首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Permeability measured with a portable probe permeameter on outcrops of cross-bedded sandstones ranges between 0·9 and 19 D. The highest permeability (2–19 D with an average of 8·5 D) occurs in the coarsest grained foreset laminae (CFL), intermediate values (2–12 D with an average of 5·3 D) occur in finer grained foreset laminae (FFL) and the lowest values (0·9–10 D with an average of 4·8 D) occur in bottomset layers (BL). In the cross-beds the average grain size ranges from medium grained sand in the CFL to fine grained sand in the FFL and BL. In all three subfacies, the average size of the primary pores is approximately 1φ unit smaller than the average grain size. The abundance of unstable carbonate clasts correlates with increasing average grain size, micritic clasts being most abundant in the CFL. Conversely, quartz content increases with decreasing grain size and is highest in the FFL and BL. Diagenetic destruction of primary porosity by compaction and cementation, as well as generation of secondary porosity through dissolution, were controlled by the original mineralogical composition of the sand. Contrasts in grain size determine the primary pore size contrasts and differences in composition between CFL, FFL and BL. Permeability contrasts reflect variations in average primary pore size rather than differences in total porosity. Probe permeability contrasts between CFL, FFL and BL depend on contrasts in average pore size and contrasts in mineralogical composition between the subfacies.  相似文献   

2.
Most techniques for estimating settling velocities of natural particles have been developed for siliciclastic sediments. Therefore, to understand how these techniques apply to bioclastic environments, measured settling velocities of bioclastic sedimentary deposits sampled from a nearshore fringing reef in Western Australia were compared with settling velocities calculated using results from several common grain‐size analysis techniques (sieve, laser diffraction and image analysis) and established models. The effects of sediment density and shape were also examined using a range of density values and three different models of settling velocity. Sediment density was found to have a significant effect on calculated settling velocity, causing a range in normalized root‐mean‐square error of up to 28%, depending upon settling velocity model and grain‐size method. Accounting for particle shape reduced errors in predicted settling velocity by 3% to 6% and removed any velocity‐dependent bias, which is particularly important for the fastest settling fractions. When shape was accounted for and measured density was used, normalized root‐mean‐square errors were 4%, 10% and 18% for laser diffraction, sieve and image analysis, respectively. The results of this study show that established models of settling velocity that account for particle shape can be used to estimate settling velocity of irregularly shaped, sand‐sized bioclastic sediments from sieve, laser diffraction, or image analysis‐derived measures of grain size with a limited amount of error. Collectively, these findings will allow for grain‐size data measured with different methods to be accurately converted to settling velocity for comparison. This will facilitate greater understanding of the hydraulic properties of bioclastic sediment which can help to increase our general knowledge of sediment dynamics in these environments.  相似文献   

3.
Entrainment of planktonic foraminifera: effect of bulk density   总被引:1,自引:0,他引:1  
Depositional hydrodynamics have been studied using settling rate distributions of Norwegian deep sea sediments (between Jan Mayen Island and the Vøring Plateau), together with Shields’ critical shear stress velocities. Planktonic foraminifera are the dominant sand sized component of these sediments. The bulk density of the foraminifera was calculated from their settling velocity, sieve size and shape. Density decreases from 2·39 g cm?3 at 0·05 mm diameter to 1·37 g cm?3 at 0·35 mm diameter. These density and size data were used to construct a threshold sediment movement curve. From the similarity in their Shield's critical shear-stress velocities and the observed correlation of foraminifera size with decreasing percentage of fine fraction, it is concluded that the two components, the sand size foraminifera and the quartz and carbonate silt, are transport-equivalent.  相似文献   

4.
动态图像法、镜下测量法在地下沉积岩粒度分析中的应用研究较为薄弱。对塔里木轮南地区X100井三叠系水下分流河道12块砂岩样品分别采用以上两种方法进行粒度测试,将所测得的各组分含量、粒度曲线及粒度参数进行对比分析,并对镜下测量法粒度结果开展校正研究,以使这两种方法在今后能更广泛地运用于粒度分析。研究结果表明:相较于镜下测量法,动态图像法检测粗组分含量偏大而细组分含量偏小,黏土—粉砂组分和中砂组分是两种方法产生差异的分界线。检测颗粒数目的悬殊和岩石类型是两种方法存在差异的主要原因,测试方法的量程、测量原理和颗粒形状也会造成一定的影响。基于岩性的镜下测量法粒度结果校正,使两种方法的细砂—粗砂组分含量、粒径参数的相关系数从0.25~0.80提高到0.88~0.95,达到了校正基本目的,其准确性得到有效的提高。  相似文献   

5.
Terminal settling velocity of commonly occurring sand grains   总被引:2,自引:0,他引:2  
Published measurements of terminal settling velocity for commonly occurring sands are used to develop three equations which join into a single segmented curve of dimensionless form. Results are noticeably different from those for spheres of similar diameter, and permit calculation of the settling velocity for usual sand grains without specification of exact grain shape. For quartz in water, the three equations of different settling regimes correspond approximately to: very fine sand; fine to coarse sand; and very coarse sand.  相似文献   

6.
Settling velocity of bioclastic particles in coastal and shallow marine environments is essential for interpreting depositional facies and processes. There is, however, a paucity of accurate formulae for predicting the settling velocities and drag coefficients of platy biogenic particles in particular. This study provides experimental settling data based on 320 platy shell fragments from a sediment core recovered in Li'an Lagoon, south-eastern Hainan Island, China. The results indicate that the settling velocities of platy shell fragments are strongly correlated with nominal diameters and Corey shape factors (ranging from 0.02 to 0.20 in this study). On this basis, a practical equation of acceptable accuracy was established for platy particles, relating dimensionless settling velocities to dimensionless diameters and Corey shape factors. Similarly, another empirical formula for quickly calculating the equivalent diameter of platy shell fragments in practice was proposed as well. Regarding the strong dependence of the drag coefficients using equivalent spherical diameters to Corey shape factors, the drag coefficient based on the diameter of the equivalent maximum projected area remains almost constant and is hence physically well-suited for the definition of grain drag coefficients. The settling data of this study has extended the lower Corey shape factors limit of bioclastic particles, and the equations presented here can be used for quantitative interpretations of sedimentary records, modelling of depositional processes and investigations of other platy particles.  相似文献   

7.
Important to grain entrainment by a flowing fluid is the pivoting angle of the grain about its contact point with an underlying grain. A series of experiments has been undertaken to determine how this angle depends on grain shape (rollability and angularity), on the ratio of the size of the pivoting grain to those beneath, and on factors such as imbrication. The experiments involved gravel-sized spheres (ball-bearings and marbles), natural pebbles selected for their approximately triaxial ellipsoid shapes, and angular crushed basalt pebbles. The pivoting angles for these grains were measured on an apparatus consisting of a board which can be progressively inclined, the angle of the board being equal to the pivoting angle at the instant of grain movement. The pivoting angles of spheres showed reasonable agreement with a theoretically derived equation, showing much better agreement than in previous studies which utilized sand-sized spheres. A series of measurements with spheres ranging from sand to gravel sizes reveals that the pivoting angles decrease with increasing particle size. Our results are therefore consistent with the earlier studies limited to sand-size spheres. The cause of this size dependence is unknown since moisture and electrostatic binding can be ruled out. Similar size dependencies are also found for the ellipsoidal pebbles and angular gravel. The experiments with ellipsoidal pebbles demonstrated a strong shape dependence for the pivoting angle, being a function of the ratio of the pebble's smallest to intermediate axial diameters. This ratio controls the grain's ability to roll and pivot; with small ratios of these diameters the pebbles tended to slide out of position, whereas with ratios closer to unity (circular cross-section) true pivoting took place and the angles were smaller. Experiments with flat pebbles placed in an imbricated arrangement yielded much larger angles than when the pebbles lay in a horizontal position, the pivoting angle being increased approximately by the imbrication angle. The angular crushed gravel also required high pivoting angles, apparently due to interlocking of the grains resulting from their angularity. Other factors being equal, the measurements of pivoting angles demonstrate that the order of increasing difficulty of entrainment is spheres, ellipsoidal grains, angular grains, and imbricated grains. The results obtained here make possible the quantitative evaluation of these shape effects on grain threshold, as well as evaluation of the selective entrainment of grains from a bed of mixed sizes.  相似文献   

8.
昌黎海岸风成沙丘砂组构特征及其与海滩砂的比较   总被引:11,自引:0,他引:11       下载免费PDF全文
对昌黎海岸沙丘砂进行薄片统计,重砂矿物分析,电镜扫描,粒度分析及与海滩砂的对比研究发现,沙丘砂在物质组成、颗粒形态、石英砂表面结构特征和粒度特征方面均继承了海滩砂特征,不过,海滩砂中也有沙丘砂的某些特征,反映了两者沉积的混合。这是由于向岸风和离岸风共同作用的结果。  相似文献   

9.
ABSTRACT A measure of grain shape is needed for incorporation in calculations of the behaviour of grain populations (for example during transport by fluids). Many shape measures have been proposed, most of them for application to single grains rather than to populations. In this paper three such shape parameters are evaluated for samples taken by size fraction from each of three parent sands. The chosen parameters are the maximum projection sphericity of Sneed & Folk (based on triaxial measurements made on the grains), the dynamic shape factor of Briggs (based on settling velocity in water), and rollability, after Winkelmolen (based on rolling behaviour in a specially mounted rotating cylinder).
It is shown that the Sneed & Folk parameter and rollability both discriminate clearly between the shape characteristics of the three sands over the size range 150-500 μm. Moreover the discrimination of the two parameters is mutually consistent. However, dynamic shape factor gives results which for sizes smaller than 300 μm are inconsistent with those of the other two methods and which do not discriminate reliably between the populations. This is inevitable because the differences between drag on spheres and on other shapes become very small at Reynolds Numbers corresponding to those which obtain in settling tests on grains smaller than 300 μm.  相似文献   

10.
Settling velocities and entrainment thresholds of biogenic sedimentary particles, under unidirectional flow conditions, are derived on the basis of settling tower and laboratory flume experiments. Material consisting predominantly of equant blocks (shell fragments of Cerastoderma edule , density, ρ s=2800 kg m−3) or of mica-like flakes and elongate rods ( Mytilus edulis fragments, ρ s=2720 kg m−3) are used in separate series of experiments. Differences in the measured settling and threshold properties are related primarily to particle shape. The selection of a characteristic length scale for non-spherical grains is investigated by comparing two approaches used to define the grain size ( D ) of the sediment samples: grain settling and sieve analysis that are used to derive data for the threshold criteria, in terms of the Shields and Movability diagrams. The empirical curves effectively predict the threshold conditions for any grain shape, provided that grain size is defined in terms of grain settling velocity. However, a functional distinction is made between the characteristic `hydraulic' grain size, defined by grain settling for grain transport applications, and the actual (physical) grain size defined by sieve analysis.  相似文献   

11.
This paper evaluates the influence of natural sand particle characteristics on the amount and particle-size distributions of dust produced by aeolian abrasion. It contrasts with previous studies of aeolian abrasion by conducting experiments using: (i) whole sand samples, as opposed to selected size fractions; (ii) natural, mature dune sands, rather than artificial or freshly crushed material; and (iii) weathered sands that have acquired a superficial clay coating, instead of grains with clean surfaces. Whilst previous research has found clear, positive relationships between particle size, sorting, roundness and the amount of dust produced by aeolian abrasion, the relationships determined in this study show some variation according to the geomorphological context from which the original samples were obtained. The most important factor affecting the amount and particle-size characteristics of the dust produced was the presence of a clay coating on the grain surface that is removed by the abrasion process. The dust produced by this mechanism had a modal size of 2–5  μ m and material <10  μ m comprised up to 90% of the particles produced.  相似文献   

12.
Characterization of alluvial bajada facies distribution using TM imagery   总被引:1,自引:0,他引:1  
Automatic mapping techniques using multiband satellite image information have been used to study sediment grain‐size variations on an alluvial bajada. A previous study of sparsely vegetated alluvial surfaces in central‐western Argentina showed that the reflectivity recorded in seven‐band Landsat TM images is controlled by sediment composition, age and grain size. At diameters >4 mm, clast composition influences image information, while at grain sizes smaller than sand, clay mineralogy begins to influence spectral characteristics. The progressive increase in desert varnish and the loss of fine grain‐size fractions as a result of deflation cause the age influence. The bajada sedimentary environment is well suited for testing the influence of grain‐size variability on image recovery, as most drainage basins are small and sourced by a single geological unit, which produces compositionally homogeneous alluvial surfaces. Additionally, most drainage lines are active within intervals of 10–50 years, reducing the effect of surface ageing. Larger than average drainage basins produce oversized drainage lines that disrupt the bajada, generate individual alluvial fans and have slightly different compositions. Two typical bajadas were selected to map grain‐size characteristics using automatic classification techniques. The obtained classes were checked in the field, and grain‐size and compositional counts were completed. Although both bajadas are very different in composition, most grain‐size curves showed similar shapes, suggesting that deposition took place by the same process (hyperconcentrated flash floods). The values of the median and mean were consistent across the same class between both bajadas. Thus, unsupervised classification techniques are useful for mapping sediment grain size, although minor field control is needed. Image classes represent areas of similar grain size, which are elongated parallel to the mountain front in an active alluvial bajada, indicating a homogeneous distribution of sedimentary processes along strike. Changes in the width of image classes indicate different downstream fining rates closely related to the topographic gap and the slope change rate. In contrast to bajadas, alluvial fans have semi‐circular belts and a pie‐piece‐shaped area in which most active streams are located. Thus, unlike fans, bajadas lack autocyclic mechanisms for producing heterogeneous sedimentary sequences. The sedimentary log of an ancient bajada was measured in order to show the influence of allocyclic factors in the absence of autocyclicity.  相似文献   

13.
吴野  王胤  杨庆 《岩土力学》2018,39(9):3203-3212
钙质砂作为南海岛礁填筑常用的岩土材料,其渗透性很大程度上决定着填筑后土体的固结和沉降。拖曳力系数是表达流体对土体颗粒表面力的参数,也是表征颗粒状土体渗透能力的一个重要参数,目前国内外对钙质砂拖曳力系数的研究十分有限。首先引入一个修正的三维参数 对钙质砂这种天然非规则颗粒材料的形状进行定量描述,然后开展一系列单个钙质砂颗粒在液体中沉降试验,利用高速相机记录颗粒沉降过程,结合图像处理技术获得颗粒沉降平衡速度Ut,进而计算出拖曳力系数CD和雷诺数Re,最后拟合出包含CD、Re及 三个参数的钙质砂拖曳力系数半经验模型。结果发现,在相同雷诺数条件下钙质砂的形状系数 越大,拖曳力系数越小。通过与其他研究结果对比发现,其表面微孔隙越发育,拖曳力系数越小的规律。该模型能够考虑不规则颗粒形状对拖曳力系数的影响,从而提高对土体渗透性预测的精度,对南海岛礁填筑工程中钙质砂固结和沉降的计算也具有重要意义。  相似文献   

14.
The settling behaviour of particulate suspensions and their deposits has been documented using a series of settling tube experiments. Suspensions comprised saline solution and noncohesive glass‐ballotini sand of particle size 35·5 μm < d < 250 μm and volume fractions, φs, up to 0·6 and cohesive kaolinite clay of particle size d < 35·5 μm and volume fractions, φm, up to 0·15. Five texturally distinct deposits were found, associated with different settling regimes: (I) clean, graded sand beds produced by incremental deposition under unhindered or hindered settling conditions; (II) partially graded, clean sand beds with an ungraded base and a graded top, produced by incremental deposition under hindered settling conditions; (III) graded muddy sands produced by compaction with significant particle sorting by elutriation; (IV) ungraded clean sand produced by compaction and (V) ungraded muddy sand produced by compaction. A transition from particle size segregation (regime I) to suppressed size segregation (regime II or III) to virtually no size segregation (IV or V) occurred as sediment concentration was increased. In noncohesive particulate suspensions, segregation was initially suppressed at φs ~ 0·2 and entirely inhibited at φs ≥ 0·6. In noncohesive and cohesive mixtures with low sand concentrations (φs < 0·2), particle segregation was initially suppressed at φm ~ 0·07 and entirely suppressed at φm ≥ 0·13. The experimental results have a number of implications for the depositional dynamics of submarine sediment gravity flows and other particulate flows that carry sand and mud; because the influence of moving flow is ignored in these experiments, the results will only be applicable to flows in which settling processes, in the depositional boundary, dominate over shear‐flow processes, as might be the case for rapidly decelerating currents with high suspended load fallout rates. The ‘abrupt’ change in settling regimes between regime I and V, over a relatively small change in mud concentration (<5% by volume), favours the development of either mud‐poor, graded sandy deposits or mud‐rich, ungraded sandy deposits. This may explain the bimodality in sediment texture (clean ‘turbidite’ or muddy ‘debrite’ sand or sandstone) found in some turbidite systems. Furthermore, it supports the notion that distal ‘linked’ debrites could form because of a relatively small increase in the mud concentration of turbidity currents, perhaps associated with erosion of a muddy sea floor. Ungraded, clean sand deposits were formed by noncohesive suspensions with concentrations 0·2 ≤ φs ≤ 0·4. Hydrodynamic sorting is interpreted as being suppressed in this case by relatively high bed aggradation rates which could also occur in association with sustained, stratified turbidity currents or noncohesive debris flows with relatively high near‐bed sediment concentrations.  相似文献   

15.
On the frequency distribution of turbidite thickness   总被引:1,自引:0,他引:1  
The frequency distribution of turbidite thickness records information on flow hydrodynamics, initial sediment volumes and source migration and is an important component of petroleum reservoir models. However, the nature of this thickness distribution is currently uncertain, with log‐normal or negative‐exponential frequency distributions and power‐law cumulative frequency distributions having been proposed by different authors. A detailed analysis of the Miocene Marnoso Arenacea Formation of the Italian Apennines shows that turbidite bed thickness and sand‐interval thickness within each bed have a frequency distribution comprising the sum of a series of log‐normal frequency distributions. These strata were deposited predominantly in a basin‐plain setting, and bed amalgamation is relatively rare. Beds or sand intervals truncated by erosion were excluded from this analysis. Each log‐normal frequency distribution characterizes bed or sand‐interval thickness for a given basal grain‐size or basal Bouma division. Measurements from the Silurian Aberystwyth Grits in Wales, the Cretaceous Great Valley Sequence in California and the Permian Karoo Basin in South Africa show that this conclusion holds for sequences of disparate age and variable location. The median thickness of these log‐normal distributions is positively correlated with basal grain‐size. The power‐law exponent relating the basal grain‐size and median thickness is different for turbidites with a basal A or B division and those with only C, D and E divisions. These two types of turbidite have been termed ‘thin bedded’ and ‘thick bedded’ by previous workers. A change in the power‐law exponent is proposed to be related to: (i) a transition from viscous to inertial settling of sediment grains; and (ii) hindered settling at high sediment concentrations. The bimodal thickness distribution of ‘thin‐bedded’ and ‘thick‐bedded’ turbidites noted by previous workers is explained as the result of a change in the power‐law exponent. This analysis supports the view that A and B divisions were deposited from high‐concentration flow components and that distinct grain‐size modes undergo different depositional processes. Summation of log‐normal frequency distributions for thin‐ and thick‐bedded turbidites produces a cumulative frequency distribution of thickness with a segmented power‐law trend. Thus, the occurrence of both log‐normal and segmented power‐law frequency distributions can be explained in a holistic fashion. Power‐law frequency distributions of turbidite thickness have previously been linked to power‐law distributions of earthquake magnitude or volumes of submarine slope failure. The log‐normal distribution for a given grain‐size class observed in this study suggests an alternative view, that turbidite thickness is determined by the multiplicative addition of several randomly distributed parameters, in addition to the settling velocity of the grain‐sizes present.  相似文献   

16.
Bioclastic particles derived from mollusc shell debris can represent a significant fraction of sandy to gravelly sediments in temperate and cool‐water regions with high carbonate productivity. Their reworking and subsequent transport and deposition by waves and currents is highly dependent on the shape and density of the particles. In this study, the hydrodynamic behaviour of shell debris produced by eight mollusc species is investigated for several grain sizes in terms of settling velocity (measurements in a settling tube) and threshold of motion under unidirectional current (flume experiments using an acoustic profiler). Consistent interspecific differences in settling velocity and critical bed shear stress are found, related to differences in shell density, shell structure imaged by scanning electron microscopy and grain shape. Drag coefficients are proposed for each mollusc species, based on an interpolation of settling velocity data. Depending on the shell species, the critical bed shear stress values obtained for bioclastic particles fall within or slightly below empirical envelopes established for siliciclastic particles, despite very low settling velocity values. The results suggest that settling velocity, often used to describe the entrainment of sediment particles through the equivalent diameter, is not a suitable parameter to predict the initiation of motion of shell debris. The influence of the flat shape of bioclastic particles on the initiation of motion under oscillatory flows and during bedload and saltation transport is yet to be elucidated.  相似文献   

17.
激光粒度仪的广泛应用带来了与历史数据的对比问题,因此需要建立激光粒度仪与早期分析结果之间的关系。根据江苏海岸潮滩沉积物样品的激光粒度仪和移液管—筛析法分析,对粒度参数、粒度组分等进行了对比,对两种方法的差异进行了分析。结果表明,对于江苏潮滩沉积物粒度参数中平均粒径的激光粒度仪与移液管—筛析分析结果之间有良好的线性关系;筛分法测得的粗颗粒物质较激光法偏少,而移液管法法测得的细颗粒物质较激光法偏多;将样品分类之后再进行两种方法所获粒度参数的回归分析,相关性得以提高,说明不同粒度组成的沉积物对分析结果的对比有不同的影响。两种方法之间的换算关系不仅与研究区域有关,而且与沉积物本身的粒度组成有关。  相似文献   

18.
仝长亮  高抒 《沉积学报》2008,26(1):46-53
激光粒度仪的广泛应用带来了与历史数据的对比问题,因此需要建立激光粒度仪与早期分析结果之间的关系。根据江苏海岸潮滩沉积物样品的激光粒度仪和移液管-筛析法分析,对粒度参数、粒度组分等进行了对比,对两种方法的差异进行了分析。结果表明,对于江苏潮滩沉积物粒度参数中平均粒径的激光粒度仪与移液管-筛析分析结果之间有良好的线性关系;筛分法测得的粗颗粒物质较激光法偏少,而移液管法法测得的细颗粒物质较激光法偏多;将样品分类之后再进行两种方法所获粒度参数的回归分析,相关性得以提高,说明不同粒度组成的沉积物对分析结果的对比有不同的影响。两种方法之间的换算关系不仅与研究区域有关,而且与沉积物本身的粒度组成有关。  相似文献   

19.
金宗川 《岩土力学》2018,39(7):2583-2590
砂土的天然休止角对土堆设计、基坑设计和边坡稳定性研判有重要的指导意义。砂土的天然休止角受土颗粒的摩擦特性、颗粒形状、粒径和含水状态等诸多因素的影响。开展了钙质砂的天然休止角试验,研究了多种因素对钙质砂天然休止角的影响规律。结果表明:钙质砂3种常见颗粒形状中,片状休止角最大,枝棒状次之,块状最小;钙质砂天然休止角随着粒径的增大而增大;当平均粒径相同时,天然休止角随着不均匀系数的增大而增大,随着曲率系数的增大而减少;通过与标准石英砂的对比试验发现,石英砂的天然休止角小于钙质砂天然休止角。对现场钙质砂边坡测量后表明,钙质砂地基经过振冲挤密后基坑开挖最大坡角略大于室内测得的天然休止角。研究结果对钙质砂土堆和基坑设计等工程实践有一定指导意义。  相似文献   

20.
An equal settling ratio is an important factor in estimating particle separation accuracy. However, this factor is often calculated using the settling velocity in stationary water, there are no examples of calculation of the equal settling ratio in an actual separator. This is difficult because particle movement in a separator is very complicated, and even simple periodic motions, such as the oscillation field used with many separators, are ignored in many cases. The authors have previously reported on the relation between the equal settling ratio and the oscillation frequency by analysis of particle movement in vertically oscillating water, using spherical particles of glass (average size 435 μm) and zirconia (202 μm) which have the same settling velocity in stationary water. In this study, the influence of particle diameter on the change in the settling velocity in oscillating water was experimentally investigated for three pairs of glass and zirconia particles having different sizes under 0.5 mm, which have the same settling velocity in stationary water. The settling velocities of different-sized particles decreased at different rates in oscillating water, indicating that the equal settling ratio is reduced by water oscillation. We conclude that water oscillation improves the accuracy of size separation for glass particles over 300 μm and zirconia particles over 150 μm when glass and zirconia particles are separated from each other with the difference of these settling velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号