首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We present the results of a thrust fault reactivation study that has been carried out using analogue (sandbox) and numerical modelling techniques. The basement of the Pannonian basin is built up of Cretaceous nappe piles. Reactivation of these compressional structures and connected weakness zones is one of the prime agents governing Miocene formation and Quaternary deformation of the basin system. However, reactivation on thrust fault planes (average dip of ca. 30°) in normal or transtensional stress regimes is a problematic process in terms of rock mechanics. The aim of the investigation was to analyse how the different stress regimes (extension or strike-slip), and the geometrical as well as the mechanical parameters (dip and strike of the faults, frictional coefficients) effect the reactivation potential of pre-existing faults.

Results of analogue modelling predict that thrust fault reactivation under pure extension is possible for fault dip angle larger than 45° with normal friction value (sand on sand) of the fault plane. By making the fault plane weaker, reactivation is possible down to 35° dip angle. These values are confirmed by the results of numerical modelling. Reactivation in transtensional manner can occur in a broad range of fault dip angle (from 35° to 20°) and strike angle (from 30° to 5° with respect to the direction of compression) when keeping the maximum horizontal stress magnitude approximately three times bigger than the vertical or the minimum horizontal stress values.

Our research focussed on two selected study areas in the Pannonian basin system: the Danube basin and the Derecske trough in its western and eastern part, respectively. Their Miocene tectonic evolution and their fault reactivation pattern show considerable differences. The dominance of pure extension in the Danube basin vs. strike-slip faulting (transtension) in the Derecske trough is interpreted as a consequence of their different geodynamic position in the evolving Pannonian basin system. In addition, orientation of the pre-existing thrust fault systems with respect to the Early to Middle Miocene paleostress fields had a major influence on reactivation kinematics.

As part of the collapsing east Alpine orogen, the area of the Danube basin was characterised by elevated topography and increased crustal thickness during the onset of rifting in the Pannonian basin. Consequently, an excess of gravitational potential energy resulted in extension (σv > σH) during Early Miocene basin formation. By the time topography and related crustal thickness variation relaxed (Middle Miocene), the stress field had rotated and the minimum horizontal stress axes (σh) became perpendicular to the main strike of the thrusts. The high topography and the rotation of σh could induce nearly pure extension (dip-slip faulting) along the pre-existing low-angle thrusts. On the contrary, the Derecske trough was situated near the Carpathian subduction belt, with lower crustal thickness and no pronounced topography. This resulted in much lower σv value than in the Danube basin. Moreover, the proximity of the retreating subduction slab provided low values of σh and the oblique orientation of the paleostress fields with respect to the master faults of the trough. This led to the dominance of strike-slip faulting in combination with extension and basin subsidence (transtension).  相似文献   


2.
The study of intraplate tectonics is crucial for understanding the deformation within plates, far from active plate boundaries and associated stress transmission to the plate interiors. This paper examines the tectonic evolution of the Variscan basement at the western margin of the Cenozoic Duero basin. Located east of the Vilariça Fault System in NW Iberia, this intraplate zone is a relatively flat but elevated area with an intense NNE-SSW trending fault system and associated moderate seismicity. Although the area has played an important role in the Duero basin configuration, its Alpine to present-day tectonic evolution has not been well constrained. In order to characterize the successive paleostress fields, 1428 pairs of fault-striae were measured at 56 sites and two focal mechanisms were used. Stress inversion methods have been applied to analyze paleostress regimes. Results show the existence of three dominant maximum horizontal stress (Shmax) trends: N-S, NE-SW and E-W. Relative and absolute dating of the activated faults for each Shmax shows that the clearly predominant N-S paleostress field in the zone has been active since the Oligocene up to the present day; while a NE-SW stress field is found to have been active during the Cretaceous and an older E-W paleostress field was active in the earlier Alpine cycle (Late Triassic).  相似文献   

3.
This paper presents the first paleostress results from fault-slip data on Cretaceous limestone at the eastern rim of the Dead Sea transform (DST) in Jordan. Stress inversion of fault-slip data is performed using an improved right dieder method, followed by rotational optimization (Delvaux, TENSOR Program). The orientation of the principal stress axes (σ1, σ2 and σ3) and the ratio of the principal stress differences ( ) show two main paleostress fields marking two main stress regimes, strike-slip and extensional. The first is characterized by NNW–SSE compression and ENE–WSW extension and related to Middle Miocene-Recent sinistral movement along the Dead Sea transform and the opening of the Red Sea. The second paleostress field is a WNW–ESE compression and NNE–SSW extension restricted to the northern part of the investigated area. This stress field could be associated with the development of the Syrian Arc fold belt which started during the Turonian, or it may be due to an anticlockwise rotation of the first stress field.  相似文献   

4.
To constrain the post-Pan-African evolution of the Arabian–Nubian Shield, macro-scale tectonic studies, paleostress and fission track data were performed in the Eastern Desert of Egypt. The results provide insights into the processes driving late stage vertical motion and the timing of exhumation of a large shield area. Results of apatite, zircon and sphene fission track analyses from the Neoproterozoic basement indicate two major episodes of exhumation. Sphene and zircon fission track data range from 339 to 410 Ma and from 315 to 366 Ma, respectively. The data are interpreted to represent an intraplate thermotectonic episode during the Late Devonian–Early Carboniferous. At that time, the intraplate stresses responsible for deformation, uplift and erosion, were induced by the collision of Gondwana with Laurussia which started in Late Devonian times. Apatite fission track data indicate that the second cooling phase started in Oligocene and was related to extension, flank uplift and erosion along the actual margin of the Red Sea. Structural data collected from Neoproterozoic basement, Late Cretaceous and Tertiary sedimentary cover suggest two stages of rift formation. (1) Cretaceous strike-slip tectonics with sub-horizontal σ1 (ENE/WSW) and σ3 (NNW/SSE), and sub-vertical σ2 resulted in formation of small pull-apart basins. Basin axes are parallel to the trend of Pan-African structural elements which acted as stress guides. (2) During Oligocene to Miocene the stress field changed towards horizontal NE–SW extension (σ3), and sub-vertical σ1. Relations between structures, depositional ages of sediments and apatite fission track data indicate that the initiation of rift flank uplift, erosion and plate deformation occurred nearly simultaneously.  相似文献   

5.
Magnetic anomaly maps of the Trans-European Suture Zone (TESZ) highlight the contrast between the highly magnetic crust of Baltica and the less magnetic terranes to the SW of the suture. Although the TESZ is imaged on gravity maps, anomalies related to postcollisional rifting and reactivated rift structures tend to dominate.

Seismic and potential field data have been used to construct 2 -D crustal models along three profiles crossing the Baltica–Avalonia suture in the southern North Sea (SNS). The first of these models lies along a transect assembled from reflection line GECO SNST 83-07 and refraction profile EUGENO-S 2; the other two models are coincident with MONA LISA profiles 1 and 2. Additional structural information and density information for the cover sequence is available from released wells, while magnetic susceptibility values are compatible with values measured from borehole core samples.

Magnetic anomalies related to the suture are interpreted as due to magnetic Baltican basement of the Ringkøbing-Fyn High dipping SW beneath nonmagnetic Avalonian basement underlying the western part of the SNS. Low-amplitude, long-wavelength magnetic anomalies occurring outboard of the suture are interpreted as due to a mid-crustal magnetic body, possibly a buried magmatic complex. This might represent the ‘missing’ arc related to inferred southward subduction of the Tornquist Sea, or an exotic element emplaced during the collision between Avalonia and Baltica. The present model supports an imbricated structure within Baltica as indicated by the latest reprocessing of the MONA LISA seismic data.  相似文献   


6.
Crustal deformation in front of an indenter is often affected by the indenter’s geometry, rheology, and motion path. In this context, the kinematics of the Jaufen- and Passeier faults have been studied by carrying out paleostress analysis in combination with crustal-scale analogue modelling to infer (1) their relationship during indentation of the Adriatic plate and (2) their sensitivity in terms of fault kinematics to the geometry and motion path of Adria. The field study reveals mylonites along the Jaufen fault, which formed under lower greenschist facies conditions and is associated with top-to-the-west/northwest shear with a northern block down component. In addition, a brittle reactivation of the Jaufen shear zone under NNW–SSE to NW–SE compressional and ENE–WSW tensional stress conditions was deduced from paleostress analysis. The inferred shortening direction is consistent with fission track ages portraying Neogene exhumation of the Meran-Mauls basement south of the fault. Along the Passeier fault, deformation was only brittle to semi-ductile and paleostress tensors record that the fault was subjected to E–W extension along its northern segment varying into NW–SE compression and sinistral transpression along its southern segment. In the performed analogue experiments, a rigid, triangular shaped indenter was pushed into a sand pile resulting in the formation of a Passeier-like fault sprouting from the indenter’s tip. These kinds of north-trending tip faults formed in all experiments with shortening directions towards the NW, N, or NE. Consequently, we argue that the formation of the Passeier fault strongly corresponds to the outline of the Adriatic indenter and was only little affected by the indenter’s motion path due to induced strain partitioning in front of the different indenter segments. The associated fault kinematics along the Passeier fault including both E–W extension and NNW to NW shortening, however, is most consistent with a northward advancing Adriatic indenter.  相似文献   

7.
The main terrains involved in the Cretaceous–Tertiary tectonism in the South Carpathians segment of the European Alpine orogen are the Getic–Supragetic and Danubian continental crust fragments separated by the Severin oceanic crust-floored basin. During the Early–Middle Cretaceous times the Danubian microplate acted initially as a foreland unit strongly involved in the South Carpathians nappe stacking. Multistage folding/thrusting events, uplift/erosion and extensional stages and the development of associated sedimentary basins characterize the South Carpathians during Cretaceous to Tertiary convergence and collision events. The main Cretaceous tectogenetic events responsible for contraction and crustal thickening processes in the South Carpathians are Mid-Cretaceous (“Austrian phase”) and Latest Cretaceous (“Laramide” or “Getic phase”) in age. The architecture of the South Carpathians suggests polyphase tectonic evolution and mountain building and includes from top to bottom: the Getic–Supragetic basement/cover nappes, the Severin and Arjana cover nappes, and Danubian basement/cover nappes, all tectonically overriding the Moesian Platform. The Severin nappe complex (including Obarsia and Severin nappes) with Late Jurassic–Early Cretaceous ophiolites and turbidites is squeezed between the Danubian and Getic–Supragetic basement nappes as a result of successive thrusting of dismembered units during the inferred Mid- to Late Cretaceous subduction/collision followed by tectonic inversion processes.

Early Cretaceous thick-skinned tectonics was replaced by thin-skinned tectonics in Late Cretaceous. Thus, the former Middle Cretaceous “Austrian” nappe stack and its Albian–Lower Senonian cover got incorporated in the intra-Senonian “Laramide/Getic” stacking of the Getic–Supragetic/Severin/Arjana nappes onto the Danubian nappe duplex. The two contraction events are separated by an extensional tectonic phase in the upper plate recorded by the intrusion of the “Banatitic” magmas (84–73 Ma). The overthrusting of the entire South Carpathian Cretaceous nappe stack onto the fold/thrust foredeep units and to the Moesian Platform took place in the Late Miocene (intra-Sarmatian) times and was followed by extensional events and sedimentary basin formation.  相似文献   


8.
梁承华  徐先兵  李启铭  桂林  汤帅 《地球科学》2019,44(5):1761-1772
华南中-新生代构造演化受太平洋构造域和特提斯洋构造域的联合控制.以江南东段NE-SW向景德镇-歙县剪切带和球川-萧山断裂中发育的脆性断层为研究对象,利用野外交切关系和断层滑移矢量反演方法厘定了7期构造变形序列并反演了各期古构造应力场,讨论了断层活动的时代及其动力学.白垩纪至新生代研究区7期古构造应力场分别为:(1)早白垩世早期(136~125Ma)NW-SE向伸展;(2)早白垩世晚期(125~107Ma)N-S向挤压和E-W向伸展;(3)早白垩世末期至晚白垩世早期(105~86Ma)NW-SE向伸展;(4)白垩世中期(86~80Ma)NW-SE向挤压和NE-SW向伸展;(5)晚白垩世晚期至始新世末期(80~36Ma)N-S向伸展;(6)始新世末期至渐新世早期(36~30Ma)NE-SW向挤压和NW-SE向伸展;(7)渐新世早期至中新世中期(30~17Ma)NE-SW向伸展.结合区域地质研究表明,第1期至第4期古构造应力场与古太平洋构造域的板片后撤、俯冲以及微块体(菲律宾地块)间的碰撞作用有关;第5期伸展作用受控于新特提斯构造域俯冲板片后撤,而第6期和第7期古构造应力场主要与印-亚碰撞的远程效应有关.白垩纪至新生代,华南东部受伸展构造体制和走滑构造体制的交替控制.先存断裂的发育可能是导致华南晚中生代走滑构造体制的主要控制因素.  相似文献   

9.
郯庐断裂带(安徽段)及邻区的动力学分析与区域构造演化   总被引:14,自引:3,他引:11  
依据区域构造层次划分,采用构造筛分法,层层深入,层层筛分,确定发生于各个不同时代地层/岩层内的断裂活动的同期及叠加的应力场特征。综合所有的同期应力场特征及辅以叠加的应力场特征来验证,从而确定了一个连续的、完整的断裂活动的应力场演化序列;结合区域构造变形特征分析,阐明郯庐断裂带(安徽段)的构造演化。应力场分析显示:晚三叠-早侏罗世应力场为北北西—南南东或近南北向挤压,属古特提斯构造域,断裂发生同造山走滑;早白垩世早期,应力场为北西—南东向挤压,断裂发生左行走滑运动,中国东部处于西环太平洋构造域;早白垩世晚期—古新世(始新世),区域发生北西—南东向伸展作用,断裂处于伸展断陷作用阶段;新生代,受区域上近东西向的挤压作用影响,断裂发生挤压逆冲兼右行走滑作用。  相似文献   

10.
We describe a fast geomechanically-based paleostress inversion technique that uses observed fracture data to constrain stress through multiple simulations. The method assumes that the local stress field around individual fractures is heterogeneous and derives the far field tectonic stress, that we also call the far field boundary conditions. We show how such far field tectonic stress can be recovered through a mechanical stress inversion technique using local observations of natural fractures (i.e. mechanical type, orientation and location). We test the paleostress inversion against outcrop analogues of fractured carbonates from both Nash Point, U.K., where there are well exposed faults and joints and the Matelles, France, where there are well exposed faults, veins and stylolites. We demonstrate through these case studies how the method can be efficiently applied to natural examples and we highlight its advantages and limitations. We discuss how such method could be applied to subsurface problems and how it can provide complementary constraints to drive discrete fracture models for better fractured reservoir characterization and modelling.  相似文献   

11.
库车坳陷脆性构造序列及其对构造古应力的指示   总被引:3,自引:0,他引:3  
在对野外脆性构造(主要是节理和断层) 大量观测的基础上, 根据它们与应力的关系, 讨论了库车坳陷白垩纪末期以来的古构造应力时空变化.结果表明, 在库车坳陷脆性构造中, 早期隆升作用形成的主要发育在中生界的NEE-SWW向系统节理被晚期同构造期的在中生界与上第三系均发育的NNW-SSE向和NW-SE向节理切割并改造, 这是对区域上构造应力场在进入新近纪时从弱伸展变化到强烈挤压这一过程的响应.基于断层滑动分析的古应力反演结果显示, 此时盆山边界处以近N-S向伸展应力状态占主导, 而坳陷内部则表现为近N-S向和NW-SE向挤压应力状态.说明在进入新近纪后, 最大主应力(σ1) 方向从垂向变成水平, 应力场发生了转变.此后的天山快速垂向隆升是库车坳陷北缘和内部应力状态存在差异的原因.   相似文献   

12.
Mafic dyke swarms and aulacogens are major anorogenic extensional events in the Late Paleoproterozoic North China Craton (NCC). The N–NNW mafic dyke swarms are widespread in the NCC, whose ages span between 1.83 and 1.77 Ga. The similar ages and orientations of  1.8 Ga dyke swarms in the NCC demonstrate that the amalgamated NCC experienced widespread extension at this time.Based on the width statistics of dyke swarms on ten survey lines, an average crustal extension ratio of 0.35% was found for the NCC. The small magnitude of overall extension suggests that the mafic dyke swarms were emplaced into the elastic fractures, and indicates that the NCC had become a brittle plate prior to the emplacement of the mafic dyke swarms.Precisely dated mafic dyke swarms, when used as paleostress indicators, can be employed in the paleostress field reconstruction of Precambrian cratons. Two dimensional finite element modeling (2-D FEM) of the NCC, in which the various blocks were assigned densities and elastic constants, shows that north–south compression favors dyke intrusion along generally N–NW lines, and that deviations in dyke trends can be explained by the effects of boundary constraints and the physical properties of the crust. The best fitting model can be considered a plausible representation of the tectonic force acting on the NCC that produces the intraplate stress field that is most consistent with the observed orientation of dyke swarms. The results of modeling of the Late Paleoproterozoic stress field suggest a common tectonic setting for the emplacement of mafic dyke swarms in the Central Orogenic Zone, Western and East Blocks of the NCC. The results also show that the north–south tectonic forces play an important role in determining the paleostress field in the NCC. The widespread extension of the NCC resulted from the north–south tectonic forces which may be related to the break-up of the Late Paleoproterozoic supercontinent. The paleostress field modeling provides a possible approach to consider the supercontinent paleostress reconstruction and to reveal the mechanisms of the supercontinent break-up.  相似文献   

13.
林逸  张长厚 《地质科学》2018,(4):1488-1498
古构造应力场是构造动力学研究中的一个重要内容,且断层滑动数据古应力反演已经成为古构造应力场恢复研究中比较常用的重要方法之一。近年来,断层滑动数据古应力反演方法研究和应用取得了一系列重要进展,但有关反演结果的解释仍存歧义,反演结果的影响因素及其误差范围等并未得到深入研究与定量分析。本文总结指出,影响断层滑动数据古应力反演结果的主要因素包括变形体制、剪切破裂面类型、断层面的形态以及地质体内薄弱面的存在等。在此基础上,分别对新生断层和先存薄弱面滑动数据的古应力反演综合误差进行了定量分析。研究指出,在可以大致厘定变形体制或误差在允许范围内的前提下,将断层滑动数据反演结果解释为应力状态是合理可行的。各种因素导致的反演误差定量分析表明,同一期构造应力场形成的破裂面滑动数据的古应力方位反演误差最大不超过35°。换言之,在没有证据表明存在不同期次的应力作用情况下,主应力方位变化小于35° 的应力状态,可以划归同一期应力场。  相似文献   

14.
It has been found that the main oil fields in Western Siberia are attributed to Triassic rifts, because the rifts drain the upper mantle, and the deformations of the sedimentary cover are determined by the basement. On average, the thickness of the basement is 14 times greater than that of the sedimentary cover. Taking into account the mean strength (153 ± 10 MPa) of the basement rocks, the basement strength is two orders of magnitude greater than the strength of the sedimentary cover. The sialic blocks, considered as Precambrian, are composed of light granites and metamorphic rocks. They ascend to the level of the upper crust at the time of Triassic rifting and continued to emerge. As a result, antiforms were formed above the sialic blocks in the sedimentary cover; these antiforms were filled with oil.  相似文献   

15.
Analysing the paleostress field in sedimentary basins is important for understanding tectonic processes and the planning of drilling campaigns. The Subhercynian Basin of northern Germany is a perfect natural laboratory to study the paleostress field in a developing foreland basin. The simple layer-cake geometry of the basin-fill is dominated by several piercing and non-piercing salt structures. We derived the paleostress field from the orientation of fracture sets, faults, slickensides and stylolites. On a regional scale, the basin-fill is characterized by a horizontal compressional paleostress vector that is mainly NNE-SSW-oriented, which reflects the Late Cretaceous inversion phase in Central Europe. We show that the local paleostress field is distinctly perturbated due to the salt structures. Along the edge of the salt pillows, the maximum horizontal paleostress vector is deflected by up to 90° from the regional trend. In the case of the Elm salt pillow, it forms a radial pattern. Restoration of balanced cross-sections demonstrates at least 9 % of the shortening of the north-western part of the Subhercynian Basin was achieved by folding. The salt structures in the north-western Subhercynian Basin are the result of varying stress conditions. Initial extension in the Triassic caused first salt movements that prevailed during the Jurassic and Early Cretaceous. Most important is the Late Cretaceous contractional phase that shortened the diapirs and led to the formation of the salt pillows between diapirs due to detachment folding. We derive four main controlling factors for such salt-dominated contractional basins: (1) the wedge-shape basin-fill is the product of the dynamic load at the southern margin of the basin, (2) a basal salt layer fed the diapirs and acted as a detachment horizon during the later shortening, (3) detachment folding was the dominating deformation mechanism during contraction, and (4) the pre-existing diapirs controlled the position of the detachment folds.  相似文献   

16.
方解石e-双晶是在低温、低围压环境下发育的一种晶内塑性变形,广泛发育于亮晶灰岩和大理岩中。由于e-双晶的形成与地应力密切相关,与其相关的古应力分析原理得到了深入的研究,相继提出了两类分析方法,即图解法和反演法。通过方解石e-双晶的古应力分析,我们可以获得形成时的主应力方位、应力比,甚至绝对的差应力,因而该分析方法被广泛运用于未遭受明显构造变形的地区,如克拉通盆地、褶皱‒冲断带等。本文首先简单地回顾了方解石e-双晶古应力分析的研究历史,总结了图解法和反演法的基本原理,然后评价了影响这些方法的一些可能因素,如方法的局限性和数据的质量,最后指出今后在数据获取和多期数据反演两个方面值得进一步研究。  相似文献   

17.
By subsidence analysis on eighteen surface sections and 6 wells, which cover large part of the Iberian Basin (E Spain) and which are marked by high-resolution stratigraphy of the Permian, Triassic, Jurassic and Cretaceous, we quantify the complex Permian and Mesozoic tectonic subsidence history of the basin. Backstripping analysis of the available high resolution and high surface density of the database allows to quantify spatial and temporal patterns of tectonically driven subsidence to a much higher degree than previous studies. The sections and wells have also been forward modelled with a new ‘automated' modelling technique, with unlimited number of stretching phases, in order to quantify variations in timing and magnitude of rifting. It is demonstrated that the tectonic subsidence history in the Iberian Basin is characterized by pulsating periods of stretching intermitted by periods of relative tectonic quiescence and thermal subsidence. The number of stretching phases appears to be much larger than found by earlier studies, showing a close match with stretching phases found in other parts of the Iberian Peninsula and allowing a clear correlation with discrete phases in the opening of the Tethys and Atlantic.  相似文献   

18.
Calc-alkaline magmatism in the south-west Ukraine occurred between 13.8 and 9.1 Ma and formed an integral part of the Neogene subduction-related post-collisional Carpathian volcanic arc. Eruptions occurred contemporaneously in two parallel arcs (here termed Outer Arc and Inner Arc) in the Ukrainian part of the Carpathians. Outer Arc rocks, mainly andesites, are characterized by LILE enrichment (e.g. K and Pb), Nb depletion, low compatible trace element abundances, high 87Sr/86Sr, high δ18O and low 143Nd/144Nd isotopic ratios (0.7085–0.7095, 7.01–8.53, 0.51230–0.51245, respectively). Inner Arc rocks are mostly dacites and rhyolites with some basaltic and andesitic lavas. They also show low compatible element abundances but have lower 87Sr/86Sr, δ18O and higher 143Nd/144Nd ratios (0.7060–0.7085, 6.15–6.64, 0.5125–0.5126, respectively) than Outer Arc rocks. Both high-Nb and low-Nb lithologies are present in the Inner Arc. Based on the LILE enrichment (especially Pb), a higher fluid flux is suggested for the Outer Arc magmas compared with those of the Inner Arc.

Combined trace element and Sr–Nd–O isotopic modelling suggests that the factors which controlled the generation and evolution of magmas were complex. Compositional differences between the Inner and Outer Arcs were produced by introduction of variable proportions of slab-derived sediments and fluids into a heterogeneous mantle wedge, and by different extents of upper crustal contamination. Degrees of magmatic fractionation also differed between the two arcs. The most primitive magmas belong to the Inner Arc. Isotopic modelling shows that they can be produced by adding 3–8% subducted terrigenous flysch sediments to the local mantle wedge source. Up to 5% upper crustal contamination has been modelled for fractionated products of the Inner Arc. The geochemical features of Outer Arc rocks suggest that they were generated from mantle wedge melts similar to the Inner Arc primitive magmas, but were strongly affected by both source enrichment and upper crustal contamination. Assimilation of 10–20% bulk upper crust is required in the AFC modelling, assuming an Inner Arc parental magma. We suggest that magmagenesis is closely related to the complex geotectonic evolution of the Carpathian area. Several tectonic and kinematic factors are significant: (1) hydration of the asthenosphere during subduction and plate rollback directly related to collisional processes; (2) thermal disturbance caused by ascent of hot asthenospheric mantle during the back-arc opening of the Pannonian Basin; (3) clockwise translational movements of the Intracarpathian terranes, which facilitated eruption of the magmas.  相似文献   


19.
Analysis of the distribution of oil pools in sedimentary cover has shown that known platform hydrocarbon fields are closely associated with faults in the crystalline basement and the sedimentary cover itself. Oil pools in the lower productive beds of the sedimentary cover are linked to faulted zones in the crystalline basement. A genetic relationship between oil fields and tectonic dislocations indicates a dominant role for vertical migration in the accumulation of commercial hydrocarbons in the Paleozoic. The conducted geochemical, palynological, geophysical and geological studies have shown that oil and gas pools in the upper sedimentary cover have been formed due to the vertical migration of hydrocarbons, which is also confirmed by the vertical alignment of the oil pools.  相似文献   

20.
Although it is generally considered that near-surface earthquakes result from movements along faults that cut through the surface, several recent large earthquakes have been partly attributed to blind thrusts. Movements along blind thrusts lead to the formation of surface folds, which are highly dependent upon fault geometry at depth and often not considered in seismic hazard evaluation. Several authors have studied the relationship between surface folding and thrusting for geological situations in which fault geometries are quite simple. However, active fault geometries can be quite complex e.g., segmented thrust faults associated with strike-slip faults. The aim of this contribution is to reconstruct the fault kinematics at depth for a relatively complex geological structure located in the Eastern Betic Cordilleras (Orihuela-Guardamar-Torrevieja region) using the patterns of kilometre-scale folds observed in the field. In order to model surface deformation, the assumption is made that surface km-scale folds have been created by coseismic deformation associated with movement along blind thrusts. By means of a coseismic deformation model, movements at depth have been calculated for three possible hypotheses. Hypothesis 1 assumes that each superficial fold is created by an independent fault. Hypotheses 2 and 3 assume that a sequence of two superficial folds can be created by movement along a single fault displaying a flat and ramp geometry. In Hypothesis 2, the flat is a superficial décollement level between the sedimentary cover and the Betic basement; in Hypothesis 3, it is a deeper décollement level within the Betic basement.

Knowing the approximate age of surface deformation, rough estimates of fault slip-rates and recurrence periods for two possible earthquake magnitudes (7 Ms and 6.7 Ms) have been made, from calculated dislocations at depth. Slip-rates and recurrence periods for flat and ramp fault geometries are in the range of 0.75–1 mm/yr and 1000–2000 yr, respectively. These values are close to those calculated by direct methods in similar seismotectonic contexts.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号