首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. Fold belts form due to shortening of deep basins on oceaic and continental crust. Basins on the oceanic crust should be characterized by a pronounced seismic anisotropy in the mantle lithosphere. Deep basins on the continental crust may develop from the stretching or the destruction of the lower crust under asthenospheric upwelling. These processes can produce seismic anisotropy in both the crust and mantle lithosphere. The character of the anisotropy is different for different basin forming processes. Considerable anisotropy should also arise from compression of the crust and mantle in fold belts. The formation of fold belts produces the original seismic anisotropy in continental lithosphere.  相似文献   

2.
The China–Mongolia border region contains many late Mesozoic extensional basins that together constitute a regionally extensive basin system. Individual basins within the system are internally composed of a family of sub‐basins filled with relatively thin sedimentary piles mostly less than 5 km in thickness. There are two types of sub‐basins within the basins, failed and combined, respectively. The failed sub‐basins are those that failed to continue developing with time. In contrast, the combined ones are those that succeeded in growing by coalescing adjacent previously isolated sub‐basins. Thus, a combined sub‐basin is bounded by a linked through‐going normal fault that usually displays a corrugated trace on map view and a shallower dip on cross‐section. Along‐strike existence of discrete depocenters and alternation of sedimentary wedges of different types validate the linkage origin of combined sub‐basins. Localized high‐strain extension resulted in large‐amount displacement on linked faults, but contemporaneously brought about the cessation of some isolated fault segments and the formation of corresponding failed sub‐basins in intervening areas between active linked faults. Some combined sub‐basins might have evolved into supradetachment basins through time, concurrent with rapid denudation of footwall rocks and formation of metamorphic core complexes in places. A tectonic scenario of the broad basin system can be envisioned as an evolution from early‐stage distributed isolated sub‐basins to late‐stage focused combined or/and supradetachment sub‐basins bounded by linked faults, accompanied by synchronous cessation of some early‐formed sub‐basins. Initiation of the late Mesozoic extension is believed to result from gravitational collapse of the crust that had been overthickened shortly prior to the extension. Compression, arising from collision of Siberia and the amalgamated North China–Mongolia block along the Mongol–Okhotsk suture in the time interval from the Middle to Late Jurassic, led to significant shortening and thickening over a broad area and subsequent extensional collapse. Pre‐ and syn‐extensional voluminous magmatism must have considerably reduced the viscosity of the overthickened crust, thereby not only facilitating the gravitational collapse but enabling the lower‐middle crust to flow as well. Flow of a thicker crustal layer is assumed to have occurred coevally with upper‐crustal stretching so as to diminish the potential contrast of crustal thickness by repositioning materials from less extended to highly extending regions. Lateral middle‐ and lower‐crustal flow and its resultant upward push upon the upper crust provide a satisfying explanation for a number of unusual phenomena, such as supracrustal activity of the extension, absence or negligibleness of postrift subsidence of the basin system, less reduction of crustal thickness after extension, and non‐compression‐induced basin inversion, all of which have been paradoxical in the previous study of the late Mesozoic basin tectonics in the China–Mongolia border region.  相似文献   

3.
Summary. The Western Approaches Margin (WAM) profile was shot to test the hypothesis that the reflectivity observed in the lower crust is related to extensional processes. The preliminary results of the experiment show that the reflectivity in the lower crust appears to become weaker on the continental shelf near the slope break. Detailed examination of the data however, show a significant increase in noise in the region where the layering appears to fade. The noise may be of sufficient amplitude to obscure any coherent lower crustal events present. Therefore, the only conclusion that can presently be drawn from the dataset is that the layering does not become more pronounced in the region of maximum extension.  相似文献   

4.
Summary. COCORP seismic reflection traverses of the U.S. Cordillera at 40°N and 48.5°N latitude reveal some fundamental similarities as well as significant differences in reflection patterns. On both traverses, autochthonous crust beneath thin-skinned thrust belts of the eastern part of the Cordillera is unreflective; immediately to the west the Cordilleran interior is very reflective above a flat, prominent reflection Moho. Mesozoic accreted terranes in the western part of the orogen are underlain on both traverses by very complex reflection patterns, in constrast to more easily deciphered patterns beneath areas of Cenozoic accretion. The prominent reflection Moho beneath the orogenic interior on both transects probably evolved through a combination of magmatic and deformational processes during Cenozoic extension. The main differences between the two traverses lie in the reflection patterns of the middle and lower crust in the Cordilleran interior; these differences are probably related to the way Cenozoic extension was accommodated at depth. Laminated middle and lower crust above the reflection Moho in the western Basin and Range (40°N) may be related to magmatism, ductile pure shear and large-scale transposition during Cenozoic extension. By contrast, beneath the eastern Basin and Range (40°N), and the orogenic interior in the NW United States (48.5°N), Cenozoic extension was probably accommodated along dipping deformation zones throughout the crust.  相似文献   

5.
Orientation of the complex Knipovich-Lena spreading/transform system closely follows the secondary shear and extensional orientations that existed within adjacent continental crust prior to rifting. Major dextral faults and shear zones within continental crust appear to have affected both the lower crust and upper mantle during extension and to have caused the localization of the early transform rift system.  相似文献   

6.
We study the tectonic setting and lithospheric structure of the greater Barents Sea region by investigating its isostatic state and its gravity field. 3-D forward density modelling utilizing available information from seismic data and boreholes shows an apparent shift between the level of observed and modelled gravity anomalies. This difference cannot be solely explained by changes in crustal density. Furthermore, isostatic calculations show that the present crustal thickness of 35–37 km in the Eastern Barents Sea is greater than required to isostatically balance the deep basins of the area (>19 km). To isostatically compensate the missing masses from the thick crust and deep basins and to adequately explain the gravity field, high-density material (3300–3350 kg m−3) in the lithospheric mantle below the Eastern Barents Sea is needed. The distribution of mantle densities shows a regional division between the Western and Eastern Barents and Kara Seas. In addition, a band of high-densities is observed in the lower crust along the transition zone from the Eastern to Western Barents Sea. The distribution of high-density material in the crust and mantle suggests a connection to the Neoproterozoic Timanide orogen and argues against the presence of a Caledonian suture in the Eastern Barents Sea. Furthermore, the results indicate that the basins of the Western Barents Sea are mainly affected by rifting, while the Eastern Barents Sea basins are located on a stable continental platform.  相似文献   

7.
The Valencia Trough is a rift formed during the late Oligocene – early Miocene opening of the western Mediterranean Sea. In this paper, we focus on the crustal structure and on the deep structure of the basin which is hard to delineate because of the widespread volcanism that conceals part of the basement. This work is the result of the study of a dense network of seismic profiling surveys and exploratory wells made in the region. The structure of the deep basement reveals the importance of transfer fracture zones which represent steps in the deepening of the basin. The thinning of the crust follows the basement deepening and we find the same partitioning of structural blocks at the crustal level. Transfer faults also represent limits in the thinning of the crust and each compartment thus delineated has a different thinning and different extensional ratios. Such a discrepancy between the thinning of the upper crust and the thinning of the lower crust may be common in many other rift zones, but is seldom as well imaged as in this study of the Valencia Trough. The transfer zones are related to extensional processes but a simple shear opening is envisaged to explain the discrepancies between thinning and extension and the asymmetry of the margins. The more efficient thinning in the lower crust can be explained by a thermal anomaly in accordance with the recent evolution of the trough. The steady thinning of the margins is discussed in terms of a marginal basin in a compressional context.  相似文献   

8.
Interpretation of seismic reflection data have led to a new model of the development of the Queen Charlotte Basin. New multi-channel data collected in 1988 and an extensive network of unpublished older single- and multi-channel profiles from industry image a complex network of sub-basins. Structural styles vary along the axis of the basin from broadly spaced mainly N-trending sub-basins in Queen Charlotte Sound, to closely spaced NW-trending sub-basins in Hecate Strait, to an E-W en echelon belt of sub-basins in Dixon Entrance. Transtensional tectonics dominated in the Miocene and transpression dominated in the Pliocene except in Queen Charlotte Sound. The data we present prove that the origin of the basin is extensional and its most recent deformation is compressive. Evidence for the strike-slip origin of tectonism includes along-axis variations in structures, simultaneous extension and compression in adjacent sub-basins, lack of correlations across faults, and mixed normal and reverse faults within structures. We infer that the Pacific-North America plate boundary has been west of the Queen Charlotte Islands since the Miocene when relative plate motions have been dominantly strike-slip. The formation and development of the Queen Charlotte Basin is the result of distributed shear; by which a small percentage of the plate motion has been taken up in a network of faults across the continental margin. As this region of crust deforms it interacts with neighbouring rigid crust resulting in extension dominating in the south of the basin and compression in the north. Continental crust adjacent to some transform plate boundaries can be sheared over a wide region; the network of basins in southwestern California is a good analogue for the Queen Charlotte Basin.  相似文献   

9.
The tectonic subsidence and gravity anomalies in the Malay and Penyu Basins, offshore Peninsular Malaysia, were analysed to determine the isostatic compensation mechanism in order to investigate their origin. These continental extensional basins contain up to 14  km of sediment fill which implies that the crust had been thinned significantly during basin development. Our results suggest, however, that the tectonic subsidence in the basins cannot be explained simply by crustal thinning and Airy isostatic compensation.
The Malay and Penyu Basins are characterized by broad negative free-air gravity anomalies of between −20 and −30  mGal. To determine the cause of the anomaly, we modelled four gravity profiles across the basins using a method that combines two-dimensional flexural backstripping and gravity modelling techniques. We assumed a model of uniform lithospheric stretching and Airy isostasy in the analysis of tectonic subsidence. Our study shows that the basins are probably underlain by relatively thinned crust, indicating that some form of crustal stretching was involved. To explain the observed gravity anomalies, however, the Moho depth that we calculated based on the free-air gravity data is about 25% deeper than the Moho predicted by assuming Airy isostasy (Backstrip Moho). This suggests that the Airy model overestimates the compensation and that the basins are probably undercompensated isostatically. In other words, there is an extra amount of tectonic subsidence that is not compensated by crustal thinning, which has resulted in the discrepancy between the gravity-derived Moho and the Backstrip Moho. We attribute this uncompensated or anomalous tectonic subsidence to thin-skinned crustal extension that did not involve the mantle lithosphere. The Malay and Penyu Basins are interpreted therefore as basins that formed by a combination of whole-lithosphere stretching and thin-skinned crustal extension.  相似文献   

10.
《Basin Research》2018,30(2):279-301
Spatio‐temporal analysis of basins formed along sheared margins has received much less attention than those formed along orthogonally extended margins. Knowledge about the structural evolution of such basins is important for petroleum exploration but there has been a lack of studies that document these based on 3D seismic reflection data. In this study, we demonstrate how partitioning of strain during deformation of the central and southern part of the Sørvestsnaget Basin along the Senja Shear Margin, Norwegian Barents Sea, facilitated coeval shortening and extension. This is achieved through quantitative analysis of syn‐kinematic growth strata using 3D seismic data. Our results show that during Cenozoic extensional faulting, folds and thrusts developed coevally and orthogonal to sub‐orthogonal to normal faults. We attribute this strain partitioning to be a result of the right‐lateral oblique plate motions along the margin. Rotation of fold hinge‐lines and indications of hinge‐parallel extension indicate that the dominating deformation mechanism in the central and southern Sørvestsnaget Basin during opening along the Senja Shear Margin was transtensional. We also argue that interpretation of shortening structures attributed to inversion along the margin should consider that partitioning of strain may result in shortening structures that are coeval with extensional faults and not a result of a separate compressional phase.  相似文献   

11.
Two Early Cenozoic rifts in Southeast Asia (beneath the Pattani and Malay basins) experienced only limited upper-crustal extension (β≤1.5); yet very thick post-rift sequences are present, with 6–12 km of Late Cenozoic terrestrial and shallow-marine sediment derived from adjacent sources. Conventional post-rift backstripping requires depth-dependent lithospheric thinning by β=2–4 to explain these tremendous thicknesses. We assess an alternative explanation for this post-rift subsidence, involving lower-crustal flow from beneath these basins in response to lateral pressure-gradients induced by the sediment loads and the negative loads arising from the erosion of their sediment sources. We calculate that increased rates of erosion in western Thailand in the Early Miocene placed the crust in a non-steady thermal state, such that the depth (and thus, the pressure) at the base of the brittle upper crust subsequently varied over time. Following such a perturbation, thermal and mass-flux steady-state conditions took millions of years to re-establish. In the meantime, the lateral pressure-gradient caused net outflow of lower crust, thinning the crust beneath the depocentre by several kilometres (mimicking the isostatic effect of greater crustal extension having occurred beforehand) and thickening it beneath the sediment source region. The local combination of hot crust and high rates of surface processes, causing lower-crustal flow to be particularly vigorous and thus making its effects more readily identifiable, means that the Pattani and Malay basins represent a set of conditions different from basins in many other regions. However, lower-crustal flow induced by surface processes will also occur to some extent, but less recognisably, in many other continental crustal provinces, but its effects may be mistaken for those of other processes, such as larger-magnitude stretching and/or depth-dependent stretching.  相似文献   

12.
Early Cenozoic terrestrial deposits in the western United States represent well‐preserved archives of climatic and tectonic processes that together shaped the Earth's surface during the demise of a large continental plateau. This study examines a Cenozoic terrestrial sedimentary sequence in the central part of the Cordilleran orogen (Montana) using sedimentologic and geochemical techniques. At ~49 Ma, we observe rapid major shifts in oxygen, carbon and strontium isotope records that are too large to directly reflect changes in meteoric water composition due to simple orographic rainout. The transition to low‐δ18O values in pedogenic carbonate in concert with changes in the composition of clastic material at ~49 Ma points to the input of evolved meteoric water to the hydrological cycle due to a change in the source of waters reaching Cordilleran intermontane regions in southwestern Montana. This drainage reorganization coincides with the initiation of magmatism and extension to the west in what is now Montana and Idaho. The sedimentological record shows evidence that depositional gradients increased in the study area ~46 Ma, ~3 Myr after the drainage reorganization occurred. This interval is most likely the time it took for extensional deformation to propagate to the study area itself. Evidence of freshening events in Laramide Basins to the southeast suggests that this drainage reorganization diverted waters to progressively fill these basins and highlights the impact of post‐plateau extension‐related landscape reorganization on river networks and lake dynamics. This study also emphasizes the importance of using multiple tools in deciphering topographic history through the study of terrestrial basin deposits, in that interpretation based on any single method employed would have compromised our ability to successfully identify the regional evolution of topography and drainage networks.  相似文献   

13.
Subduction zones provide direct insight into plate boundary deformation and by studying these areas we better understand tectonic processes and variability over time. We studied the structure of the offshore subduction zone system of the Pampean flat‐slab segment (ca. 29–33°S) of the Chilean margin using seismic and bathymetric constraints. Here, we related and analysed the structural styles of the offshore and onshore western fore‐arc. Overlying the acoustic top of the continental basement, two syn‐extensional seismic sequences were recognised and correlated with onshore geological units and the Valparaíso Forearc Basin seismic sequences: (SII) Pliocene‐Pleistocene and (SI) Miocene‐Pliocene (Late Cretaceous (?) to Miocene‐Pliocene) syn‐extensional sequences. These sequences are separated by an unconformity (i.e. Valparaíso Unconformity). Seismic reflection data reveal that the eastward dipping extensional system (EI) recognised at the upper slope can be extended to the middle slope and controlled the accumulation of the older seismic package (SI). The westward dipping extensional system (EII) is essentially restricted to the middle slope. Here, EII cuts the eastward dipping extensional system (EI), preferentially parallel to the inclination of the older sequences (SI), and controlled a series of middle slope basins which are filled by the Pliocene‐Pleistocene seismic sequence (SII). At the upper slope and in the western Coastal Cordillera, the SII sequence is controlled by eastward dipping faults (EII) which are the local reactivation of older extensional faults (EI). The tectonic boundary between the middle (eastern outermost forearc block) and upper continental slope (western coastal block) is a prominent system of trenchward dipping normal fault scarps (ca. 1 km offset) that resemble a major trenchward dipping extensional fault system. This prominent structural feature can be readily detected along the Chilean erosive margin as well as the two extensional sets (EI and EII). Evidence of slumping, thrusting, reactivated faults and mass transport deposits, were recognised in the slope domain and locally restricted to some eastern dipping faults. These features could be related to gravitational effects or slope deformation due to coseismic deformation. The regional inclination of the pre‐Pliocene sequences favoured the gravitational collapse of the outermost forearc block. We propose that the structural configuration of the study area is dominantly controlled by tectonic erosion as well as the uplift of the Coastal Cordillera, which is partially controlled by pre‐Pliocene architecture.  相似文献   

14.
Two end-members characterize a continuum of continental extensional tectonism: rift settings and highly extended terrains. These different styles result in and are recorded by different extensional basins. Intracontinental rifts (e.g. East Africa, Lake Baikal) usually occur in thermally equilibrated crust of normal thickness. Rift settings commonly display alkali to tholeiitic magmatism, steeply dipping (45–60°) bounding faults, slip rates <1 mm yr-1 and low-magnitude extension (10–25%). Total extension typically requires > 25 Myr. The fault and sub-basin geometry which dominates depositional style is a half-graben bounded by a steeply dipping normal fault. Associated basins are deep (6–10 km), and sedimentation is predominantly axial- or hangingwall-derived. Asymmetric subsidence localizes depocentres along the active basin-bounding scarp. Highly extended continental terrains (e.g. Colorado River extensional corridor, the Cyclade Islands) represent a different tectonic end-member. They form in back-arc regions where the crust has undergone dramatic thickening before extension, and usually reactivate recently deformed crust. Volcanism is typically calc-alkalic, and 80–90% of total extension requires much less time (<10 Myr). Bounding faults are commonly active at shallow dips (15–35°); slip rates (commonly > 2 mm yr-1) and bulk extension (often > 100%) are high. The differences in extension magnitude and rate, volcanism, heat flow, and structural style suggest basin evolution will differ with tectonic setting. Supradetachment basins, or basins formed in highly extended terrains, have predominantly long, transverse drainage networks derived from the breakaway footwall. Depocentres are distal (10–20 km) to the main bounding fault. Basin fill is relatively thin (typically 1–3 km), probably due to rapid uplift of the tectonically and erosionally denuded footwall. Sedimentation rates are high (? 1 m kyr-1) and interrupted by substantial unconformities. In arid and semi-arid regions, fluvial systems are poorly developed and alluvial fans dominated by mass-wasting (debris-flow, rock-avalanche breccias, glide blocks) represent a significant proportion (30–50%) of basin fill. The key parameters for comparing supradetachment to rift systems are extension rate and amount, which are functions of other factors like crustal thickness, thermal state of the lithosphere and tectonic environment. Changes in these parameters over time appear to result in changes to basin systematics.  相似文献   

15.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

16.
Summary. The lithospheric stretching model for the formation of sedimentary basins was tested in the central North Sea by a combined study of crustal thinning and basement subsidence patterns. A profile of crustal structure was obtained by shooting a long-range seismic experiment across the Central Graben, the main axis of subsidence. A seabed array of 12 seismometers in the graben was used to record shots fired in a line 530 km long across the basin. The data collected during the experiment were interpreted by modelling synthetic seismograms from a laterally varying structure, and the final model showed substantial crustal thinning beneath the graben. Subsidence data from 19 exploration wells were analysed to obtain subsidence patterns in the central North Sea since Jurassic times. Changes in water depth were quantified using foraminiferal assemblages where possible, and observed basement subsidence paths were corrected for sediment loading, compaction and changes in water depth through time. The seismic model is shown to be compatible with the observed gravity field, and the small size of observed gravity anomalies is used to argue that the basin is in local isostatic equilibrium. Both crustal thinning and basement subsidence studies indicate about 70 km of stretching across the Central Graben during the mid-Jurassic to early Cretaceous extensional event. This extension appears to have occurred over crust already slightly thinned beneath the graben, and the seismic data suggest that total extension since the early Permian may have been more than 100km. The data presented here may all be explained using a simple model of uniform extension of the lithosphere.  相似文献   

17.
Hatton Bank (northwest U.K.) continental margin structure   总被引:1,自引:0,他引:1  
Summary. The continent-ocean transition near Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic (mcs) profiles. Extensive oceanward dipping reflectors in a sequence of igneous rocks are developed in the upper crust across the entire margin. At the landward (shallowest) end the dipping reflectors overlie continental crust, while at the seaward end they are formed above oceanic crust. Beneath the central and lower part of the margin is a mid-crustal layer approximately 5 km thick that could be either stretched and thinned continental crust or maybe newly formed igneous crust generated at the same time as the dipping reflector sequence. Beneath this mid-crustal layer and above a well defined seismic Moho which rises from 27 km (continental end) to 15 km (oceanic end) across the margin, the present lower crust comprises a 10–15 km thick lens of material with a seismic velocity of 7.3 to 7.4 km/s. We interpret the present lower crustal lens as underplated igneous rocks left after extraction of the extruded basaltic lavas, A considerable quantity of new material has been added to the crust under the rifted margin. The present Moho is a new boundary formed during creation of the margin and cannot, therefore, be used to determine the amount of thinning.  相似文献   

18.
The McKenzie model proposed in 1978, which is widely used in calculating the thermal history of rift basins and other extensional basins, incorrectly assumes that all heat passing through the lithosphere originates below the lithosphere. In reality, heat from radiogenic sources within the lithosphere, especially in the upper crust, may represent more than half the heat flow at the top of basement. Thinning of the lithosphere during extension does indeed result in an increase of heat flowing from the asthenosphere, but this thinning also reduces the radiogenic heat from within the lithosphere. Because these two effects cancel to a large degree, the direct effects of lithospheric extension on heat flow at the top of basement are smaller than those predicted by the McKenzie model. Because of permanent loss of radiogenic material by lithospheric thinning, the heat flow at the top of basement long after rifting will be lower than the pre-rift heat flow.The McKenzie model predicts an instantaneous increase in heat flow during rifting. The Morgan model proposed in 1983, however, predicts a substantial time delay in the arrival of the higher heat flow from the asthenosphere at the top of basement or within sediments. Using the Morgan model, heat flow during the early stages of rifting will actually be lower than prior to rifting, because the time delay in the loss of radiogenic heat is less than the time delay in arrival of new heat from the asthenosphere.  相似文献   

19.
The North Canterbury region marks the transition from Pacific plate subduction to continental collision in the South Island of New Zealand. Details of the seismicity, structure and tectonics of this region have been revealed by an 11-week microearthquake survey using 24 portable digital seismographs. Arrival time data from a well-recorded subset of microearthquakes have been combined with those from three explosions at the corners of the microearthquake network in a simultaneous inversion for both hypocentres and velocity structure. The velocity structure is consistent with the crust in North Canterbury being an extension of the converging Chatham Rise. The crust is about 27 km thick, and consists of an 11 km thick seismic upper crust and 7 km thick seismic lower crust, with the middle part of the crust being relatively aseismic. Seismic velocities are consistent with the upper and middle crust being composed of greywacke and schist respectively, while several lines of evidence suggest that the lower crust is the lower part of the old oceanic crust on which the overlying rocks were originally deposited.
The distribution of relocated earthquakes deeper than 15 km indicates that the seismic lower crust changes dip markedly near 43S. To the south-west it is subhorizontal, while to the north-east it dips north-west at about 10. Fault-plane solutions for these earthquakes also change near 43S. For events to the south, P -axes trend approximately normal to the plate boundary (reflecting continental collision), while for events to the north, T -axes are aligned down the dip of the subducted plate (reflecting slab pull). While lithospheric subduction is continuous across the transition, it is not clear whether the lower crust near 43S is flexed or torn.  相似文献   

20.
Reflectivity of the crystalline crust: hypotheses and tests   总被引:1,自引:0,他引:1  
Summary. The nature of reflectors within the crystalline basement remains the subject of inference except where reflections have been traced directly to outcrop. Geological models of basement reflectors need to be developed which incorporate geophysical constraints obtained from measurements on seismograms, but most geological information still comes from speculative interpretations of seismic experiments run in different regimes. Pronounced lower-crustal reflectivity, detected worldwide, is ascribed in various geological hypotheses to primary lithologic layering, to ductile strain banding, or to trapped fluids. A BIRPS deep crustal profile across the Atlantic continental margin suggests that the observed reflectivity is not related in any simple way to the amount of extensional strain undergone. Study of worldwide crustal profiles shows that exposed high-pressure terranes are not as reflective as in situ lower crust at high pressure, suggesting either that these granulite terranes are not representative of the lower crust or that physical properties, possibly the presence of fluids or thermally controlled ductile strain banding, are more likely responsible for observed reflectivity than are simple lithologic boundaries. The argument for the importance of physical properties in causing observed lower-crustal reflectivity is strengthened by an observed negative correlation between depth to the reflective lower crust and regional surface heat-flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号