首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Some questions concerning the space distribution of Ap and Am stars have been discussed on the basis of the Abastumani Catalogue containing the data in the two-dimensional MK classification for stars in Kapteyn Areas Nos 2–43. Ap and Am stars do not show the high concentration towards the galactic plane as normal stars of the same spectral interval. Moreover, Ap stars occur at distances up to about 200 pc from the galactic plane, Am stars up to about 400 pc.  相似文献   

2.
The radii of several Ap and Am stars have been compared with those of the normal A stars of the Main Sequence. Though the brighter Ap stars have a little larger radii than the Main-Sequence stars, they may not be much different from those of the slightly evolved normal A stars. The Am stars have radii with which they appear to be merging with those of the cooler A stars of the Main Sequence. The Ap stars have radii predominantly in the range of 1.8 to 3.4R , while the Am stars are mainly concentrated between 1.8 and 2.2R .  相似文献   

3.
The effective temperatures radii and bolometric magnitudes of Ap, Am and normal A stars have been estimated from their energy distribution curves between 478 nm and 680 nm. All the Am stars and one Ap star (i.e. CrB) were found to be affected by line blanketing, a rough estimation of which in the respective (B-V) colours has been found out in each case.The range in effective temperature is 0.45–0.60 in terms of (=5040/T e), while it is 1.8–4.8R in the case of radius, that in bolometric magnitude being from-0m.67 to+1m.61. An approximate estimate of the masses shows that they are between 1.5 and 3.0M . All these estimates are in agreement with those of the normal A stars. The Ap and Am stars are found to be slightly evolved and, therefore, are probably in the hydrogen shell-burning phase.  相似文献   

4.
The “Nainital-Cape Survey” program for searching photometric variability in chemically peculiar (CP) stars was initiated in 1997 at ARIES, Nainital. We present here the results obtained to date. The Am stars HD 98851, HD 102480, HD 13079 and HD 113878 were discovered to exhibit δ Scuti type variability. Photometric variability was also discovered in HD 13038, for which the type of peculiarity and variability is not fully explained. The null results of this survey are also presented and discussed.  相似文献   

5.
The physical parameters, such as the effective temperatures, radii, bolometric magnitudes and bolometric corrections of 87 Ap and Am stars out of the 125 compiled here are essentially based on the work done by the authors at the Kavalur Observatory. The results of the rest of the stars are from the earlier work done by one of the authors, which have been included for the sake of completion. All the results are derived from the observed energy distribution curves of the individual stars. The standardised magnitudes at various wavelengths also have been listed.  相似文献   

6.
Based on the observed energy distribution curves of about a hundred Ap stars, the various relationships among their physical parameters: namely, the temperature, colour index, bolometric correction and bolometric magnitude have been studied. The hotter Ap stars have been found to be apparently bluer than their normal counterparts, which is possibly due to the broad continuum features at 4200 and 5200 that are generally present in Ap stars only. The bolometric corrections are independent of parallax measurements; the Ap stars as well as the normal stars follow the same sequence of bolometric corrections when related to temperature. The Ap stars appear to beslightly evolved and their position in the HR diagram indicates the hydrogen shell burning phase. The mass range of Ap stars is similar to that of normal A stars.  相似文献   

7.
The rapidly oscillating Ap stars pulsate in high-overtone, low degreep-modes with their pulsation axes aligned with their oblique magnetic axes. They show non-linearity in their pulsation in three ways:
  1. The harmonics of the basic pulsation frequency are detectable.
  2. The pulsation phase seems to vary stochastically on a time scale of days to years depending on the star.
  3. The form of the nonradial surface distortion is not constant with time.
These three effects are illustrated with HR 3831, the best studied of the roAp stars. HR 3831 pulsates in distorted dipole mode which can be modelled as a linear sum of axisymmetricl = 0, 1, 2, and 3 spherical harmonics aligned with the magnetic axis. This gives rise to a 7-frequency multiplet split by exactly the rotation frequency. The form of the distortion shows small changes on a time-scale of years. HR 3831 shows a 5-frequency rotationally split first harmonic multiplet, a 3-frequency rotationally split second harmonic multiplet, and a single third harmonic frequency has probably been detected at an amplitude of 0.065 mmag. The first harmonic has changed its form significantly over the last 10 years. A technique for decomposing the fundamental frequency septuplet into its component spherical harmonics is used to fit the pulsation phase as a function of rotation phase. This allows a unique O-C to be defined for any length of light curve. The long term behaviour of the O-C diagram cannot be modelled adequately with a combination of periodic (Doppler shift) and quadratic (evolution) terms; there seems to be a significant stochastic component. The direction of the pulsation phase reversal at rotational phase 0.747 is indeterminate; sometimes it is a positive-going reversal, sometimes negative-going. At present it is not known whether this is a numerical artifact, or a physical effect in the star. If it is a physical effect, it means that small non-periodic differences in pulsation amplitude between the bipolar hemispheres have been detected.  相似文献   

8.
The characteristics of two stars, 25 Sex and HD 21699, as additional candidates for the sample of magnetic stars belonging to superclusters, are discussed. For 25 Sex, which was already accepted as a probable member of the Hyades supercluster in a previous study, arguments supporting the view that this star indeed is a magnetic star are presented. In the case of HD 21699, the radial velocity derived from our observations is not inconsistent with membership. But from the determinations of its proper motion found in the literature, this star cannot be regarded as a probable member of the α Per cluster. On the basis of recent evolutionary models, all the well established Ap cluster members appear to be close to the end of their main-sequence life. This suggests that A stars possibly become magnetic at the end of core hydrogen burning.  相似文献   

9.
This paper reviews some of the important advances made over the last decade concerning theory of roAp stars.  相似文献   

10.
In this paper we describe a new approach for measuring the mean longitudinal magnetic field and net linear polarization of Ap and Bp stars. As was demonstrated by Wade et al., least-squares deconvolution (LSD; Donati et al.) provides a powerful technique for detecting weak Stokes V , Q and U Zeeman signatures in stellar spectral lines. These signatures have the potential to apply strong new constraints to models of stellar magnetic field structure. Here we point out two important uses of LSD Stokes profiles. First, they can provide very precise determinations of the mean longitudinal magnetic field. In particular, this method allows one frequently to obtain 1 σ error bars better than 50 G, and smaller than 20 G in some cases. This method is applicable to both broad- and sharp-lined stars, with both weak and strong magnetic fields, and effectively redefines the quality standard of longitudinal field determinations. Secondly, LSD profiles can in some cases provide a measure of the net linear polarization, a quantity analogous to the broad-band linear polarization recently used to derive detailed magnetic field models for a few stars (e.g. Leroy et al.). In this paper we report new high-precision measurements of the longitudinal fields of 14 magnetic Ap/Bp stars, as well as net linear polarization measurements for four of these stars, derived from LSD profiles.  相似文献   

11.
The rapidly oscillating Ap (roAp) stars currently represent the only main sequence stars other than the Sun which exhibit non-radial acoustic pulsations of high overtone. This makes them excellent subjects for asteroseismology, an approach which promises to yield accurate knowledge of the interior structures of stars. Of the 27 known roAp stars, 24 were discovered in Sutherland despite extensive searches conducted elsewhere. This paper reviews the discovery of the roAp phenomenon and describes the factors that contribute to the high discovery rate for these stars at Sutherland. Two long-term observational projects in progress at Sutherland are discussed,viz. the Cape roAp Star Survey and long-term monitoring of frequency variations in roAp stars.  相似文献   

12.
The relationships among the various physical parameters-namely, the effective temperatures, radii and bolometric magnitudes, determined on the basis of the energy distribution curves of 25 Am stars — have been studied. Their effective temperatures are in the range of 7200 K to 9700 K; the radii, 1.5R to 2.5R ; the bolometric magnitudes, 0.75 mag. to 2.25 mag.; and the masses, 1.5M to 2.25M . The Am stars in general, appear redder than their normal counterparts, the blanketing in the blue andUV regions being the major cause. For the relatively cooler stars, the (B-V) colours are found to be less affected by blanketing. They are located in the neighbourhood of the upper edge of the zero-age Main Sequence band and show a fairly wide range in the evolutionary status among themselves. The bolometric corrections which are independent of the uncertainties in the parallax measurements, follow the same trend as that of the Ap stars, with reference to the temperature.  相似文献   

13.
The photometrically determined mean surface magnetic fields BS need a revision. None of the stars for which BS can be measured directly by Zeeman line splitting fulfils the relation between the photometric parameter Δ(V1G) and the mean surface field BS, which is used by NORTH , CRAMER and MAEDER to determine BS for other B2 – A3 stars. The ratio BeffMax/BS for stars, which define North's relation, shows unreasonable large values.  相似文献   

14.
We investigate the effect of a strong large-scale magnetic field on the reflection of high-frequency acoustic modes in rapidly oscillating Ap stars. To that end, we consider a toy model composed of an isothermal atmosphere matched on to a polytropic interior and determine the numerical solution to the set of ideal magnetohydrodynamic equations in a local plane-parallel approximation with constant gravity. Using the numerical solution in combination with approximate analytical solutions that are valid in the limits where the magnetic and acoustic components are decoupled, we calculate the relative fraction of energy flux that is carried away in each oscillation cycle by running acoustic waves in the atmosphere and running magnetic waves in the interior. For oscillation frequencies above the acoustic cut-off, we show that most energy losses associated with the presence of running waves occur in regions where the magnetic field is close to vertical. Moreover, by considering the depth dependence of the energy associated with the magnetic component of the wave in the atmosphere we show that a fraction of the wave energy is kept in the oscillation every cycle. For frequencies above the acoustic cut-off frequency, such energy is concentrated in regions where the magnetic field is significantly inclined in relation to the local vertical. Even though our calculations were aimed at studying oscillations with frequencies above the acoustic cut-off frequency, based on our results we discuss what results may be expected for oscillations of lower frequency.  相似文献   

15.
We present our calculations of the spectrum and oscillator strengths for the 4f7?(4f65d+4f66s) Eu III transitions. The calculations were performed with Cowan's RCN-RCG-RCE codes in the single-configuration approximation. A comparison of computed level lifetimes with experimental data for three levels shows that the scale of theoretical oscillator strengths could be overestimated by a factor of 3. The theoretical oscillator strengths of red Eu III lines are two orders of magnitude smaller than their astrophysical oscillator strengths derived by Ryabchikova et al. (1999) from the condition of ionization balance. The new oscillator strengths were tested by analyzing the Eu abundance using Eu II and Eu III lines in the spectra of hot peculiar stars (α2 CVn is a typical representative) and cool peculiar stars (β CrB is a typical representative). First, we computed non-LTE corrections, which proved to be significant for α2 CVn. We also analyzed the Eu II λ6645.11-Å line as well as ultraviolet and optical Eu III lines. We show that the new oscillator strengths together with the non-LTE corrections allow the contradiction between the Eu abundances derived by Ryabchikova et al. (1999) separately from optical Eu II and Eu III lines in α2 CVn to be resolved. The new Eu abundance, log(Eu/N tot)=?6.5, also faithfully describes the blended near-ultraviolet resonance Eu III lines. Using the new Eu III oscillator strengths to analyze the spectrum of the cool Ap star β CrB, we found a significant deviation of the n(Eu II)/n(Eu III) ratio from its equilibrium value. For a chemically homogeneous model atmosphere, to obtain the observed intensity of the Eu III λ 6666.35-Å line, the Eu abundance must be increased by two orders of magnitude compared to that required to describe the Eu II λ 6645.11-Å line. We discuss the possibility of explaining the observed intensities of Eu II and Eu III lines in the spectrum of β CrB by the presence of an inhomogeneous atmosphere with Eu concentrated in its uppermost layers. In such atmospheres, the role of non-LTE effects becomes dominant.  相似文献   

16.
J. F. Donati  M. Semel 《Solar physics》1990,128(1):227-242
In the task of studying stellar magnetic fields, polarimetric methods have been intensively used in Ap stars. But the observational material classically used to reconstruct stellar magnetic structures (average longitudinal magnetic field as a function of rotational phase) is not rich enough in spatial information to derive geometries more complex than centered or decentered dipoles.In solar-type stars, all evidences of activity recently detected on their surfaces (starspots, flares, ...) indicate they are most likely magnetic stars. But polarimetric methods have always failed in these stars, probably due to the complex magnetic topologies encountered which even prevented until now a simple detection (Borra, Edwards, and Mayor, 1984). With the Zeeman broadening measurement technique proposed by Robinson (1980), no reliable results can be derived for rapid rotators, which are otherwise presumed to be the best candidates for magnetic detections. Once more, if temperature inhomogeneity charts are already available for solar-type stars (Vogt, 1987), spatial information on their magnetic distributions has conversely not yet been obtained.The new option, recently proposed by Semel (1989) and qualified by Donati, Semel, and Praderie (1989), is based on the rotational modulation study of a rapid rotator Stokes parameter V(), obtained with both high spectral resolution R, and high signal-to-noise ratio S/N. Since the magnetic information used refers to localized strips on the stellar disc (as a consequence of the star rotation), multipolar structures can thus be resolved.A new instrumentation and observing procedure have been defined for ZDI, in order to obtain very high S/N data. The method has been successfully tested on two bright magnetic Ap stars: a magnetic detection was obtained on UMa and a 15-point phase coverage of 2 CVn is available for the reconstruction of complete 2D abundance and magnetic mappings of its photosphere.Concerning solar-type stars, a numerical simulation was carried out in order to determine the observational constraints required for the detection of typical magnetic field similar to those reported in slow rotators with the Robinson method (Saar, 1988). The specifications needed are S/N 400 per 40 mÅ pixel and R - 6 × 104.  相似文献   

17.
Over the last decades, modelling of the inhomogeneous vertical abundance distributions of various chemical elements in magnetic peculiar A type has largely relied on simple step-function approximations. In contrast, the recently introduced regularized vertical inversion procedure (VIP) is not based on parametrized stratification profiles and has been claimed to yield unique solutions without a priori assumptions as to the profile shapes. It is the question of uniqueness of empirical stratifications which is at the centre of this article. An error analysis establishes confidence intervals about the abundance profiles and it is shown that many different step functions of sometimes widely different amplitudes give fits to the observed spectra which equal the VIP fits in quality. Theoretical arguments are advanced in favour of abundance profiles that depend on magnetic latitude, even in moderately strong magnetic fields. Including cloud, cap and ring models in the discussion, it is shown that uniqueness of solutions cannot be achieved without phase-resolved high signal-to-noise ratio and high spectral resolution ( R ) spectropolarimetry in all four Stokes parameters.  相似文献   

18.
19.
20.
Ap star magnetism is often attributed to fossil magnetic fields which have not changed much since the pre‐main‐sequence epoch of the stars. Stable magnetic field configurations are known which could persist probably for the entire mainsequence life of the star, but they may not show the complexity and diversity exhibited by the Ap stars observed. We suggest that the Ap star magnetism is not a result of stable configurations, but is the result of an instability based on strong toroidal magnetic fields buried in the stars. The highly nonaxisymmetric remainders of the instability are reminiscent of the diversity of fields seen on Ap stars. The strengths of these remnant magnetic fields are actually between a few per cent up to considerable fractions of the internal toroidal field; this means field strengths of the order of kGauss being compatible with what is observed. The magnetic fields emerge at the surface rather quickly; rough estimates deliver time‐scales of the order of a few years. Since rotation stabilizes the instability, normal A stars may still host considerable, invisible toroidal magnetic fields (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号