首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monitoring Earth dynamics using current and future satellites is one of the most important objectives of the remote sensing community. The exploitation of image time series from sensors with different characteristics provides new opportunities to increase the knowledge about environmental changes and to support many operational applications. This paper presents an image fusion approach based on multiresolution and multisensor regularized spatial unmixing. The approach yields a composite image with the spatial resolution of the high spatial resolution image while retaining the spectral and temporal characteristics of the medium spatial resolution image. The approach is tested using images from Landsat/TM and ENVISAT/MERIS instruments, but is general enough to be applied to other sensor pairs. The potential of the proposed spatial unmixing approach is illustrated in an agricultural monitoring application where Landsat temporal profiles from images acquired over Albacete, Spain, in 2004 and 2009 are complemented with MERIS fused images. The resulting spatial resolution from Landsat allows monitoring small and medium size crops at the required scale while the fine spectral and temporal resolution from MERIS allow a more accurate determination of the crop type and phenology as well as capturing rapidly varying land-cover changes.  相似文献   

2.
Buildings are sensitive to movements caused by ground deformation. The mapping both of spatial and temporal distribution, and of the degree of building damages represents a useful tool in order to understand the landslide evolution, magnitude and stress distribution. The high spatial resolution of space-borne SAR interferometry can be used to monitor displacements related to building deformations. In particular, PSInSAR technique is used to map and monitor ground deformation with millimeter accuracy. The usefulness of the above mentioned methods was evaluated in San Fratello municipality (Sicily, Italy), which was historically affected by landslides: the most recent one occurred on 14th February 2010. PSInSAR data collected by ERS 1/2, ENVISAT, RADARSAT-1 were used to study the building deformation velocities before the 2010 landslide. The X-band sensors COSMO-SkyMed and TerraSAR-X were used in order to monitor the building deformation after this event. During 2013, after accurate field inspection on buildings and structures, damage assessment map of San Fratello were created and then compared to the building deformation velocity maps. The most interesting results were obtained by the comparison between the building deformation velocity map obtained through COSMO-SkyMed and the damage assessment map. This approach can be profitably used by local and Civil Protection Authorities to manage the post-event phase and evaluate the residual risks.  相似文献   

3.
InSAR (interferometric synthetic aperture radar) techniques are applied to investigate last two decades of surface deformation of the Cerro Blanco/Robledo Caldera (CBRC). The objective is the identification of deforming patterns that alter the shape of these complex structures when they show low or null activity. The joint analysis between results by using different methods over a long time span, represents a unique opportunity to improve knowledge of volcanic structures located in remote area and, for this, poorly or not monitored.In this work we identify displacement patterns over the volcanic area, by using both classical differential InSAR analysis, and A-InSAR (advanced InSAR) analysis based on SAR data acquired by ERS-1/2 and ENVISAT sensors during the 1996–2010 time interval. The satellite-derived information allows us to characterize the deformation pattern that affected the CBRC and shows that the actively deforming CBRC is subsiding in the observed period. In order to figure out the deformation history of CBRC, we analyzed the four sub-periods 1992–1996, 1996–2000, and 2005–2010 by using standard differential InSAR technique, and the interval 2003–2007 by adopting an A-InSAR technique.Subsidence velocities of the CBRC caldera are about 2.6 cm/yr in the time interval 1992–1996 (measured with ERS descending data), 1.8 cm/yr in 1996–2000 (ERS descending data), 1.2 cm/yr in 2003–2007 (ENVISAT descending data), and finally, 0.87 cm/yr in 2005–2010 (ENVISAT ascending data). Moreover, outside the caldera and in particular in the NW area, we observe the presence of positive velocity values. Results show that: (a) a decreasing subsidence rate might be related to the reduction of volcanic activity in correspondence of the CBRC; (b) positive velocity signal, decreasing with time, might be interpreted as follows: – evidence of volcano structure lateral spreading, according to the velocity pattern distribution in this area and to the relative local flanks topographic convexity of the volcano structure; – uplift signal of this sector of mountain chain; – combination of the two mechanisms above.  相似文献   

4.
This paper is focused on the analysis of the performance of Stable Point Network (SPN) and Coherent Pixel Technique (CPT), which are Advanced Differential Interferometry Techniques (A-DInSAR) that estimate, among other results, mean deformation velocity maps of the ground surface and displacement time series from a SAR dataset. The test site is the metropolitan area of the city of Murcia (Spain) where a moderate slow subsidence induced by the overexploitation of aquifers is present. SAR data acquired between July 1995 and August 2005 from ERS and ENVISAT sensors have been processed by the SPN and CPT techniques and compared with in situ instrumental measurements assumed as reference. Experimental results have shown that both SPN and CPT techniques provide estimates of the deformation evolution in time with an absolute difference below 6 mm consistently in all comparisons: SPN vs extensometer, CPT vs extensometer and SPN vs CPT. The proposed validation and comparison experiment between both A-DInSAR techniques has been useful to observe their differences and complementarities.  相似文献   

5.
The DEM of the Bhuj earthquake affected area of 50 x 50 km was generated using the ERS-1/2 SAR tandem data (May 15—16,1996). Region growing algorithm coupled with path following approach was used for phase unwrapping. Phase to height conversion was done using D-GPS control points. Geocoding was done using GAMMA software. A sample data of DEM of Shuttle Radar Topography Mission (SRTM) of the Bhuj area is made available by DLR Germany. The intensity image, DEM and Error map are well registered. The spatial resolution of this DEM is about 25 m with height accuracy of a few meters. The DEM derived through ERS SAR data is prone to atmospheric affects as the required two images are acquired in different timings where as SRTM acquired the two images simultaneously. An RMS height error of 12.06 m is observed with reference to SRTM though some of the individual locations differ by as much as 35 m.  相似文献   

6.
We present a novel methodology for integration of multiple InSAR data sets for computation of two dimensional time series of ground deformation. The proposed approach allows combination of SAR data acquired with different acquisition parameters, temporal and spatial sampling and resolution, wavelength and polarization. Produced time series have combined coverage, improved temporal resolution and lower noise level. We apply this methodology for mapping coal mining related ground subsidence and uplift in the Greater Region of Luxembourg along the French–German border. For this we processed 167 Synthetic Aperture Radar ERS-1/2 and ENVISAT images acquired between 1995 and 2009 from one ascending (track 29) and one descending (track 337) tracks and created over five hundred interferograms that were used for time series analysis. Derived vertical and east–west linear deformation rates show with remarkable precision a region of localized ground deformation located above and caused by mining and post-mining activities. Time series of ground deformation display temporal variability: reversal from subsidence to uplift and acceleration of subsidence in the vertical component, and horizontal motion toward the center of the subsidence on the east–west component. InSAR results are validated by leveling measurements collected by the French Geological Survey (BRGM) during 2006–2008. We determined that deformation rate changes are mainly caused by water level variations in the mines. Due to higher temporal and spatial resolution the proposed space-borne method detected a larger number of subsidence and uplift areas in comparison to leveling measurements restricted to annual monitoring of benchmark points along roads. We also identified one deformation region that is not precisely located above the mining sites. Comparison of InSAR measurements with the water levels measured in the mining pits suggest that part of the water that filled the galleries after termination of the dewatering systems may come from this region. Providing that enough SAR data is available, this method opens new opportunities for detecting and locating man-made and natural ground deformation signals with high temporal resolution and precision.  相似文献   

7.
For the observation and monitoring of glacier surface velocity (GSV), remote sensing is an increasingly suitable tool thanks to the high temporal and spatial resolution of the data. Radar sensors have the specific advantage over optical sensors of being nearly weather and time-independent.Two image pairs separated by 11 days, acquired with the high-resolution spotlight (HS) and stripmap (SM) modes of the German sensor TerraSAR-X, were used to estimate GSV over Switzerland’s Aletsch Glacier. The SM mode covers larger ground swaths, making it more suitable for glacier-wide observations, while the HS images cover less area but offer the highest-possible spatial resolution, approximately 1 × 1 m on the ground. The images were acquired during the summer to maximise feature visibility by minimal snow cover.GSV estimation was performed using two methods, the comparison of which was a major goal of this study: traditional cross-correlation optimisation and a dense image matching algorithm based on complex wavelet decomposition. Each method was found to have unique advantages and disadvantages, but it was concluded that for GSV monitoring, cross-correlation is probably preferable to the wavelet-based approach. While it generates fewer estimates per unit area, this is not necessarily a critical requirement for all glaciological applications, and the method requires less initial “tuning” (calibration) than the wavelet algorithm, making it a slightly better tool in operational contexts. Also, the use of the highest-resolution spotlight datasets is recommended over stripmap mode images when large-area coverage is less critical. The comparative lack of visible features at the resolution of the stripmap images made reliable GSV estimation difficult, with the exception of several small areas dominated by large crevasses.  相似文献   

8.
时间主成分分析(temporal principal component analysis,TPCA)可用于地学领域中提取时空数据的时序特征和空间分布特征,北京平原区的地面沉降具有典型的时序和空间特征。在利用永久散射体干涉测量技术获取的北京平原区2003—2010年地面沉降数据的基础上,采用TPCA方法分析了北京平原区地面沉降时空演化特征。经分析发现:(1)TPCA分析得到的第一主成分反映了地面沉降在该长时序阶段的空间分布特征。(2)第二主成分得分为正的空间点与可压缩层厚度在130 m以上的区域在空间分布上有一致性和相关性。(3)在空间上,第一主成分为负值与第二主成分为正值的永久散射体点分布在年均沉降速率30 mm/a以上的严重沉降区域。严重沉降区具有明显的南北沉降分类现象和季节性差异,具体表现为:北部沉降区在春夏季节的沉降量大于秋冬季节;南部沉降区则与之相反。总之,基于时间主成分分析方法可分析得到研究区的地面沉降时空演化规律,为城市安全监测提供数据支撑。  相似文献   

9.
基于相干目标的干涉图叠加方法监测天津地区地面沉降   总被引:2,自引:0,他引:2  
利用ENVISAT ASAR数据,采用基于相干目标的干涉图叠加方法,对天津地区的地面沉降现象进行了DInSAR监测试验.差分干涉处理采用"两轨法",使用校正了高程异常的SRTM DEM数据消除高程相位.以相干系数为标准选取了相干目标,解缠过程中运用了Delaunay三角剖分和权重最小费用流算法.本文获得的季度平均沉降速率图有效揭示了试验区地面沉降的空间展布及相对形变量,但其获得的绝对形变量尚需地面实测数据校验.  相似文献   

10.
程晓  张艳梅 《遥感学报》2006,10(1):118-122
由于可以探测到视线向的微小形变量,重复轨道雷达干涉测量(INSAR)成为探测极地冰流的有效手段。基于ERS-1/2SAR影像的INSAR已经成功获取了南北极许多地区的冰流信息。采用最新的ENVISAT ASAR影像,利用干涉方法获得了东南极内陆格罗夫山地区的首幅ASAR干涉条纹图(其中包括地形信息和冰流信息)。其与利用该地区1996年ERS-1和JERS-1数据所获得的干涉条纹进行对比表明,在格罗夫山角峰群内分布有两个冰流子系统,且状态较为稳定,ENVISAT ASAR数据在冰盖干涉测量方面具有良好的性能和应用潜力。  相似文献   

11.
The Urban Heat Island (UHI) phenomenon, a typical characteristic on urban landscapes, has been recognised as a key driver to the transformation of local climate. Reliable retrieval of urban and intra-urban thermal characteristics using satellite thermal data depends on accurate removal of the effects of atmospheric attenuations, angular and land surface emissivity. Several techniques have been proposed to retrieve land surface temperature (LST) from coarse resolution sensors. Medium spatial resolution sensors like the Advanced Space-borne Thermal Emission and Reflection Radiometer and the Landsat series offer a viable option for assessing LST within urban landscapes. This paper reviews the theoretical background of LST estimates from the thermal infrared part of the electromagnetic spectrum, LST retrieval algorithms applicable to each of the commonly used medium-resolution sensors and required variables for each algorithm. The paper also highlights LST validation techniques and concludes by stipulating the requirements for LST temporal and spatial configuration.  相似文献   

12.
Data from the first operational Chinese geostationary satellite Fengyun-2C (FY-2C) satellite are applied in combination with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products for the assessment of regional evapotranspiration over the North China Plain. The approach is based on the improved triangle method, where the temperature–vegetation index space includes thermal inertia. Two thermal infrared channels from FY-2C are used to estimate surface temperature (Ts) based on a split window algorithm originally proposed for the MSG-SEVIRI sensor. Subsequently the high temporal resolution of FY-2C data is exploited to give the morning rise in Ts. Combined with the 16 days composite MODIS vegetation indices product (MOD13) at a spatial resolution of 5 km, evaporative fraction (EF) is estimated by interpolation in the ΔTs–NDVI triangular-shaped scatter space. Finally, regional actual evapotranspiration (ET) is derived from the evaporative fraction and available energy estimated from MODIS surface albedo products MCD43. Spatial variations of estimated surface variables (Ts, EF and ET) corresponded well to land cover patterns and farmland management practices. Estimated ET and EF also compared well to lysimeter data collected for the period June 2005–September 2007. The improved triangle method was also applied to MODIS products for comparison. Estimates based on FY-2C products proved to provide slightly better results than those based on MODIS products. The consistency of the estimated spatial variation with other spatial data supports the use of FY-2C data for ET estimation using the improved triangle method. Of particular value is the high temporal frequency of image acquisitions from FY-2C which improves the likelihood of obtaining cloud free image acquisitions as compared to polar orbiting sensors like MODIS.  相似文献   

13.
HJ-1A/B卫星CCD影像的武汉市东湖水色三要素遥感研究   总被引:2,自引:0,他引:2  
以武汉市东湖为研究区域,利用同步的MODIS-Terra气溶胶光学厚度数据为输入参数,采用FLAASH模型对2010年3月11日HJ-1A/B卫星CCD影像进行大气校正处理,并利用多年实测数据建立叶绿素a浓度、悬浮泥沙浓度、黄色物质吸收系数三要素神经网络反演模型,对水色三要素进行反演。通过对反演结果与实测数据的对比分析可知,悬浮泥沙浓度、黄色物质吸收系数和叶绿素a浓度的平均相对误差分别为28.052%、17.628%和35.621%,表明HJ-1A/B卫星CCD传感器基本能满足II类水体水色要素的遥感监测需求。  相似文献   

14.
Multi-sensor comparisons are sometimes used due to limited image availability and temporal coverage by a single sensor. However, multi-sensor comparability is not well documented. Factors affecting direct comparability such as atmospheric conditions, landscape heterogeneity, landscape changes, and sensor characteristics are difficult to quantify. This study compared several vegetation indices (VIs) from multi-sensor data to determine if VIs are comparable across scales and sensors. Within-sensor comparisons demonstrate that VIs are consistent across spatial resolutions indicating a direct multi-scale comparability. However, among-sensor comparisons indicate that VIs calculated from different sensors are not comparable with one another regardless of spatial resolution. Sensor-specific characteristics appear to offer the best explanation for the observed results.  相似文献   

15.
A large agricultural area located in 20 km north of the city of Mashhad in the north-east of Iran is subject to land subsidence. The subsidence rate was achieved in a couple of sparse points by precise leveling between 1995 and 2005, and continuous GPS measurements obtained from 2005 to 2006. In order to study the temporal behavior of the deformation in high spatial resolution, the small baseline subset (SBAS) algorithm was used to generate the interferometric SAR time series analysis. Time series analysis was performed using 19 interferograms calculated from 12 ENVISAT ASAR data spanning between 2003 and 2006. The time series results exhibited that the area is subsiding continuously without a significant seasonal effect. Mean LOS deformation velocity map obtained from time series analysis demonstrated a considerable subsidence rate up to 24 (cm/yr). In order to evaluate the time series analysis results, continuous GPS measurements as a geodetic approach were applied. The comparisons showed a great agreement between interferometry results and geodetic technique. Moreover, the information of various piezometric wells distributed in the area corresponding to 1995 to 2005 showed a significant decline in water table up to 20 meters. The correlation between the piezometric information and the surface deformation at well’s locations showed that the subsidence occurrence in Mashhad is due to the excess groundwater withdrawal.  相似文献   

16.
This paper introduces ENVISAT ASAR data application on rice field mapping in the Fuzhou area, using multi-temporal ASAR dual polarization data acquired in 2005. The procedure for ASAR data processing here includes data calibration, image registration, speckle reduction and conversion of data format from amplitude to dB for backscatter. The backscatter of rice increases with the rice growing stages, which was much different from other land covers. Based on image difference techniques, 6 schemes were designed with ASAR different temporal and polarization data for rice field mapping. Difference images between images in the early period of rice crop and growing or ripening period, are more suitable for rice extraction than those difference images between different polarizations in the same date. The most accurate result of late rice extraction was achieved based on the difference of HH polarization data acquired in October and August. Therefore, for rice field mapping, the temporal information is more important than polarization information. The data during the early growing season of rice is very important for high accuracy rice mapping.  相似文献   

17.
王海艳  冯光财  苗露  谭佶  熊志强 《遥感学报》2020,24(10):1233-1242
抽取地下水进行农业灌溉是导致地下水位快速下降的重要因素,而长期过度开采地下水往往会引发地面沉降灾害,这种现象在干旱和半干旱地区非常普遍。为了研究农业灌溉超采引发的地表形变特征和演化规律,本文以准噶尔盆地南缘、天山北麓地带为研究区域,利用SBAS-InSAR技术对2003年—2009年覆盖呼图壁县的ENVISAT/ASAR升、降轨数据进行处理,获取了该地区的地表形变场,并结合研究区的农业灌溉方式、水资源补给和季节变化等资料对地面沉降的时空变化特征进行分析,为水资源和农业可持续发展提供参考意义。实验表明,研究区内主要有两个沉降幅度较大的漏斗,且都位于农田区域。2007年以前,研究区地表没有显著形变,之后发生了较大量级的沉降。采用传统灌溉方式和时针式灌溉系统的农业区平均沉降速率最高分别可达50 mm/a和30 mm/a,前者在时间上呈线性变化,而后者具有显著的周期性变化特征。在冬季时,采用时针式灌溉系统的地区地面抬升量可达40 mm,远大于传统灌溉方式的农田区域,而夏季地面沉降速率可达200 mm/a。对研究区农业灌溉活动进行分析后发现,农业灌溉造成的地下水超采是该地区地面沉降的主要影响因素,其形变机制与季节变化具有较高的相关性,在灌溉活动休止期内地表形变取决于地下水的补给量。研究区内的形变特征和影响因素分析将为地下水资源的充分利用和农业的可持续发展提供有效的信息。  相似文献   

18.
利用平均法、生物光学模型法和最优插值法3种数据融合方法对卫星传感器MODIS-Aqua、MOIDS-Terra及MERIS获取的南海叶绿素a浓度的数据进行了融合,通过比较融合产品的质量,对3融合方法进行了评价。(1)利用现场测量的南海遥感反射率和叶绿素a浓度数据建立了南海叶绿素a浓度的反演模型,并应用于MODIS-Aqua、MOIDS-Terra及MERIS Level 2反射率数据,获取南海叶绿素a浓度。(2)将平均法、生物光学模型法、最优插值法分别应用于上述3颗卫星的叶绿素a数据进行数据融合,并用现场测量的同步叶绿素数据对融合后的产品进行了印证。(3)利用3种融合方法分别对南海2011年MODIS-Aqua、MODIS-Terra和MERIS等3个传感器的叶绿素a数据进行了月融合,分析了融合的南海叶绿素a浓度的时空分布特征。结果表明,融合数据大幅度提高了空间覆盖率,且具有较高可信度。平均法、生物光学法和优化插等3种融合方法性能有较大的不同,生物光学法具有高的运行速度,但有时空间覆盖率仍不能满足要求;优化插值法具有高的空间覆盖率,但其运行速度较慢。因此,在具体应用中,应根据需求选择合适的融合方法。  相似文献   

19.
The spatial and temporal variability of the bulk temperature gives important insights into biological and hydrodynamic processes. However, standard algorithms for satellite data only provide information of the surface temperature. The comparison of current and new split-window coefficients applied on NOAA-14/AVHRR brightness temperatures of Lake Constance showed that a regional adaption was most promising. To derive the bulk temperature information, a priori progression from a weather station was included into the AVHRR analysis. Among the weather is data, the mean temperature of the three preceding days and the day of the year were the most relevant additional information. By a multiple regression approach the bulk temperature in the upper 4 m of Lake Constance could be determined with an accuracy of ±1.20 °C. The training of a neural network improved the determination of the bulk temperature to ±1.04 °C.An extended field campaign demonstrated that the algorithm is also applicable to other sensors with the same spectral band settings (in this case NOAA-16/AVHRR) with an acceptable error and that it is equally accurate over the entire lake.  相似文献   

20.
Abstract

The sensitivity of microwave sensors to changes in the complex dielectric constant of soil/water mix with change in water content has been used in several studies for soil moisture estimation and in the detection of wetlands. In the study, reported here, an attempt has been made to delineate various categories of wetlands, namely ‘bils’ (acquaculture ponds), lakes/ponds, creeks, and mangroves through visual interpretation of ERS‐1 SAR images acquired on 29th April, 1993 over part of Sundarban delta, abutting Bay of Bengal. An overall accuracy of 91.2% with respect to delineation of wetlands has been achieved. Further, the cloud penetration and day‐and‐night observation capability of ERS‐1 SAR, though well known, is also illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号