首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary. Laboratory seismic velocity measurements on rock samples from metamorphic terrains, coupled with geologic cross sections, provide the basis for synthetic seismic reflection profiles for various types of continental crust. Results from greenstone belts, mylonite zones and partial cross sections of continental crust indicate that lithologic heterogeneity and geometrical factors control crustal reflection characteristics.  相似文献   

3.
Summary. The stretching and thinning of the continental crust, which occurs during the formation of passive continental margins, may cause important changes in the velocity structure of such crust. Further, crust attenuated to a few kilometres' thickness, can be found underlying 'oceanic' water depths. This paper poses the question of whether thinned continental crust can be distinguished seismically from normal oceanic crust of about the same thickness. A single seismic refraction line shot over thinned continental crust as part of the North Biscay margin transect in 1979 was studied in detail. Tau— p inversion suggested that there are differences between oceanic and continental crust in the lower crustal structure. This was confirmed when synthetic seismograms were calculated. The thinned continental crust (β± 7.0) exhibits a two-gradient structure in the non-sedimentary crust with velocities between 5.9 and 7.4 km s−1; an upper 0.8 s−1 layer overlies a 0.4 s−1 layer. No layer comparable to oceanic layer 3 was detected. The uppermost mantle also contains a low-velocity zone.  相似文献   

4.
Deep seismic reflection profiles across the western Barents Sea   总被引:1,自引:0,他引:1  
Summary. The continental crust beneath the western Barents Sea has been acoustically imaged down to Moho depths in a large scale deep seismic reflection experiment. A first-order pattern of crustal reflectivity has been established and the thickness of the crust determined. A number of features with important implications for the tectonics of the area have been discovered. The results are presented in the form of two transects.  相似文献   

5.
Deep seismic reflection studies in Israel - an update   总被引:1,自引:0,他引:1  
Summary. The results of three deep crustal reflection lines are presently available from Israel. A 90 km line from near the Dead Sea rift to the Mediterranean coast was carried out for deep study. Two other lines in the Mediterranean coastal area were derived by recorrelation of oil exploration lines. The data shows a division between continental inner Israel and the coastal plain. In the first area a reflective lower crust is apparent with transparent upper crust and almost transparent upper mantle. Near the coast, in an area which was previously suggested as underlain by an ancient fossil oceanic crust, strong reflections characterize the uppermost mantle. Comparison between the reflection pattern and previous deep refraction and MT data indicates some agreement away from the coast and lack of correlation in the area of possible fossil oceanic crust near the coast.  相似文献   

6.
A seismic-array study of the continental crust and upper mantle in the Ivrea-Yerbano and Strona-Ceneri zones (northwestern Italy) is presented. A short-period network is used to define crustal P - and S -wave velocity models from earthquakes. The analysis of the seismic-refraction profile LOND of the CROP-ECORS project provided independent information and control on the array-data interpretation.
Apparent-velocity measurements from both local and regional earthquakes, and time-term analysis are used to estimate the velocity in the lower crust and in the upper mantle. The geometry of the upper-lower crust and Moho boundaries is determined from the station delay times.
We have obtained a three-layer crustal seismic model. The P -wave velocity in the upper crust, lower crust and upper mantle is 6.1±0.2 km s−1, 6.5±0.3 km s−1 and 7.8±0.3 km s−1 respectively. Pronounced low-velocity zones in the upper and lower crust are not observed. A clear change in the velocity structure between the upper and lower crust is documented, constraining the petrological interpretation of the Ivrea-type reflective lower continental crust derived from small-scale petrophysical data. Moreover, we found a V P/ V S ratio of 1.69±0.04 for the upper crust and 1.82±0.08 for the lower crust and upper mantle. This is consistent with the structural and petrophysical differences between a compositionally uniform and seismically transparent upper crust and a layered and reflective lower crust. The thickness of the lower crust ranges from about 8 km in front of the Ivrea body (ARVO, Arvonio station) in the northern part of the array to a maximum of about 15 km in the southern part of the array. The lower crust reaches a minimum depth of 5 km below the PROV (Provola) station.  相似文献   

7.
8.
Abstract The preferred model for the extension of brittle crust involves the rotation of planar fault blocks. We show that in general the distortion at the ends of the blocks does not affect the measurement of extension. The horizontal displacement on a normal fault, the heave, is observed with little distortion on a seismic reflection time-section. It can be used to estimate the amount of extension. We demonstrate that the sum of the heaves is not equal to the actual elongation if the blocks have rotated. However, the error in the extension factor, β, introduced by equating elongation with the sum of the heaves is small. It increases with the amount of rotation from 0 for no rotation to 13% for the maximum observed angle of rotation of 30o. We compare this value with the practical error introduced by uncertainties in seismic velocities when the elongation is measured from a depth-converted seismic section. This latter error is significantly smaller being approximately 5% for an error in velocity of 20% when the rotation angle is less than 30o.  相似文献   

9.
Summary. Vertical-incidence reflection profiling has identified several characteristic features of the continental Iithosphere including a generally transparent upper crust, a reflective lower crust, reflections from the crust-mantle boundary, and a commonly transparent upper mantle. The underlying physical causes of these characteristic features remain poorly understood. This review summarizes additional information brought to bear on the physical properties of these characteristic crustal structures through the use of coincident wide-angle refraction profiling.  相似文献   

10.
Summary . Plots of seismic velocity and density of rock samples show that a range of densities is possible for rocks of each seismic velocity and vice versa. although a single linear relationship is often assumed in crustal gravity calculations. Because of the scatter, whenever rocks of known seismic velocity are converted to density using this relationship, a reduction is made to the resolving power of the resulting gravity calculation. If these rocks reach thicknesses of more than a few kilometres, then the uncertainties become significant when compared with the size of commonly observed gravity anomalies. Examples are considered from the North Sea, Mississippi and Carolina Trough. It is concluded that the use of a seismic velocity measurement as the only indication of rock density does not provide a useful constraint when attempting to reproduce observed gravity variations. An appropriate model for isostatic compensation is probably the most important factor for successful predictions of crustal structure on the basis of gravity data.  相似文献   

11.
12.
Summary. Czechoslovak deep seismic reflection profiles across the West Carpathians, the first in the Alpine-Himalayan belt, and surface geological data, suggest that the passive margin of the Eurasian plate was obliquely overriden by the upper Carpatho-Pannonian plate during the end of the Krosno sea subduction some 17-14 Ma ago. The following period was dominated by slight oblique continental collision (transpression and transtension) of the West Carpathian-East Alpine continental material escaping from the East Alpine collision zone and Eurasian Brunovistulic passive margin. Crustal shortening in the North was accommodated by significant northerly dipping backthrusting and crustal thickening. Backthrusting is clearly observable on deep seismic lines 2T and 3T. Different subsidence features are present on the deep seismic line 3T. There are active pull-apart graben in the Vienna basin, mid-Miocene (16–10 Ma) low-angle normal faulting in the Danube basin, and there is a normal simple shear zone offsetting the Moho boundary beneath the Danube basin.  相似文献   

13.
14.
15.
Summary. The 300 km ECORS - Bay of Biscay profile was carried out along the Aquitaine shelf and comprised a complete set of experiments including zero-offset and 7.5 km constant offset vertical seismic reflection and six expanding spread profiles. Large offset recordings were fundamental for the definition of the layered lower crust and the Moho, while ESPs provided decisive complementary information for the geological interpretation. These data show a strong variation in crustal thickness from about 20 km beneath the rifted Parentis basin, a failed arm of the oceanic Bay of Biscay, up to 35 km to the north below the Armorican shelf, in the Hercynian domain, and to the south below the Cantabria shelf, in the vicinity of the Pyrenean deformation front. The results have important implications for the behaviour of the crust during the formation of rifted sedimentary basins and during continental collision.  相似文献   

16.
Wide-angle seismic velocities in heterogeneous crust   总被引:5,自引:0,他引:5  
Seismic velocities measured by wide-angle surveys are commonly used to constrain material composition in the deep crust. Therefore, it is important to understand how these velocities are affected by the presence of multiscale heterogeneities. The effects may be characterised by the scale of the heterogeneity relative to the dominant seismic wavelength (λ); what is clear is that heterogeneities of all scales and strengths bias wide-angle velocities to some degree. Waveform modelling was used to investigate the apparent wide-angle P -wave velocities of different heterogeneous lower crusts. A constant composition (50 per cent felsic and 50 per cent ultramafic) was formed into a variety of 1- and 2-D heterogeneous arrangements and the resulting wide-angle seismic velocity was estimated. Elastic, 1-D models produced the largest velocity shift relative to the true average velocity of the medium (which is the velocity of an isotropic mixture of the two components). Thick (width > λ) horizontal layers, as a result of Fermat's Principle, provided the largest increase in velocity; thin (width ≪λ) vertical layers produced the largest decrease in velocity. Acoustic 2-D algorithms were shown to be inadequate for modelling the kinematics of waves in bodies with multiscale heterogeneities. Elastic, 2-D modelling found velocity shifts (both positive and negative) that were of a smaller magnitude than those produced by 1-D models. The key to the magnitude of the velocity shift appears to be the connectivity of the fast (and/or slow) components. Thus, the models with the highest apparent levels of connectivity between the fast phases, the 1-D layers, produced the highest-magnitude velocity shifts. To understand the relationship between measured seismic velocities and petrology in the deep crust it is clear that high-resolution structural information (which describes such connectivity) must be included in any modelling.  相似文献   

17.
18.
Abstract The evolution of a passive margin to a foreland basin is generally assumed to entail early load-induced up warping of the stable continental platform followed by foreland subsidence. This relatively straightforward elastic response of the continental platform, however, may be complicated if the colliding passive margin is irregular in outline. In a tectonic scenario in which an irregular margin is migrating toward a trench (A-subduction), those areas of the margin which project seaward, the continental promontories, would be the first to 'feel' the approaching thrust terrane by flexing upward and eroding to form shelf unconformities. Those parts of the continental margin that are convex to the craton, the continental re-entrants, however, would remain subsiding depocentres unaffected by load-induced uplift at the promontories. Careful analysis of the geographic distribution of shelf unconformities in orogenic belts, then, may help to reveal the pre-deformation morphology of the passive continental margin. An example of this may be found in the early phases of Ordovician foreland basin development in the central Appalachian orogen. Here, the shelf unconformities are most pronounced (greatest erosional relief) at the inferred Virginia and New York continental promontories. An adjacent inferred continental re-entrant, the Pennsylvania re-entrant, is characterized by an uninterrupted Ordovician sequence suggesting that the area of the proto-North American platform, represented by this segment of the orogen, remained a depocentre during uplift in adjacent areas of the continental margin.  相似文献   

19.
20.
The application of high‐resolution seismic geomorphology, integrated with lithological data from the continental margin offshore The Gambia, northwest Africa, documents a complex tectono‐stratigraphic history through the Cretaceous. This reveals the spatial‐temporal evolution of submarine canyons by quantifying the related basin depositional elements and providing an estimate of intra‐ versus extra‐basinal sediment budget. The margin developed from the Jurassic to Aptian as a carbonate escarpment. Followed by, an Albian‐aged wave‐dominated delta system that prograded to the palaeo‐shelf edge. This is the first major delivery of siliciclastic sediment into the basin during the evolution of the continental margin, with increased sediment input linked to exhumation events of the hinterland. Subaqueous channel systems (up to 320 m wide) meandered through the pro‐delta region reaching the palaeo‐shelf edge, where it is postulated they initiated early submarine canyonisation of the margin. The canyonisation was long‐lived (ca. 28 Myr) dissecting the inherited seascape topography. Thirteen submarine canyons can be mapped, associated with a Late Cretaceous‐aged regional composite unconformity (RCU), classified as shelf incised or slope confined. Major knickpoints within the canyons and the sharp inflection point along the margin are controlled by the lithological contrast between carbonate and siliciclastic subcrop lithologies. Analysis of the base‐of‐slope deposits at the terminus of the canyons identifies two end‐member lobe styles, debris‐rich and debris‐poor, reflecting the amount of carbonate detritus eroded and redeposited from the escarpment margin (blocks up to ca. 1 km3). The vast majority of canyon‐derived sediment (97%) in the base‐of‐slope is interpreted as locally derived intra‐basinal material. The average volume of sediment bypassed through shelf‐incised canyons is an order of magnitude higher than the slope‐confined systems. These results document a complex mixed‐margin evolution, with seascape evolution, sedimentation style and volume controlled by shelf‐margin collapse, far‐field tectonic activity and the effects of hinterland rejuvenation of the siliciclastic source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号