首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The desert and sandy land are the products of arid climate. The spatial distribution of modern deserts and sandy land in China and their relation to climate show following characteristics: arid and hyper-arid desert zones, at isohyet of less than 200 mm, are dominated by mobile dunes; semi-arid steppe and arid desert steppe with the precipitation between 200–400 mm, are dominated by semi-fixed and fixed sand dunes; the precipitation of sub-humid forest grassland and humid forest zones with scattered fixed sand land is higher than 400 mm. With this as reference, in combination with considerable amount of paleoclimatic data in desert regions and adjacent regions, the distributions of desert and sandy land in China during the last interglacial period, the last glacial maximum (LGM), and the Holocene megathermal, were preliminarily reconstructed. The results compared with that of today show that the distribution of desert and sandy land in China was greatly dwindled during last interglacial period, and the mobile dune area was about two-thirds of that of today’s, but greatly expanded during LGM. However, the dwindling area of desert and sandy land in the Holocene megathermal was smaller than that in the last interglacial period. The forcing mechanism was mainly related to the changes of East Asian winter and summer monsoon, south-northward swing of the westerlies and the variations of the Qinghai-Tibet Plateau monsoon intensity caused by global climate changes during the cold and warm intervals since the last interglacial period.  相似文献   

2.
The impact of global warming on the climate of northern China has been investigated intensively, and the behavior of the East Asian monsoon during previous intervals of climatic warming may provide insight into future changes. In this study, we use paleovegetation records from loess and lake sediments in the marginal zone of the East Asian summer monsoon(EASM) to reconstruct the EASM during the interval of warming from the Last Glacial Maximum(LGM) to the Holocene. The results show that during the LGM, desert steppe or dry steppe dominated much of northern China; in addition, the southeastern margin of the deserts east of the Helan Mountains had a distribution similar to that of the present-day, or was located slightly further south, due to the cold and dry climate caused by a strengthened East Asian winter monsoon(EAWM) and weakened EASM. During the last deglaciation, with the strengthening of the EASM and concomitant weakening of the EAWM, northern China gradually became humid. However, this trend was interrupted by abrupt cooling during the Heinrich 1(H1) and Younger Dryas(YD) events. The EASM intensified substantially during the Holocene, and the monsoon rain belt migrated at least 300 km northwestwards, which led to the substantial shrinking of the desert area in the central and eastern part of northern China, and to the large expansion of plants favored by warm and humid conditions. Paleoclimatic records from the marginal zone of the EASM all show that the EASM reached its peak in the mid-Holocene, and past global climatic warming significantly strengthened the EASM, thereby greatly improving the ecological environment in northern China. Thus, northern China is expected to become wetter as global warming continues. Finally, high resolution Holocene vegetation records are sparse compared with the numerous records on the orbital timescale, and there is a need for more studies of Holocene climatic variability on the centennial-to-decadal scale.  相似文献   

3.
Based on the geological records, the palaeomonsoon in eastern desert region of China is divided into three major evolution stages, i.e. summer monsoon prevailing stage of last interglacial period (130-70kaB.P.), winter monsoon prevailing stage of last glacial period (70-10 kaB. P.), and unstable summer monsoon prevailing stage of postglacial period (10 kaB. P. to present) and further divided into several substages. The conversion between summer monsoon and winter monsoon in the region is dominated by the sudden change process. The north limit of summer monsoon in the region retreated to the north limit of sandy loess zone of the Loess Plateau in the last glacial period from the Mazong Mts. -Ulan Bator of last interglacial period, then it entered Shandan-Yabrai region in the optimum period of the Holocene, and finally it retreated to the present extended line from north piedmont of the Yinshan Mts to Hulun Buir. This shows that the summer monsoon caused by East Asian monsoon circulation tends to be weakened fluctuationally. However, the factors affecting the monsoon vicissitudes are complex, so special attention should be paid to the study of the short-period climatic fluctuations of the Holocene.  相似文献   

4.
Taking the Chagelebulu Stratigraphic Profile as a typical example, a comprehensive study has been conducted to elucidate the palaeoclimatic and geomorphic evolution patterns in the southern fringe of the Badain Jaran Desert, which were found to be complex and polycyclic in the past 130 ka. However, the fluctuating magnitude is not as remarkable as that in the eastern China sandy region. The shift in climate from interglacial to glacial and the uplift process of the Qinghai–Xizang Plateau are the two leading forces driving the evolution of the climate and desert landforms in this area. Seventeen cycles of cold, dry and warm, humid climatic stages were recognized in the Upper Pleistocene Series of the profile. The sharp uplift of the Qinghai–Xizang Plateau superimposed a cool and arid climatic trend in this area. As a result of the climatic changes, the desert in this area has undergone multiple stages of expansion and contraction since 130 ka bp . The middle Holocene Epoch and the early stage of the Late Pleistocene Period were the main periods when the sand dunes became stabilized, and the early and late phases of the Holocene Epoch and late phase of the Pleistocene Epoch were the main periods when the previously stabilized sand dunes became mobile. The late phase of the Pleistocene Epoch was the most mobile stage, when the aeolian sand activities formed the essential geomorphic pattern of the Badain Jaran Desert. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
China's Loess Plateau was formed under special conditions. The tectonic movement, topographical characteristics, and monsoon patterns combined to create a favourable environment for the accumulation of thick loessic deposits. The Loess Plateau itself is part of the ‘Monsoon Triangle’ of China, a region very susceptible to climatic changes. Throughout the Upper Pleistocene the palaeoenvironment on the Loess Plateau alternated from steppe, to deciduous forest and coniferous forest, in response to shifts in the atmospheric circulation. Three monsoon patterns appear to be indicated: (1) a full glacial monsoon pattern (18000–15000 yr BP) which induced a cold and dry climate favouring loess accumulation in steppe conditions; (2) an interglacial monsoon pattern (last interglacial and Holocene) in which a warm humid climate prevailed with deciduous forests, leaving palaeosols interbedded within the loess sequence; and (3) a transitional or interstadial monsoon pattern (50 000–23 000 yr BP) in which the climate was cold and humid in the Loess Plateau, encouraging the development of coniferous forest.  相似文献   

6.
Climatic changes in the Tarim River basin since 12 kaBP were divided into four stages based on the analyses of sedimentary phase, the features of some climatic and environmental biomarks in the sedimentary strata and desert evolution. During the Holocene, cool-dry and temperate-dry climates resulted in apparent alluvial-fluvial and weak aeolian activities. During 10–8 kaBP, the climate was dry and cold, large-scale sand dunes activities led to regional deeert expansion. During the hypsithermal (8–3 kaBP), the climate was dry and warm, shifting sand areas decreased and a lot of sand dunes were fixed along the banks of the Tarim River and its tributaries, lowlands and lakes. As a result, fluvial-alluvial areas increased. Since 3 kaBP, the aeolian activity and sandstorms have been enhancing due to the combined influences of climatic warming and illogicill exploitation of land and water resources. The climate in the Tarim River basin have been persistently dry and alternated by warm and cold periods. Consequently, the sedimentary environments have varied fmm desert steppe to desert, and strongly influenced by periphery mountains and global climatic fluctuations.  相似文献   

7.
The Hulunbuir dune field (HLB) is situated near the northern limit of the East Asian summer monsoon (EASM), and vulnerable to climate change. The aeolian sand–paleosol sequences of this region are crucial for understanding the past landform processes in response to climate change, but not yet understood well due to chronological controversies. Here, we presented 20 optically stimulated luminescence (OSL) ages from five aeolian sand–paleosol profiles in the HLB, and reconstructed the aeolian landform processes since 18 ka. The findings of this study suggested that the HLB was probably dominated by mobile dunes before 18 ka, as 10 out of 11 aeolian samples were dated to 18–12 ka. Two strong sandy paleosol layers were found and dated to ∼9 ka and 5–0.5 ka, indicating that strong in situ pedogenic process on the accumulative sand could occur during the Holocene. The OSL ages of samples near the top of three profiles were >9.5 ka, indicating two possible surface processes. First, the land surface was stable since 9.5 ka after stabilization, with no accumulation or erosion. Alternatively, the surface could have been erosive with the eroded sediments feeding downwind active dunes. The latter explanation is consistent with the current local landforms, which has widespread blowout pits, indicators of strong wind erosion. We emphasized that the OSL age of a sand layer sample in fossil dunes implied the onset of mobile dune stabilization, not the age of dune activity, as previously stated.  相似文献   

8.
中国末次冰盛期以来湖泊水量变化及古气候变化机制解释   总被引:2,自引:0,他引:2  
薛滨  于革 《湖泊科学》2005,17(1):35-40
中国古湖泊数据库收录的42个湖泊,提供的湖泊水量每千年变化的空间信息,可以用来系统分析中国区域末次冰盛期以来大气环流变化的状况.研究结果表明:我国西部从末次冰盛期以来直至全新世中期均为较湿润的气候状况,推测冰期内的湿润条件主要与西风带的降水以及低温低蒸发密切相关,而全新世主要为夏季风降水增加所致;全新世晚期气候趋干明显.我国东部的大部分区域在冰盛期和晚冰期较为干旱;只是在全新世有效降水状况才有大幅度的改善,全新世中期夏季风降水的效应仍然相当显著,控制的范围可达整个中国西部,同时位于现代季风气候区的中国东部,有效降水的峰值区的变化似乎存在从北往南的穿时性,南方有效降水峰值出现在晚全新世.而西南季风区湿润状况的明显改善发生在晚冰期,比东南季风区发生的早,显然这与两个季风系统的相互消长有一定的关系.我国东北区的湿润状况改善的也较早,显示了独特的季风气候机制.  相似文献   

9.
Episodic dune formations during the Quaternary are found in many deserts of China. The causes of desert expansions on different time scales are not the same. Desert extension at about 1.1 and 0.9 Ma ago were the response to the active tectonic movements, whereas the desert evolutions on the ten-thousand years time scale were the response to the orbital scale climatic changes. Spatial scale studies on desert evolution indicate that desert margins shifted greatly during the last glacial maximum (LGM) and the Holocene optimum, its changing from 125°E of the LGM to 105°E of the climatic optimum. Historical desertification in the semiarid China is not a response to climate drought but largely associated with the human impacts (mainly over-cultivation) since about 2300 years ago, which leads to the reworking of the underlying LGM sands.  相似文献   

10.
Reconstructing the spatial patterns of regional climate and vegetation during specific intervals in the past is important for assessing the possible responses of the ecological environment under future global warming scenarios. In this study, we reconstructed the history of regional vegetation and climate based on six radiocarbon-dated pollen records from the North China Plain. Combining the results with existing pollen records, we reconstruct the paleoenvironment of the North China Plain during the Last Glacial Maximum(LGM) and the Holocene Climatic Optimum(HCO). The results show that changes in the regional vegetation since the LGM were primarily determined by climatic conditions, the geomorphic landscape and by human activity.During the LGM, the climate was cold and dry; mixed broadleaf-coniferous forest and deciduous-evergreen broadleaf forest developed in the southern mountains, and cold-resistant coniferous forest and mixed broadleaf-coniferous forest were present in the northern mountains. The forest cover was relatively low, with mesophytic and hygrophilous meadow occupying the southern part of the plain, and temperate grassland and desert steppe were distributed in the north; Chenopodiaceae-dominated halophytes grew on the exposed continental shelf of the Bohai Sea and Yellow Sea. During the HCO, the climate was warm and wet;deciduous broadleaf forest and deciduous-evergreen broadleaf forest, with subtropical species, developed in the southern mountains, and deciduous broadleaf forest with thermophilic species was present in northern mountains. Although the degree of forest cover was greater than during the LGM, the vegetation of the plain area was still dominated by herbs, while halophytes had migrated inland due to sea level rise. In addition, the expansion of human activities, especially the intensification of cultivation,had a significant influence on the natural vegetation. Our results provide data and a scientific basis for paleoclimate modelling and regional carbon cycle assessment in north China, with implications for predicting changes in the ecological environment under future global warming scenarios.  相似文献   

11.
This paper analyzes climate changes since the end of the last glaciations 19–20 thousand years ago, including the modern warm interglacial Holocene age, which started about 11.5 thousand years ago. The connection between the impact of the orbital effect and solar activity on the Earth’s climate is studied. This is important for estimation of the duration of the modern interglacial period. It is shown that there is significant inconsistency between temperature variations in Holocene, which is deduced from the large amount of recently obtained indirect data and the temperatures reproduced in the climate models. The trends of climate cooling in the Holocene on the whole and during the last 2000 years are investigated.  相似文献   

12.
通过210Pb测年建立年代标尺,利用黑龙江省连环湖阿木塔泡高分辨率的孢粉记录,探讨了研究区约220年的环境变化与人类活动.研究表明,1790-1820 AD期间,植被类型可能是以禾本科为主的草甸草原植被,沙地类型以固定沙地为主,气候相对较凉湿或环境几乎不受人类活动的破坏,湖泊营养较丰富.1820-1930 AD期间,草...  相似文献   

13.
Changes in the vegetation and climate of the westerly-dominated areas in Central Asia during the Holocene were interpreted using pollen-assemblages and charcoal data from a 300-cm-long sediment core of the Sayram Lake,northern Xinjiang.Accele-rator Mass Spectrometry(AMS) radiocarbon dating methods were applied to bulk organic matter of the samples.Artemisia spp./Chenopodiaceae ratios and results from principal component analysis were used to infer that the lake basin was dominated by desert vegetation before ca.9.6 cal.ka BP,which suggests a warm and dry climate in the early Holocene.Desert steppe/steppe expanded during 9.6-5.5 cal.ka BP,indicating a remarkable increase both in the precipitation and temperature during the mid-Holocene.Desert vegetation dominated between 6.5 and 5.5 cal.ka BP,marking an extreme warmer and drier interval.The steppe/meadow steppe recovered,and temperatures decreased from 5.5 cal.ka BP in the late Holocene,as indicated by the increased abundance of Artemisia and the development of meadows.Holocene temperatures and moisture variations in the Sayram Lake areas were similar to those of adjacent areas.This consistency implies that solar radiation was the main driving factor for regional temperature changes,and that the effect of temperature variations was significant on regional changes in humidity.The evolution of climate and environment in the Sayram Lake areas,which were characterized as dry in the early Holocene and relatively humid in the middle-late Holocene,are clearly different from those in monsoonal areas.Dry conditions in the early Holocene in the Sayram Lake areas were closely related to decreased water vapor advection.These conditions were a result of reduced westerly wind speeds and less evaporation upstream,which in turn were caused by seasonal changes in solar radiation superimposed by strong evaporation following warming and drying local climate.  相似文献   

14.
The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are ob-tained, and these ages provide a relatively complete and well-dated chronology for wet and dry varia-tions in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ~2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world.  相似文献   

15.
Desertification and aridification in the inland of Asia are the important scientific issues pertaining to the existing environment of mankind and the sustain-able development of society in western China. The onset and evolution sequence, development and proc-ess of history and the mechanism of this transition are thought to be one of the most attractive hot objects of research on climatic changes in the Northern Hemi-sphere during the Cenozoic, which may have involved glaciation in the North…  相似文献   

16.
The Horqin sand-field in northeastern Inner Mongolia, China, had been the fertile grassland in North China, but desertification and sand-dust storm have increasingly occurred in the past decades [Zhu and Wang, 1992. Theory and practice of sandy desertification in China (in Chinese with English abstract). Quaternary Sciences 2, 97]. To understand the Holocene sand dune activities in this region, five sand dune profiles were investigated, and 32 coarse grain quartz samples were dated by OSL using the single-aliquot regenerative-dose (SAR) protocol [Murray and Wintle, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73]. For cross-checking, six organic-rich samples from the paleosols and sandy peat/mud were dated by both 14C and quartz OSL. With one exception, 14C and quartz OSL dating results show good agreements. Based on the consistent results of five sand dune profiles, a chronology of Holocene dune activity in Horqin sand-field is established as follows: (i) active sand dunes built up widely before 10 ka; (ii) dunes semi-stabilized between 10 and 7.5 ka ago; (iii) the dunes solidify and chernozem soils developed between 7.5 and 2.0 ka ago; and (iv) partially re-mobilization of dunes occurred since about 2.0 ka ago.  相似文献   

17.
Climatologists have been paying much attention to the global and regional climatic charac-teristics during the LGM. A lot of paleodata were obtained in East Asia during the LGM[1—5] and laid the firm foundation of reconstructing East Asian paleoclimate t…  相似文献   

18.
The Mu Us Desert, located in the northwestern fringe of the East Asian monsoon region, is sensitive to climate variability. The desert is characterized by mobile, semi-fixed and fixed sand dunes. Alternating units of dune sands and sandy palaeosols in the Mu Us Desert imply multiple episodes of dune building and stabilization, in response to the ebb and flow of the East Asian monsoon. Desert evolution and climatic change of high-resolution in the Mu Us Desert are still poorly understood due to limited numerical dating results. In the present study, 19 samples collected from five sand dune sections along a northwest–southeast transect in the Mu Us Desert were dated using quartz optically stimulated luminescence (OSL) and single aliquot regenerative-dose (SAR) protocol. Internal checks of the OSL dating indicate that the SAR protocol is appropriate for equivalent dose (De) determination for the samples under study. Combined with the lithologic stratigraphy and the luminescence chronology, the sand dune development in the Mu Us Desert during the Late Pleistocene is discussed. Our results indicate that the sand was mobilized approximately at 91 ka, 71 ka, 48–22 ka, 5 ka, 1 ka, and 0.44 ka; the sand was fixed approximately at 65 ka and Holocene Optimum period in the interior Mu Us Desert. The Mu Us Desert formed at least before ~144 ka, and has shown increasing aridity in the Late Pleistocene.  相似文献   

19.
The spatial and temporal variations of precipitation in the desert region of China (DRC) from 1951 to 2005 were investigated using a rotated empirical orthogonal function (REOF), the precipitation concentration index (PCI) and the Mann–Kendall trend test method (M‐K method). In addition, the association between variation patterns of precipitation and large‐scale circulation were also explored using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. The results indicated that the spatial pattern of precipitation was primarily the local climate effect significant type, with the first three EOFs explaining a total of 55·3% of the variance, and the large‐scale climate system effect type, which explained 9·8% of the variance. Prior to the 1970s, the East Asian summer monsoon was stronger, which resulted in abundant precipitation in the Inner Mongolia region. Conversely, the climate of the Xinjiang region was controlled by westerly circulation and had lower precipitation. However, this situation has been reversed since the 1980s. It is predicted that precipitation will decrease by 15–40 and 0–10 mm/year in the Inner Mongolia plateau and southern Xinjiang, respectively, whereas it will likely increase by 10–40 mm/year in northern Xinjiang. Additionally, 58–62% of the annual rainfall occurred during summer in the DRC, with precipitation increasing during spring and summer and decreasing in winter. The intra‐annual precipitation is becoming uniform, but the inter‐annual variability in precipitation has been increasing in the western portions of the DRC. The probability of precipitation during the study period increased by 30% and 22·2% in the extreme‐arid zones and arid zones, respectively. Conversely, the probability of precipitation during the study period decreased by 18·5% and 37·5% in the semi‐arid zones and semi‐wet zones, respectively. It is predicted that the northwest portion of the DRC will become warmer and wetter, while the central portion will become warmer and drier and the northeast portion will be subjected to drought. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The history of natural fire since 37 kaBP and its relationship to climate for the northern part of the South China Sea are revealed from the statistic study of charcoal particles and associated pollen data from deep sea core 17940 (20° 07’N, 117° 23’E, 1 727 m in water depth). Our study indicates that, during the last glaciation, the concentration of charcoal and the ratio of con centration between charcoal and terrestrial pollen are much higher than that of the Holocene. This can be explained as the relatively high strength and frequency of natural fire during glaciation which is probably due to the drier climate; during the Last Glacial Maximum (LGM), the substantial rising of the concentration of large and medium charcoal particles probably suggests the local source area of the natural fires, i.e. the exposed continental shelf; moreover, the correlation between charcoal concentration with different size and pollen percentage may elucidate different transport dynamics. During the glacial time, almost all the peak concentrations of small particles correspond with the peak pollen percentage ofArtemisia, an indicator of comparatively dry climate, while for large particles, their concentrations always lag behind small particles and thus change with pollen percentage of montane conifers implying relatively cold and humid climate. So, it is possible to assume that small particles reflect regional emissions under drier climate and were brought over by strengthened winter monsoon. When the climate became relatively humid, the increasing precipitation carried the large particles accumulated on continental shelf before under arid condition to the studied area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号