pierre Shale of southeast South Dakota and northeast Nebraska yields a late Maastrichtian cephalopod fauna of nautiloids, belemnites and ammonites of theFeletzkytes nebrascensisZone, best known from the near-shore facies of the Fox Hills Formation. ThenebrascensisZone is the highest distinct marine assemblage that can be recognised in the Western Interior, although ammonites occur as rarities high in the Lance Formation in Wyoming. Elements of the fauna occur in the Gulf Coast and Atlantic Seaboard, and extend into the highest Maastrichtian nannofossil Subzone CC26b, ofMicula prinsii, in Texas. These occurrences point to the existence of a southerly marine route for migration into and out of the northern Interior during the late late Maastrichtian. An analysis of Maastrichtian ammonite occurrences in West Greenland reveals no evidence for a marine link to the western Interior at this time, but rather indicates an open marine link to the North Atlantic region.The presence of upper upper Maastrichtian Pierre Shale in southeast South Dakota and northeast Nebraska, deposited in water depths that are conservatively estimated at 100-200 m, suggests that marine conditions (evidence for which has been removed by post-Cretceous erosion) may have extended well to the north of the shoreline position indicated in recent palaeogeographic reconstructions.  相似文献   

8.
Integrated ichnological and sedimentological analyses of core samples from the Upper Jurassic Ula Formation in the Norwegian Central Graben were undertaken to quantify the influence of storm waves on sedimentation. Two main facies associations (offshore and shoreface) that form a progradational coarsening upward succession are recognizable within the cores. The offshore deposits are characterized by massive to finely laminated mudstones and fine‐grained sandstones, within a moderately to highly bioturbated complex. The trace fossil assemblage is dominated by deposit‐feeding structures (for example, Planolites, Phycosiphon and Rosselia) and constitutes an expression of the proximal Zoophycos to distal Cruziana ichnofacies. The absence of grazing behaviours and dominance of deposit‐feeding ichnofossils is a reflection of the increased wave energies present (i.e. storm‐generated currents) within an offshore setting. The shoreface succession is represented by highly bioturbated fine‐grained to medium‐grained sandstones, with intervals of planar and trough cross‐bedding, thin pebble lags and bivalve‐rich shell layers. The ichnofossil assemblage, forming part of the Skolithos ichnofacies, is dominated by higher energy Ophiomorpha nodosa ichnofossils and lower energy Ophiomorpha irregulaire and Siphonichnus ichnofossils. The presence of sporadic wave‐generated sedimentary structures and variability in ichnofossil diversity and abundance attests to the influence of storm‐generated currents during deposition. As a whole, the Ula Formation strongly reflects the influence of storm deposits on sediment deposition; consequently, storm‐influenced shoreface most accurately describes these depositional environments.  相似文献   

9.
The first detailed stratigraphic succession of the Upper Cretaceous continental record from the Upper Aude Valley (southern France) is presented together with a magnetostratigraphic study. The combined stratigraphy and magnetostratigraphy of the Marnes rouges inférieures Fm (Lower Red Marls), constrained by biochronological markers such as charophyte occurrence and revised dinosaur eggshells, results in a succession of fluvial red beds dated from chron C32n to the top of chron C31r. It implies an earliest Maastrichtian age close to the C32n.1n-C31r reversal for the majority of the dinosaur sites including Bellevue. In contrast, the upper Maastrichtian is likely represented by a short interval within the lacustrine-palustrine Calcaires et argiles de Vignevieille Fm (Vignevieille Limestones), or it might even not be recorded. The proposed age indicates that the marine to continental transition, as a result of the Late Cretaceous transgression, took place earlier in the north Pyrenean basin than in the southern area.  相似文献   

10.
Sedimentary cyclic sequences deposited during the Late Palaeozoic Ice Age are widespread. Glacio‐eustatic control of the cyclic patterns is commonly accepted, and the durations of the cyclothems generally match the short‐ and long‐eccentricity Milankovitch orbital parameters. Nevertheless, geochemical fingerprints of orbital parameters are poorly documented in deep‐time sedimentary records. Here, we report on well‐exposed Bashkirian cyclothems of c. 123 ka and c. 400 ka durations from the Valdorria platform. The shorter‐term cyclothems can be grouped into longer‐term composite sequences that are consistent with generally accepted durations of c. 125 ka and c. 400 ka for Milankovitch eccentricity cycles. The stratigraphic pattern is mirrored by the isotope geochemical signals, which show distinct recurring trends. These trends are confirmed by statistical tests. Whereas intrinsic factors and/or subaerial exposure related to sea‐level lowstands might have truncated cycle patterns in tectonically stable basins, rapid subsidence of the Valdorria platform's foreland basin appears to have contributed to a faithful recording of cyclothems of different orders. The patterns and biostratigraphic constraint revealed in this study demonstrate the power of orbital forcing in imprinting sedimentary and geochemical signals in the rock record.  相似文献   

11.
Deformation bands are described in detail for the first time in carbonate rock from the subsurface and in chalk from the North Sea. The samples are from 2200 to 2300 m below sea level, in upper Maastrichtian to Danian chalk in the Oseberg Field. The deformation bands were investigated using thin-section analysis, SEM and computed tomography (CT). There is a reduction in porosity from 30 to 40% in the matrix to ca. 10% or less inside the deformation bands. They have apparent thicknesses ranging from less than 0.05–0.5 mm and have previously often been referred to as hairline fractures. Their narrowness is probably the reason why these features have not previously been recognised as deformation bands. The deformation bands in chalk are very thin compared to deformation bands in sandstone and carbonate grainstones which have mm to cm widths. This is suggested to be due to the fine grain size of the chalk matrix (2–10 μm), and it appears to be a positive correlation between grain-size and width of deformation bands. The deformation bands are suggested to have been formed as compactional shear bands during mechanical compaction, and also related to faulting.  相似文献   

12.
ANDREAS WETZEL 《Sedimentology》2009,56(7):1992-2009
Following the eruption of Mount Pinatubo on 15 June 1991, volcanic ash was transported westward to the South China Sea in an atmospheric plume, falling out and settling to the sea floor within days and forming an up to 10 cm thick layer on an area >400 000 km2. Immediately after deposition, surviving deep‐burrowing animals re‐opened their connection to the sea floor to obtain water for respiration and/or food take‐up. Later, small‐sized meiofauna and then macrofauna re‐colonized the sea floor, mixing newly deposited organic fluff with the underlying ash. Consequently, ash deposits thinner than 1 mm have not often been observed as a continuous layer when cored six years after the eruption, while ash about 2 mm thick is now patchily bioturbated. In areas covered by ash thicker than 5 mm, mixing by benthic animals is controlled mainly by the adaptation of the burrowing fauna to variations in grain‐size, the rate of background sedimentation, the availability of benthic food on and within the sediment and pore water oxygen levels. With respect to these factors, four provinces can be distinguished: (i) Along the Philippines margin run‐off from land fuels primary production that, in turn, leads to a high benthic food content. The benthic fauna is adapted to a variable grain‐size and rapid sedimentation. Therefore, mixing is intense and the preservation potential of the ash layer is low. (ii) In areas affected by deposition of hyperpycnites and turbidites, i.e. in canyons in front of river mouths and in the Manila Trench, the ash layer is preserved due to rapid burial. (iii) The area to the west to about 116° E receives low amounts of benthic food, benthic mixing is less intense and the preservation potential of the ash is high. (iv) The central South China Sea, where the ash is thinner than 3 cm, is affected by intense wind mixing and upwelling and the benthic food content is high; thus, the chance that the ash will be preserved as a sharp‐based layer is low. Consequently, the style of ash preservation has palaeo‐environmental significance. Older buried and burrowed event layers provide further information to elucidate the fate of the 1991 Pinatubo ash layer; in general their appearance fits with observations in the Recent.  相似文献   

13.
混合沉积是指碳酸盐岩与陆源硅质碎屑在沉积上的混合,它是一种沉积机理特殊而又具有重要意义的沉积现象。混合沉积分为4种沉积模式:间断混合,相混合,原地混合和源地混合。通过对南海北部陆坡的研究,识别了其中中新世碳酸盐岩台地、碳酸盐岩斜坡和混合沉积,并对其平面分布进行了研究。结合前人研究,参考区域构造背景,通过地震资料的解释认为研究区的混合沉积属于源地混合沉积,并建立了适合研究区的混合沉积模式。研究区陆源硅质碎屑分别来自北部华南隆起以及西南部中南半岛,而碳酸盐岩碎屑则来自神狐隆起、西沙隆起以及南部的广乐隆起。研究区对混合沉积的影响因素包括构造作用、物源、再改造和沉积作用、海平面升降变化以及气候,对研究区混合沉积起主要作用的是构造作用及海平面升降变化。  相似文献   

14.
颜余真 《第四纪研究》2023,43(6):1722-1729

米兰科维奇理论认为地球轨道的天文周期调控北半球高纬地区夏季接收太阳辐射的强度,进而驱动第四纪地表的冰期-间冰期旋回。20世纪60年代以来,米兰科维奇理论预测的天文周期在第四纪海洋沉积物中得到了印证,看似证明了该理论的正确性。但大量新记录的出现给经典米兰科维奇理论带来了挑战,早更新世的“4万年周期问题”——即为何早更新世的冰期旋回中没有岁差周期——就是其中之一。目前对于该问题的两种回答包括:1)南、北半球冰盖分别受当地夏季太阳辐射强度的驱动;2)早更新世冰期受北半球夏季累积太阳辐射量驱动。不难发现,这两种假说均默认了米兰科维奇理论中“高纬地区是驱动地球气候演变关键区域”的假设,争议的点仅在于岁差是否影响了高纬度冰盖的变化,这或许是“4万年周期问题”至今悬而未决的原因。未来要解决早更新世乃至整个第四纪冰期旋回的问题,或许目光要跳出高纬地区,考虑低纬过程以及高-低纬之间的相互作用。

  相似文献   

15.
The Upper Cretaceous (Campanian–Maastrichtian) Taveiro and Aveiro Formations belong to the northern sector of the Lusitanian basin (Portuguese western margin). The Taveiro Formation was deposited in alluvial fans, including mud flow beds, lakes and sinuous rivers. The Aveiro Formation was deposited in a flat region with low hydrodynamics channels, with the formation of a barrier island-tidal system. The reconstruction of this sedimentary basin may be difficult due to its complex architecture. This work aims a methodology to be used in the reconstruction of Cretaceous sedimentary environments of the Lusitanian basin, through the establishment of geochemical patterns of different size fractions of those deposits. Chemical analysis was performed by instrumental neutron activation analysis (INAA), and the mineralogical composition obtained by X-ray diffractometry (XRD). The whole rock and different size fractions (? ≥ 125 μm, 63–125 μm, 20–63 μm, 2–20 μm and ? < 2 μm) of selected samples were studied aiming the rare earth elements (REE) and other trace elements distribution and its correlation with the grain size and mineralogy.The results obtained for the studied Cretaceous sediments showed that REE patterns and other trace elements distribution in the different size fractions may be used as a tool to differentiate deposits within and between sedimentary formations. Within the Taveiro Formation, REE are concentrated in the silt fractions (20–63 μm and 2–20 μm) of the Reveles deposit, and in the clay size fraction of S. Pedro deposit, which is richer in kaolinite. The 1st transition elements, particularly Zn, are correlated with the presence of smectite in the clay fraction of Reveles deposit. In the sand and silt size fractions (>2 μm) of samples from Taveiro Formation correlations were found between: Ga and 1st transition elements, and phyllosilicates; Cs and mica; and Rb and Ba, and K–feldspars.The Bustos deposit (Aveiro Formation) samples are very fine-grained and with a high proportion of the fine silt fraction where REE are concentrated, especially the heavy ones. Incorporation of MREE, Co and U in carbonates of the coarser fraction appears to occur. The abundances of the 1st transition elements, Ga and As, are correlated with phyllosilicates.Significant differences were found in the trace elements patterns of the various analysed size fractions of the Lusitanian basin of Cretaceous sediments, between and even within formations, which can be used as a methodological approach for a fine paleogeographic reconstruction.  相似文献   

16.
Abstract: The temporal distribution of the diagnostic biofabrics in the Lower and Middle Ordovician in North China distinctly illustrates that the sedimentary systems on the paleoplate have been changed markedly as consequences of the Great Ordovician Biodiversification Event (GOBE). The pre-GOBE sedimentary systems deposited in Tremadoc display widespread microbialite and flat-pebble conglomerates, and a less extent of bioturbation. Through the transitional period of early Floian, the sedimentary systems in the rest of the Early and Mid- Ordovician change to GOBE type and are characterized by intensive bioturbation and vanishing flat-pebble conglomerates and subtidal microbial sediments. The irreversible changes in sedimentary systems in North China are linked to the GOBE, which conduced the increase in infaunal tiering, the expansion of infaunal ecospace, and the appearance of new burrowers related to the development of the Paleozoic Evolutionary Fauna during the Ordovician biodiversification. Thus, changes in sedimentary systems during the pivotal period of the GOBE were consequences of a steep diversification of benthic faunas rather than the GOBE’s environmental background.  相似文献   

17.
The Carnian Raibl group of the Eastern Alps consists of three 50–100 m thick, alternating carbonate and clastic third-order cycles, each of which can be traced for hundreds of kilometers. Tectono-eustatic sea-level fluctuations of a few tens of metres, spanning a few millions of years, are the driving mechanism of this cyclicity. The carbonate intervals represent restricted marginal marine, tidal and evaporitic environments. The clastic intervals represent inner and outer shelf facies, and are related to the fluviatile “Schilfsandstein” of the Germanic facies belt. In the Raibl group, contrary to other carbonate/clastic depositional settings, relative sea-level lowstands are dominated by carbonate production, and highstands are dominated by clastic deposition.

Each of the three Raibl cycles corresponds to a type-2 sequence, containing shelf margin, transgressive and highstand systems tracts. During sea-level lowstands, deltaic point sources were near the shelf margin, allowing clastics to bypass the carbonate platform. This setting corresponds to a shelf margin systems tract. Transgressive and highstand systems tracts developed during the subsequent sea-level rise, as deltaic clastics were reworked and redistributed over the carbonate platform, and the deltas retrograded to the inner shelf. The highstand systems tracts are capped by a type 2 sequence boundary, which is conformable in the study area. The systems tracts can be further subdivided into shallowing upward subcycles, caused by fourth-order sea-level fluctuations, believed to represent Milankovitch rhythms.

The middle Raibl cycle is consistently thinner, and may represent a shorter termed, third-order sea-level fluctuation. Our data also corroborate a second-order transgressive trend for the Carnian.  相似文献   


18.
The Late Cenozoic basins in the Weihe–Shanxi Graben, North China Craton are delineated by northeast-striking faults. The faults have, since a long time, been related to the progressive uplift and northeastward expansion of the Tibetan Plateau. To show the relation between the basins and faults, two Pliocene–Pleistocene stratigraphic sections(Chengqiang and Hongyanangou) in the southern part of the Nihewan Basin at the northernmost parts of the graben are studied herein. Based on the sedimentary sequences and facies, the sections are divided into three evolutionary stages, such as alluvial fan-eolian red clay, fan delta, and fluvial, with boundaries at ~2.8 and ~1.8 Ma. Paleocurrent indicators, the composition of coarse clastics, heavy minerals, and the geochemistry of moderate–fine clastics are used to establish the temporal and spatial variations in the source areas. Based on features from the middlenorthern basin, we infer that the Nihewan Basin comprises an old NE–SW elongate geotectogene and a young NW–SE elongate subgeotectogene. The main geotectogene in the mid-north is a half-graben bounded by northeast-striking and northwest-dipping normal faults(e.g., Liulengshan Fault). This group of faults was mainly affected by the Pliocene(before ~2.8–2.6 Ma) NW–SE extension and controlled the deposition of sediments. In contrast, the subgeotectogene in the south was affected by northwest-striking normal faults(e.g., Huliuhe Fault) that were controlled by the subsequent weak NE–SW extension in the Pleistocene. The remarkable change in the sedimentary facies and provenance since ~1.8 Ma is possibly a signal of either weak or strong NE–SW extension. This result implies that the main tectonic transition ages of ~2.8–2.6 Ma and ~1.8 Ma in the Weihe–Shanxi Graben are affected by the Tibetan Plateau in Pliocene–Pleistocene.  相似文献   

19.
《Geodinamica Acta》2013,26(6):401-405
Late Cretaceous to Palaeogene graben inversion in the southern North Sea is classically related to Alpine compression. Regional deformation analysis of Upper Cretaceous sediments based on seismic and well data reveals the existence of large-scale NW-SE folds. Folding patterns are interpreted as the result of lithospheric buckling during NE-SW shortening. We suggest that graben inversion at the scale of the southern North Sea is only a part of a more general process, involving lithospheric folding. Folding developed in response to two major plate boundary conditions, that is, E-W to NE-SW opening of the Atlantic Ocean constrained to the southeast by N-S Alpine collision. Lithospheric folding might have influenced both the oil generation process and reservoir properties in this area.  相似文献   

20.
The anatomy of an articulated juvenile specimen of the saurolophine hadrosaurid dinosaur Edmontosaurus annectens, LACM 23504, is described in detail. This individual consists of a partial skull and nearly complete articulated postcranium, collected from upper Maastrichtian strata of the Hell Creek Formation of Montana, USA. This study aims to help understand the ontogenetic morphological changes occurring in the cranium and postcranium of saurolophine hadrosaurids using E. annectens as a case study. Emphasis is placed on those morphological attributes that are ontogenetically variable via comparative osteology between the juvenile and the available adult specimens. It is observed that much of the cranial ontogenetic variation relates to the elongation of the skull and mandible. In the postcranium, most of the ontogenetic variation concentrates in the pectoral and pelvic girdles and the stylopodia. Not all the identified patterns of ontogenetic variation may be generalized to all hadrosaurids. The impact of ontogenetic variation on phylogenetically informative characters of saurolophine hadrosaurids is evaluated. It is concluded that, at least for Edmontosaurus annectens (and perhaps other saurolophine hadrosaurids), most characters used in phylogenetic inference of these animals are not affected by ontogeny. Thus, juvenile specimens are still a source of substantial character data suitable for use in phylogenetic analyses of saurolophine relationships. Nevertheless, it is recommended that ontogenetically variable characters are left as missing data in a character–taxon matrix when only juvenile material is available for a given saurolophine taxon. Scoring those characters based solely on juveniles is likely to decrease the accuracy of the phylogenetic inference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号