首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
We present the results of a radial-velocity study of eight Am stars (HD 341, 55822, 61250, 67317, 93991, 162950, 224890 and 225137) observed at Observatoire de Haute-Provence with the CORAVEL instrument. We find that these systems are single-line spectroscopic binaries whose orbital elements are determined for the first time.  相似文献   

3.
4.
We present the results of a radial-velocity study of seven Am stars (HD 3970, 35035, 93946, 151746, 153286, 204751 and 224002) observed at the Observatoire de Haute-Provence (OHP) and the Cambridge Observatories with CORAVEL instruments. We find that these systems are single-lined spectroscopic binaries whose orbital elements are determined for the first time. Among this sample, HD 35035 and 153286 have long periods, with   P = 2.8  and 9.5 yr, respectively, which is rather unusual for Am stars. Four systems have orbits with large eccentricities (with   e ≥ 0.4  ). Physical parameters are inferred from this study for the primaries of those systems.
We then investigate the influence of tidal interaction, which has already led to the synchronism of the primaries and/or to the circularization of the orbits of some systems belonging to this sample. We extend this study to the list of 33 objects studied in this series of papers and derive values of the critical fractional radii   r = R / a   for circularization and synchronization of Am-type binaries. We find that the stars with   r ≳ 0.15  are orbiting on circular orbits and that synchronism is likely for all components with   r ≳ 0.20  .  相似文献   

5.
The orbital elements of HD 54901, HD 120544 and HD 123280, three nearby F‐type spectroscopic binaries, are presented. They are based on observations made between 1982 and 2004 with the CORAVEL instrument of Observatoire de Haute‐Provence. Physical parameters are derived for the two components of HD 54901 (SB2) and for the primaries of HD 120544 and HD 123280. The rotation‐revolution synchronism of the detected components is investigated. Pseudosynchronism is very likely achieved by the F7 V secondary component of HD 54901, whereas the F2/3 IV primary has not yet reached this stage. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
HR 6046 has long been known as a single-lined binary system, for which preliminary orbital solutions were given in the 1930s, but the nature of the secondary star in the system has to date appeared puzzling. The rather large masses which the component stars were once believed to possess caused much speculation that the secondary was a 'collapsed star', and the large mass function that was originally published encouraged determined, but unsuccessful, efforts to be made to resolve the system by optical interferometry. We have observed the system as a double-lined binary, and now present the orbit. We are unable to specify the exact nature of the secondary star, whose mass is only slightly less than that of the primary, but comparison with late-type standard spectra suggests that it is an evolved star, while the primary is a giant somewhat cooler than the published spectral type indicates. The Hipparcos parallax is consistent with such a model for the system, but it is possible that it is vitiated by the photocentric motion. Our new orbital elements and their improved level of precision show conclusively that the system is by no means as exotic as was once thought.  相似文献   

7.
8.
We analyse 81 optical spectra of the composite-spectrum binary HD 216572, and show that the primary is a cool giant of type G8 III while the secondary is a double-lined binary consisting of two nearly identical B9 dwarfs in a 1.18-d orbit. The inner system undergoes partial eclipses, whose photometry we model to derive the physical parameters of both secondary stars. The outer system does not eclipse. We isolate the combined spectrum of the secondary by spectral subtraction, and from 48 separate radial-velocity measurements of both secondary components we obtain a triple-lined orbit solution from which we determine the individual masses of all three stars and the inclinations of both the inner and the outer orbits. The period of the outer system is 55 d, which is surprisingly short for a giant star, and our detection of small but non-negligible amounts of variable chromospheric emission in the Ca  ii K line is not unlike that detected in other systems with comparably short periods. The secondary components are in a circular orbit and are rotating at about  95 ± 10 km s−1  ; although their surface-to-surface separation is only  4 R  the stars are not noticeably distorted geometrically by such close proximity. All three stars appear to be in synchronous rotation in their respective orbits. We derive fairly accurate Hertzsprung–Russell diagram positions for all three stars and compare them to evolutionary tracks calculated for the respective stellar masses, but cannot reconcile the age of the cool giant with that of the B stars.  相似文献   

9.
10.
A new high-quality set of orbital parameters for the O-type spectroscopic binary HD 93205 has been obtained combining échelle and coudé CCD observations. The radial velocity orbits derived from the He  ii λ 4686 Å (primary component) and He  i λ 4471 Å (secondary component) absorption lines yield semi-amplitudes of 133±2 and 314±2 km s−1 for each binary component, resulting in minimum masses of 31 and 13 M ( q =0.42) . We also confirm for the binary components the spectral classification of O3 V+ O8 V previously assigned. Assuming for the O8 V component a 'normal' mass of 22–25 M we would derive for the primary O3 V a mass of 'only' 52–60 M and an inclination of about 55° for the orbital plane. We have also determined for the first time a period of apsidal motion for this system, namely 185±16 yr using all available radial velocity data sets of HD 93205 (from 1975 to 1999). Phase-locked variations of the X-ray emission of HD 93205 consisting of a rise of the observed X-ray flux near periastron passage are also discussed.  相似文献   

11.
We present a new optical spectroscopic study of the O-type binary HD 165052 based on high- and intermediate-resolution CCD observations. We re-investigated the spectral classification of the binary components, obtaining spectral types of O6.5 V and O7.5 V for the primary and secondary, respectively, finding that both stars display weak C  iii λ 5696 emission in their spectra. We also determined a radial-velocity orbit for HD 165052 with a period of  2.95510±0.00001 d  , and semi-amplitudes of 94.8 and  104.7±0.5 km s-1  , resulting in a mass ratio   Q =0.9  . From a comparison with previous radial-velocity determinations, we found evidence of apsidal motion in the system. Several signatures of wind–wind collision, such as phase-locked variability of the X-ray flux and the Struve–Sahade effect, are also considered. It was also found that the reddening in the region should be normal, in contrast with previous determinations.  相似文献   

12.
We separate and analyse the component spectra of the composite‐spectrum binary HD 208253. We find that the cool primary is an evolving star of spectral type G7 III, while its hot secondary is an early‐A dwarf. The giant is currently near the lowest point of the red‐giant branch and is slightly less luminous than its dwarf companion. We provide a set of precise radial‐velocity measurements for both stars. The double‐lined orbit which we derive from them shows that the component mass ratio is close to unity (q = 1.05 ± 0.01). We deduce the physical properties of both stars, determine their respective masses to be 2.75 ± 0.07 Me (giant) and 2.62 ± 0.07 Me (dwarf), and show that the orbit's inclination is within a degree or two of 68°. The spectrum of the A‐type component has quite component has quite narrow lines (we infer a rotational velocity of 18 km s–1), though since the period of the orbit is well over 1 year that component cannot be in synchronous rotation. An intriguing property of the dwarf is its enhanced Sr and Ba, though it does not exhibit the other spectral peculiarities that would signal a classical Am star. While by no means unique amongst the multitude of oddities exhibited by A and early‐F stars, this dwarf which we have uncovered in a long‐period binary offers valuable constraints and challenges to stellar‐evolution theory. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present the results of a radial‐velocity study of eight southern SB1 spectroscopic binaries with composite spectra: HD 34318‐9, HD 47579‐80, HD 70442‐3, HD 74946‐7, HD 102171‐2, HD 120901‐2, HD 168701‐2, and HD 174191‐2. The observations were made at Haute‐Provence observatory with the CORAVEL instrument between 1982 and 2006. From the radial‐velocity measurements of the cool components, we derive the orbital elements of those spectroscopic binaries. Using all the available data, we obtain an estimation of the orbital inclination and the angular separation of the two components. Finally we discuss the rotation‐revolution synchronism of the cool components. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We use an Artificial Neural Network (ANN) to derive the orbital parameters of spectroscopic binary stars. Using measured radial velocity data of four double‐lined spectroscopic binary systems HD 152218, HD 143511, HD 27149, and ER Vul, we find corresponding orbital and spectroscopic elements. Our numerical results are in good agreement with those obtained by others using more traditional methods (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The triple-lined spectroscopic triple system HD 109648 has one of the shortest periods known for the outer orbit in a late-type triple, 120.5 d, and the ratio between the periods of the outer and the inner orbits is small, 22:1. With such extreme values, this system should show orbital element variations over a time-scale of about a decade. We have monitored the radial velocities of HD 109648 with the CfA Digital Speedometers for 8 yr, and have found evidence for modulation of some orbital elements. While we see no definite evidence for modulation of the inner binary eccentricity, we clearly observe variations in the inner and the outer longitudes of periastron, and in the radial velocity amplitudes of the three components. The observational results, combined with numerical simulations, allow us to put constraints on the orientation of the orbits.  相似文献   

16.
17.
HD 163621 is a double-lined spectroscopic binary in a circular orbit whose period is 3.3 days. Spectral classification of the components has proved difficult, but current results of K0 V and late K V are reasonably consistent with our best model of the system, which has spectral types of G8V and K7V. The object shows photometric variability and chromospheric activity and is therefore a member of the BY Draconis class of variables. The minimum masses are quite small, 0.10 and 0.07 M⊙ for the primary and secondary, respectively, suggesting an orbital inclination of about 30°. The system is synchronously rotating. Its distance is estimated to be 31 pc, which makes it an excellent candidate for a trigonometric parallax determination. Kitt Peak National Observatory, [U.S.] National Optical Astronomy Observatories, operated by AURA Inc. under contract with the [U.S.] National Science Foundation.  相似文献   

18.
19.
The orbital elements of three red‐giant single‐lined spectroscopic binaries, HR 1304, HR 1908 and HD 126947, are presented. They are obtained from observations made with two photoelectric spectrometers of CORAVEL type, the first located at the Observatoire de Haute‐Provence and the second at the Cambridge Observatories. HR 1304 and HR 1908 are known to be chromospherically active stars and to have high spatial velocities; HD 126947 is an intrinsic variable newly detected by Hipparcos. The three systems have long orbital periods: 1.9, 3.2 and 7.7 yr for HR 1304, HR 1908 and HD 126947, respectively. From the orbital elements that we determined and other data available in the literature, we deduce some information about the unseen companions and their separations with respect to the primaries. Finally we discuss the rotation–revolution synchronism and conclude that one star, HR 1908, may have reached the state of pseudo‐synchronism, despite of its long orbital period. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We have started a spectroscopic survey to identify new chromospherically active components and low-mass pre-main sequence (PMS) stars in recently discovered All Sky Automated Survey (ASAS) eclipsing binaries. In this paper, we briefly describe our scientific motivation, the observing tools and the results obtained from the first phase of this survey. Using the available observing facilities in India, the spectroscopic observations of a sample of 180 candidate eclipsing binary stars selected from ASAS-I&II releases were carried out during 2004–2006. The strength of Hα emission was used to characterize the level of chromospheric activity. Our spectroscopic survey reveals that out of 180 stars about 36 binary systems show excess Hα emission. One of the objects in our sample, ASAS 081700-4243.8, displays very strong Hα emission. Follow-up high-resolution spectroscopic observations reveal that this object is indeed very interesting and most likely a classical Be-type system with K0III companion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号