首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suspended sediments (SS) from the Atchafalaya River (AR) and the Mississippi River and surficial sediment samples from seven shallow cross-shelf transects west of the AR in the northern Gulf of Mexico were examined using elemental (%OC, C/N), isotopic (δ13C, Δ14C), and terrigenous biomarker analyses. The organic matter (OM) delivered by the AR is isotopically enriched (∼−24.5‰) and relatively degraded, suggesting that soil-derived OM with a C4 signature is the predominant OM source for these SS. The shelf sediments display OC values that generally decrease seaward within each transect and westward, parallel to the coastline. A strong terrigenous C/N (29) signal is observed in sediments deposited close to the mouth of the river, but values along the remainder of the shelf fall within a narrow range (8-13), with no apparent offshore trends. Depleted stable carbon isotope (δ13C) values typical of C3 plant debris (−27‰) are found near the river mouth and become more enriched (−22 to −21‰) offshore. The spatial distribution of lignin in shelf sediments mirrors that of OC, with high lignin yields found inshore relative to that found offshore (water depth > 10 m).The isotopic and biomarker data indicate that at least two types of terrigenous OM are deposited within the study area. Relatively undegraded, C3 plant debris is deposited close to the mouth of the AR, whereas more degraded, isotopically enriched, soil-derived OM appears to be deposited along the remainder of the shelf. An important input from marine carbon is found at the stations offshore from the 10-m isobath. Quantification of the terrigenous component of sedimentary OM is complicated by the heterogeneous composition of the terrigenous end-member. A three-end-member mixing model is therefore required to more accurately evaluate the sources of OM deposited in the study area. The results of the mixing calculation indicate that terrigenous OM (soil-derived OM and vascular plant debris) accounts for ∼79% of the OM deposited as inshore sediments and 66% of OM deposited as offshore sediments. Importantly, the abundance of terrigenous OM is 40% higher in inshore sediments and nearly 85% higher in offshore sediments than indicated by a two-end-member mixing model. Such a result highlights the need to reevaluate the inputs and cycling of soil-derived OM in the coastal ocean.  相似文献   

2.
I examined four hypotheses about causes for the dramatically high coastal wetland losses (0.86% yr?1) in the northern Gulf of Mexico: an extensive dredged canal and spoil bank network, a decline in sediments in the Mississippi River during the 1950s, Mississippi River navigation and flood protection levees, and salinity changes. Natural factors contributing to these habitat changes include eustatic sea-level rise and geological compaction, which appear to have remained relatively constant this century, although variation does occur. These four hypotheses were tested using data on land-to-water changes in 15-min quadrangle maps inventoried for four intervals between the 1930s and 1990. Land loss rates were directly proportional to changes in wefland hydrology in time and space. A linear regression of the direct losses due to dredging versus the losses due to all other factors (indirect losses) had a zero intercept and a slope that increased with time. The ratio indirect:direct land loss was highest nearest the estuarine entrance. The coastwide patterns of land loss do not appear to be affected by riverine sediment reductions over the last 60 yr. The effects of changes in wetland hydrology from dredging human-made channels and forming dredged spoil banks appear to be the most efficacious hypothesis explaning these dramatic losses. The effects of extensive human-induced changes on this coast have apparently overwhelmed the causal linkages identified in the historical re-constructionist view of deltaic gain and loss that emphasizes the role of mineral sediments. A paradigm shift is therefore proposed that emphasizes a broad ecological view as contrasted to a mostly physical view emphasizing the role of sediment supply in wetland maintenance. In this view, plants are not an ancillary consequence of strictly geological dynamics such as sediment supply but are dominant agents controlling factors relevant to coastal restoration and management efforts.  相似文献   

3.
Maps of the distributions of the four major clay minerals (smectite, illite, kaolinite and chlorite) in and around the Mississippi River drainage basin and in the Northern Gulf of Mexico have been produced using newly acquired data from erodible/alluvial terrestrial sediments and marine surface sediments, as well as from previously published data. East of the Rockies, North America can be divided into four, large, clay-mineral provinces: (1) the north-western Mississippi River watershed (smectite rich), (2) the Great Lakes area and eastern Mississippi River watershed (illite and chlorite rich), (3) the south-eastern United States (kaolinite rich) and (4) the Brazos River and south-western Mississippi River watersheds (illite and kaolinite rich). The clay mineral distributions in surface sediments of the present-day Gulf of Mexico are strongly influenced by three main factors: (1) by relative fluvial contributions: the Mississippi River delivers the bulk of the clay input to the Northern Gulf of Mexico whereas the Apalachicola, Mobile, Brazos and Rio Grande rivers inputs have more local influences; (2) by differential settling of various clay mineral species, which is identified for the first time in Northern Gulf of Mexico sediments; and (3) by oceanic current transport: the Gulf of Mexico surface and subsurface circulation distributes the clay-rich sediments from river mouth sources throughout the Northern Gulf of Mexico.  相似文献   

4.
The ability of oysters to remove large quantities of particulates from the water column, thereby potentially improving water quality, has been cited as one of the reasons for oyster reef restoration. However, this ability has not yet been effectively demonstrated in the field. As part of the Alabama Oyster Reef Restoration Project, this study was designed to assess impacts of restored eastern oyster (Crassostrea virginica) reefs on primary production, nutrient dynamics, and water quality in shallow tidal creeks. Using a Before–After-Control–Impact (BACI) design, we monitored tidal creeks around Dauphin Island, AL, for changes induced by the introduction of oyster reefs. Reef placement resulted in increased ammonium (NH4+) in two of the three experimental creeks. Interestingly, oyster reefs did not seem to reduce water column particulates or have an impact on phytoplankton or microphytobenthic biomass or productivity. We do not believe that our data discount the importance and/or usefulness of oysters in modifying the water column. Rather, we acknowledge that it is difficult to detect these impacts/environmental services in this type of system (i.e., a tidal creek system), because they seem to be very localized and short-lived (i.e., not ecologically relevant on a creek-wide scale). This study highlights the need to consider location and habitat in planning oyster restoration projects. Also, it demonstrates that the types, magnitudes, and spatial extent of changes in ecosystem services that should be expected after reef restoration might need to be re-evaluated.  相似文献   

5.
This paper presents the results of two cruises in the Northern Gulf of Mexico in 2008 that investigated local and short-term factors influencing the carbonate chemistry dynamics and saturation state with respect to aragonite (Ωaragonite) of surface seawater in this region. One cruise covered much of the northern half of the Gulf, and the other focused on the coastal zone west of the Atchafalaya Bay outlet of the Mississippi River—the region where the hypoxic “dead zone” occurs on the Louisiana shelf. Offshore waters (>100 m depth) exhibited only small variations in CO2 fugacity (fCO2), total alkalinity (TA) and Ωaragonite. Values were close to those typically observed in subtropical Atlantic Ocean and Caribbean Sea waters of similar salinity. However, inner shelf waters (<50 m depth) exhibited large variations in fCO2, TA, and Ωaragonite that were not directly related to salinity or distance from the Mississippi River plume. Changes in TA values were not the result of simple mixing of end-member freshwater and seawater TA concentrations but exhibited a minimum in values near salinity of 25. This minimum could be the result of microbial recycling across salinity gradients, biological removal of alkalinity by formation of calcium carbonate or mixing of a third end-member with a low alkalinity such as Terrebonne Bay. All waters were supersaturated with respect to aragonite. Offshore waters had an average Ωaragonite of 3.86 with a standard deviation of only ±0.06 and inner shelf waters had a range in Ωaragonite values from 3.9 to 9.7 with a median of 4.3. Shelf water Ωaragonite values were elevated relative to the offshore as a consequence of both high TA input from Mississippi River and biological drawdown of CO2. A dominant factor controlling Ωaragonite distribution in offshore waters with relatively constant temperatures was fCO2, with higher supersaturation occurring in areas with low fCO2.  相似文献   

6.
Examination of Winter Circulation in a Northern Gulf of Mexico Estuary   总被引:1,自引:0,他引:1  
Numerical model experiments were conducted to examine how estuarine circulation and salinity distribution in the Calcasieu Lake Estuary (CLE) of southwest Louisiana respond to the passage of cold fronts. River runoff, local wind stress, and tides from December 20, 2011, to February 1, 2012, were included as input. The experiments showed an anticyclonic circulation in the eastern CLE, a cyclonic circulation in West Cove, and a saltwater conduit in the navigation channel between these circulation cells. Freshwater from the river and wetlands tends to flow over the shallow shoals toward the ocean, presenting a case of the conventional estuarine circulation with shallow water influenced by river discharge and with weak tidally-induced motion, enhanced by wind. The baroclinic pressure gradient is important for the circulation and saltwater intrusion. The effect of remote wind-driven oscillation plays an important role in circulation and salinity distribution in winter. Unless it is from the east, wind is found to inhibit saltwater intrusion through the narrow navigation channel, indicating the effect of Ekman setup during easterly wind. A series of north-south oriented barrier islands in the lake uniquely influenced water level and salinity distribution between the shallow lake and deep navigation channel. The depth of the navigation channel is also crucial in influencing saltwater intrusion: the deeper the channel, the more saltwater intrusion and the more intense estuarine circulation. Recurring winter storms have a significant accumulated effect on the transport of water and sediment, saltwater intrusion, and associated environmental and ecosystem effects.  相似文献   

7.
Niche models applied in the context of future climate change predict that as regional temperatures increase, the distribution of tropical species will shift poleward. While range expansions have been documented for a number of species, there is limited information on the ecological impacts of shifts on native species. Recently, abundances of tropically-associated gray snapper (Lutjanus griseus) and lane snapper (Lutjanus synagris) have increased in seagrass nurseries in the northern Gulf of Mexico (GOM), concurrent with regional increases in sea surface temperature. We investigated effects of increased abundances of these species on abundance and growth of pinfish (Lagodon rhomboides), the dominant native species. Because juvenile pinfish and snappers share common prey, predators, and habitat, the high degree of niche overlap suggests an equally high potential for competition. We used a multiple before–after control impact design to determine whether increased snapper abundances significantly affected abundance or growth of pinfish. Trawl surveys at six locations in the northern GOM in summer and fall 2010 were used to calculate pinfish and snapper abundances. We identified three locations with high snapper abundances and three locations with no snapper and compared pinfish abundance and otolith-determined growth rates in these locations before and after snapper recruitment. Paired t tests and two-way analysis of variance revealed no significant differences in pinfish abundance or growth in the presence of snappers compared to locations and seasons without snappers. We conclude that range expansions of tropically associated snappers have had no significant effect on abundance or growth of native pinfish in northern GOM seagrass habitats.  相似文献   

8.
The northern Gulf of Mexico (NGOMEX) was surveyed to examine the broad-scale spatial patterns and inter-relationships between hypoxia (<2?mg?L?1 dissolved oxygen) and zooplankton biovolume. We used an undulating towed body equipped with sensors for conductivity, temperature, depth, oxygen, fluorescence, and an optical plankton counter to sample water column structure, oxygen, and zooplankton at high spatial resolution (1?m??vertical; 0.25?C1?km??horizontal). We contrast the distribution of zooplankton during summer surveys with different freshwater input, stratification, and horizontal and vertical extent of bottom-water hypoxia. Bottom-water hypoxia did not appear to influence the total amount of zooplankton biomass present in the water column or the areal integration of zooplankton standing stock in the NGOMEX region surveyed. However, where there were hypoxic bottom waters, zooplankton shifted their vertical distribution to the upper water column during the day where they normally would reside in deeper and darker waters. When bottom waters were normoxic (>2?mg?L?1 dissolved oxygen), the daytime median depth of the water column zooplankton was on average 7?m deeper than the median depth of zooplankton in water columns with hypoxic bottom waters. A reduction in larger zooplankton when there were hypoxic bottom waters suggests that if zooplankton cannot migrate to deeper, darker water under hypoxic conditions, they may be more susceptible to size-selective predation by visual predators. Thus, habitat compression in the northern Gulf of Mexico due to hypoxic bottom water may have implications for trophic transfer by increasing the contact between predators and prey.  相似文献   

9.
The Gulf Killifish (Fundulus grandis) is one of the most abundant nekton species in the US Gulf of Mexico (GOM) salt marshes, providing an important trophic link in these systems. Recently, the use of F. grandis as an indicator species of salt marsh health in the region has been suggested because its Atlantic coast congener, the Mummichog (Fundulus heteroclitus) has filled such a role due to its demonstrated high site fidelity and small-scale movements. Given the similar life histories between species, F. grandis was assumed to exhibit the same type of small-scale movements, although this has not been documented. During summer 2013, we collected and marked 1,719 fish from a northern Gulf of Mexico estuary, recapturing 959 (56 % recapture rate). Of these recaptured fish, only 31 moved from their original tagging location, and of these, 29 moved only 100 m between sites connected by salt marsh. Based on these results, F. grandis appears to exhibit high site fidelity and make only small-scale movements, similar to F. heteroclitus, supporting its role as an indicator species.  相似文献   

10.
Bottom-water hypoxia in the northern Gulf of Mexico has increased in severity (duration, frequency, and intensity) since the 1970s and has impacted the less-mobile benthos ever since. From September 2003 to October 2004, the macrobenthic density, species richness, community composition, and vertical distribution were studied at a frequently hypoxic station, C6B (28°52.10′ N and 90°28.00′ W). The polychaete-dominated community was approximately three times less dense and diverse in post-hypoxic months compared to pre-hypoxic months. The lowest oxygen concentrations in July 2004 did not significantly affect the infaunal community as predicted; rather, the response was observed 1 month later after a longer, low-oxygen exposure. The opportunistic, hypoxia-tolerant polychaete, Paraprionospio pinnata, population increased in July 2004 when other common species decreased, thereby maintaining pre-hypoxic densities. Determining the duration and severity of hypoxia prior to sampling rather than at the time of sampling helps to better understand benthic community responses to hypoxia.  相似文献   

11.
In sediments from the continental slope of the Northern Gulf of Mexico, generally,the degree of iron pyritization (DOP) is low (<0.1) and dissolved sulfide is belowdetection limits (5 M), whereas dissolved Fe is typically about 50 to100 M. Therefore, the dissolution of kinetically reactive iron minerals generallydominates over the rate of sulfide production in sediments throughout this region.However, in sediments where hydrocarbons have been added via seepage from thesubsurface, dissolved-Fe is undetectable, DOP can approach 1, and high concentrationsof dissolved sulfide (up to 11 mM) are commonly present. Even though thesesediments have high total reduced sulfide (TRS) concentrations (typically 150 to370 mol gdw-1), their average C/S ratio is about 4 times that of normal marine sediments reflecting the major input of hydrocarbons. DOP is significantly (20%) higher when calculated using reactive-Fe extracted by citrate dithionite than by cold 1N HCl. This difference is primarily due to the greater extraction efficiency of the cold HCl method for silicate-Fe. TRS tends to rise to a maximum, and remains close to constant even at high (mM) dissolved sulfide concentrations. These TRS concentrations, therefore, represent the size of the ``kinetically' reactive-Fe pool during early diagenesis.  相似文献   

12.
Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism parameters can be inferred from high frequency water quality data collections using autonomous logging instruments. For this study, we analyzed such time series datasets from three Gulf of Mexico estuaries: Grand Bay, MS; Weeks Bay, AL; and Apalachicola Bay, FL. Data were acquired from NOAA's National Estuarine Research Reserve System Wide Monitoring Program and used to calculate gross primary production (GPP), ecosystem respiration (ER), and net ecosystem metabolism (NEM) using Odum's open water method. The three systems represent a diversity of estuaries typical of the Gulf of Mexico region, varying by as much as two orders of magnitude in key physical characteristics, such as estuarine area, watershed area, freshwater flow, and nutrient loading. In all three systems, GPP and ER displayed strong seasonality, peaking in summer and being lowest during winter. Peak rates of GPP and ER exceeded 200 mmol O2?m?2 day?1 in all three estuaries. To our knowledge, this is the first study examining long-term trends in rates of GPP, ER, and NEM in estuaries. Variability in metabolism tended to be small among sites within each estuary. Nitrogen loading was highest in Weeks Bay, almost two times greater than that in Apalachicola Bay and 35 times greater than to Grand Bay. These differences in nitrogen loading were reflected in average annual GPP rates, which ranged from 825 g C m?2 year?1 in Weeks Bay to 401 g C m?2 year?1 for Apalachicola Bay and 377 g C m?2 year?1 in Grand Bay. Despite the strong inter-annual patterns in freshwater flow and salinity, variability in metabolic rates was low, perhaps reflecting shifts in the relative importance of benthic and phytoplankton productivity, during different flow regimes. The advantage of the open water method is that it uses readily available and cost-effective sonde monitoring technology to estimate these fundamental estuarine processes, thus providing a potential means for examining long-term trends in net carbon balance. It also provides a historical benchmark for comparison to ongoing and future monitoring focused on documenting the effect of human activities on the coastal zone.  相似文献   

13.
14.
Benthic and Pelagic Primary Production in Different Nutrient Regimes   总被引:1,自引:0,他引:1  
Benthic flora can contribute significantly to gross primary production (GPP) of shallow coastal waters where light reaches the sea bottom. We quantified and compared benthic and pelagic GPP along nutrient gradients in time and space in the shallow estuary, Limfjorden, Denmark, based on monitoring data combined with historical information. Limfjorden experienced a shift from a pristine, benthic-dominated clear water regime with high total GPP in the early twentieth century to a eutrophic, plankton-dominated regime still with high total GPP in the 1980s when nutrient loadings peaked. Recent reductions in nutrient loadings reduced pelagic GPP, particularly in spring, but water clarity and benthic GPP did not increase correspondingly, so total GPP declined. The most nutrient-rich basins have remained plankton-dominated, with benthic vegetation constrained to shallow waters. The results support existing evidence that total GPP of shallow coastal areas does not increase systematically with eutrophication. Furthermore, the results suggest that total GPP may decline temporarily during oligotrophication as pelagic GPP declines, while feedback mechanisms delay or prevent restoration to a state with benthic dominance of GPP.  相似文献   

15.
Long-term water level changes in the northern Gulf of Mexico were examined using tide gauge records for this century. Strong coherence exists between the annual mean water changes at Galveston, Texas, and (1) the relatively geologically-stable west coast of Florida, (2) global mean sea level, and 93) the subsiding Louisiana coast. Water levels at the Galveston gauge, one of the longest records (81 yr), have risen steadily, but not accelerated over the long-term. The apparent acceleration of water rise in the recent two decades is within the historical pattern, and is probably driven by regional or global, but not local climatic factors. Because eustatic sea level has risen steadily this century, the analysis supports the conclusion that regional geologic subsidence has not varied significantly over the tide gauge record (1909–1988). Variations in the estimates of subsidence in the surface layers are generally consistent with the generally accepted understanding of the geology of deltaic processes on this coast.  相似文献   

16.
卢景美  张金川  严杰  王丹  张量 《沉积学报》2014,32(6):1132-1139
墨西哥湾北部盆地的始新—古新统Wilcox是深水区重要的储集层和产油层,埋深大,分布广.前人对Wilcox的沉积类型认识存在不同的观点,本文通过岩芯观察、薄片分析,结合测井、录井资料和地震资料,对深水区的Wilcox砂岩的沉积环境和沉积特征进行了深入研究.研究表明,Wilcox砂岩为深水扇沉积,中等到好分选,细粒—极细粒,以岩屑砂岩和长石质岩屑砂岩为主.结合沉积物源分析和盐岩演化形变形成的微盆地对Wilcox沉积的影响,建立了Wilcox深水沉积模式,下陆坡区为受盐岩微盆控制的水道沉积,盆地区为深水扇沉积.  相似文献   

17.
Southern flounder Paralichthys lethostigma is a recreationally and commercially important species along the western Atlantic and northern Gulf of Mexico coasts that can exhibit complex early-life habitat-use patterns. Herein, we used an otolith microchemical approach to test the conventional wisdom that juvenile southern flounder spend most of their early life in low-salinity areas of estuaries, focusing on the largely unstudied population in the Mobile-Tensaw Delta, AL. Analysis of strontium/calcium concentrations in otolith cores of age 0 juveniles demonstrated that 68% of these individuals hatched in high-salinity waters before moving into freshwater habitats, with the remaining individuals being spawned in or near freshwater habitat. Further, otolith edge Sr/Ca concentrations revealed that even juveniles used freshwater habitats, particularly during freshwater/oligohaline conditions in our study system. Otolith edge Sr/Ca ratios for fish collected during high-salinity periods differed significantly among collection regions, suggesting seasonal differences in patterns of habitat use between individuals collected upstream (i.e., freshwater habitats) vs. downstream (i.e., euryhaline habitats). These data support the hypothesis that early-life stages of a substantial portion of a coastal southern flounder population use freshwater habitat.  相似文献   

18.
This study was designed to determine the amount of particulate organic carbon (POC) introduced to the Gulf of Mexico by the Mississippi River and assess the influence of POC inputs on the development of hypoxia and burial of organic carbon on the Louisiana continental shelf. Samples of suspended sediment and supporting hydrographic data were collected from the river and >50 sites on the adjacent shelf. Suspended particles collected in the river averaged 1.8±0.3% organic carbon. Because of this uniformity, POC values (in μmol l?1) correlated well with concentrations of total suspended matter. Net transport of total organic carbon by the Mississippi-Atchafalaya River system averaged 0.48×1012 moles y?1 with 66% of the total organic carbon carried as POC. Concentrations of POC decreased from as high as 600 μmol l?1 in the river to <0.8 μmol l?1 in offshore waters. In contrast, the organic carbon fraction of the suspended matter increased from <2% of the total mass in the river to >35% along the shelf at ≥10 km from the river mouth. River flow was a dominant factor in controlling particle and POC distributions; however, time-series data showed that tides and weather fronts can influence particle movement and POC concentrations. Values for apparent oxygen utilization (AOU) increased from ~60 μmol l?1 to >200 μmol l?1 along the shelf on approach to the region of chronic hypoxia. Short-term increases in AOU were related to transport of more particle-rich waters. Sediments buried on the shelf contained less organic carbon than incoming river particles. Orgamic carbon and δ13C values for shelf sediments indicated 3 that large amounts of both terrigenous and marine organic carbon are being decomposed in shelf waters and sediments to fuel observed hypoxia.  相似文献   

19.
Oxygen concentrations have been used for decades to estimate primary production (P) and respiration (R) in aquatic ecosystems. Yet, this approach cannot separate the effects of biological and physical processes affecting oxygen dynamics; therefore, it is now often complemented with the analysis of stable oxygen isotopes. Existing algorithms for calculating primary production and P/R have been developed for closed systems and steady-state open systems. None of these formulations are applicable to productive aquatic ecosystems where diurnal changes in oxygen concentrations and isotope values are usually large. Here, we describe a novel P/R model that includes algorithms for air–sea gas exchange and is not constrained by steady-state conditions. Our objective was to test model sensitivity to variations in input parameters for values commonly observed in coastal waters of the northern Gulf of Mexico. The model was highly sensitive to variations in fractionation factor for respiration (ε) but less sensitive to variations in wind speed, oxygen isotope values of source-water, or oxygen flux through the picnocline. This model is easily transferable to other coastal ecosystems, with a caveat that system-specific values for ε are needed to obtain realistic estimates of P/R.  相似文献   

20.
Four major sedimentary provinces of the inner continental shelf off the Louisiana coast have been recognized by textural studies (Krawiec, 1966): deltaic, non-deltaic, and relict sediments; and deltadestructional sands. Samples from these provinces have been analyzed for Rb, Sr, Ni, Fe,Mn, Ti, and Zr; trend surface analysis has been used to discern regional trends of these elements. These trends substantiate the previous division of shelf provinces. Although deltaic and non-deltaic sediments cannot be distinguished by chemical criteria, they are distinctive from relict sediments, which are low in Mn, Fe, Ti, Zr, Rb, and Ni, and high in Sr. The delta-destructional sands are distinctive from the other three provinces by their low contents of Mn, Fe, Rb, and Ni, and high Ti, Zr, and Sr.In an energetic environment such as this, processes subsequent to deposition tend to disperse Rb, Fe, Ni, and Mn, as these elements are closely associated with the clays; these processes may give rise to enrichment of Zr due to the high stability and density of the mineral zircon, or the enrichment of Sr by accumulation of organic remains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号