首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulsed-power technology and appropriate boundary conditions have been used to create simulations of magnetically driven astrophysical jets in a laboratory experiment. The experiments are quite reproducible and involve a distinct sequence. Eight initial flux tubes, corresponding to eight gas injection locations, merge to form the jet, which lengthens, collimates, and eventually kinks. A model developed to explain the collimation process predicts that collimation is intimately related to convection and pile-up of frozen-in toroidal flux convected with the jet. The pile-up occurs when there is an axial non-uniformity in the jet velocity so that in the frame of the jet there appears to be a converging flow of plasma carrying frozen-in toroidal magnetic flux. The pile-up of convected flux at this “stagnation region” amplifies the toroidal magnetic field and increases the pinch force, thereby collimating the jet.  相似文献   

2.
Jets and outflows are thought to be an integral part of accretion phenomena and are associated with a large variety of objects. In these systems, the interaction of magnetic fields with an accretion disk and/or a magnetized central object is thought to be responsible for the acceleration and collimation of plasma into jets and wider angle flows. In this paper we present three-dimensional MHD simulations of magnetically driven, radiatively cooled laboratory jets that are produced on the MAGPIE experimental facility. The general outflow structure comprises an expanding magnetic cavity which is collimated by the pressure of an extended plasma background medium, and a magnetically confined jet which develops within the magnetic cavity. Although this structure is intrinsically transient and instabilities in the jet and disruption of the magnetic cavity ultimately lead to its break-up, a well collimated, “knotty” jet still emerges from the system; such clumpy morphology is reminiscent of that observed in many astrophysical jets. The possible introduction in the experiments of angular momentum and axial magnetic field will also be discussed.  相似文献   

3.
We discuss the design of jet-driven, radiative-blast-wave experiments for a 10 kJ class pulsed laser facility. The astrophysical motivation is the fact that jets from Young Stellar Objects are typically radiative and that the resulting radiative bow shocks produce complex structure that is difficult to predict. To drive a radiative bow shock, the jet velocity must exceed the threshold for strong radiative effects. Using a 10 kJ class laser, it is possible to produce such a jet that can drive a radiative bow shock in gas that is dense enough to permit diagnosis by x-ray radiography. We describe the design and simulations of such experiments. The basic approach is to shock the jet material and then accelerate it through a collimating hole and into a Xe ambient medium. We identify issues that must be addressed through experimentation or further simulations in order to field successful experiments.  相似文献   

4.
Numerical solution of the effect of current-carrying jets on the temperature of an astrophysical surrounding is carried out using classical magnetohydrodynamic equations. Under the assumption of small hydrodynamic and magnetic Reynolds numbers and invoking a jet magnetic field intensityB , which confines high pressure jets along thez-axis, a non-linear equation is generated and solved by asymptotic approximation. It is found that when the field intensity is large, the temperature of the surrounding is small and vice-versa. The problem is of interest in the astrophysical studies of current-carrying jets or magnetised radio jets.  相似文献   

5.
《New Astronomy Reviews》2002,46(2-7):433-437
We investigate the growth of jet plus entrained mass in simulations of supermagnetosonic cylindrical and expanding jets. The entrained mass spatially grows in three stages: from an initially slow spatial rate to a faster rate and finally at a flatter rate. These stages roughly coincide with the similar rates of expansion in simulated radio intensity maps, and also appear related to the growth of the Kelvin–Helmholtz instability through linear, nonlinear, and saturated regimes. In the supermagnetosonic cylindrical jets, we found that a jet with an embedded primarily toroidal magnetic field is more stable than a jet with a primarily axial magnetic field. Also, pressure-matched expanding jets are more stable and entrain less mass than cylindrical jets with equivalent inlet conditions. We investigate the growth of jet plus entrained mass in simulations of supermagnetosonic cylindrical and expanding jets. The entrained mass spatially grows in three stages: from an initially slow spatial rate to a faster rate and finally at a flatter rate. These stages roughly coincide with the similar rates of expansion in simulated radio intensity maps, and also appear related to the growth of the Kelvin–Helmholtz instability through linear, nonlinear, and saturated regimes. In the supermagnetosonic cylindrical jets, we found that a jet with an embedded primarily toroidal magnetic field is more stable than a jet with a primarily axial magnetic field. Also, pressure-matched expanding jets are more stable and entrain less mass than cylindrical jets with equivalent inlet conditions.  相似文献   

6.
We report on experiments in which magnetically driven radiatively cooled plasma jets were produced by a 1 MA, 250 ns current pulse on the MAGPIE pulsed power facility. The jets were driven by the pressure of a toroidal magnetic field in a “magnetic tower” jet configuration. This scenario is characterized by the formation of a magnetically collimated plasma jet on the axis of a magnetic “bubble”, confined by the ambient medium. The use of a radial metallic foil instead of the radial wire arrays employed in our previous work allows for the generation of episodic magnetic tower outflows which emerge periodically on timescales of ~30 ns. The subsequent magnetic bubbles propagate with velocities reaching ~300 km/s and interact with previous eruptions leading to the formation of shocks.  相似文献   

7.
The absence of other viable momentum sources for collimated flows leads to the likelihood that magnetic fields play a fundamental role in jet launch and/or collimation in astrophysical jets. To best understand the physics of jets, it is useful to distinguish between the launch region where the jet is accelerated and the larger scales where the jet propagates as a collimated structure. Observations presently resolve jet propagation, but not the launch region. Simulations typically probe the launch and propagation regions separately, but not both together. Here, I IDentify some of the physics of jet launch vs. propagation and what laboratory jet experiments to date have probed. Reproducing an astrophysical jet in the lab is unrealistic, so maximizing the benefit of the experiments requires clarifying the astrophysical connection.  相似文献   

8.
The astrophysical jet experiment at Caltech generates a T=2–5 eV, n=1021–1022 m−3 plasma jet using coplanar disk electrodes linked by a poloidal magnetic field. A 100 kA current generates a toroidal magnetic field; the toroidal field pressure inflates the poloidal flux surface, magnetically driving the jet. The jet travels at up to 50 km/s for ∼20–25 cm before colliding with a cloud of initially neutral gas. We study the interaction of the jet and the cloud in analogy to an astrophysical jet impacting a molecular cloud. Diagnostics include magnetic probe arrays, a 12-channel spectroscopic system and a fast camera with optical filters. When a hydrogen plasma jet collides with an argon target cloud, magnetic measurements show the magnetic flux compressing as the plasma jet deforms. As the plasma jet front slows and the plasma piles up, the density of the frozen-in magnetic flux increases.  相似文献   

9.
We present the local linear stability analysis of rotating jets confined by a toroidal magnetic field. Under the thin flux tube approximation, we derive the equation of motion for slender magnetic flux tubes. In addition to the terms responsible for the conventional instability of the toroidal magnetic field, a term related to the magnetic buoyancy and a term corresponding to the differential rotation become relevant for the stability properties. We find that the rigid rotation stabilizes while the differential rotational destabilizes the jet in a way similar to the Balbus–Hawley instability. Within the frame of our local analysis, we find that if the azimuthal velocity is of the order of or higher than the Alfvén azimuthal speed, the rigidly rotating part of the jet interior can be completely stabilized, while the strong shearing instability operates in the transition layer between the rotating jet interior and the external medium. This can explain the limb-brightening effect observed in several jets. However, it is still possible to find jet equilibria that are stable all across the jet, even in the presence of differential rotation. We discuss observational consequences of these results.  相似文献   

10.
We consider evolution of the regular magnetic field in turbulent astrophysical jets. The observed lateral expansion of a jet is approximately described by a linear in coordinates regular velocity field (the Hubble flow). It is shown that in expanding turbulent jets with non-vanishing mean helicity of the turbulence temporal amplification and effective realignment of the regular magnetic field occurs with the field changing orientation from the transverse to the longitudinal one along the jet axis. The distance at which the realiggment occurs depends on parameters of the jet, in particular, on the power of the central source. Estimates for the jet in a weak source 3C 31 favourably agree with observations.  相似文献   

11.
We analytically determine the structure of highly magnetized astrophysical jets at the origin in a region where the flow has been already collimated by an external medium, in both relativistic and non-relativistic regimes. We show that this can be achieved by solving a system of first-order ordinary differential equations that describe the transversal jet structure for a variety of external confining pressure profiles that collimate the jet to a near-cylindrical configuration. We obtain solutions for a central jet surrounded either by a self-similar wind or by an external pressure profile and derive the dependence of the velocity and the magnetic field strength along and across our jets. In particular, we find that the central core in a jet – the part of a flow with a nearly homogeneous magnetic field – must contain a poloidal field which is not much smaller than the critical value B min. This allows us to determine the magnetic flux in a core which is much smaller than the total magnetic flux. We show that for such a small core flux the solutions with a magnetic field in a core much smaller than B min are non-physical. For astrophysical objects the value of the critical magnetic field is quite large: 1 G for active galactic nuclei, 1010 G for gamma-ray bursts and 10−1 G for young stellar objects. In a relativistic case for the core field greater than or of the order of B min we show analytically that the plasma Lorentz factor must grow linearly with the cylindrical radius. For non-relativistic highly magnetized jets we propose that an oblique shock exists near the base of the jet so that the finite gas pressure plays an important role in force balance.  相似文献   

12.
The acceleration mechanisms of relativistic jets are of great importance for understanding various astrophysical phenomena such as gamma-ray bursts,active galactic nuclei and microquasars.One of the most popular scenarios is that the jets are initially Poynting-flux dominated and succumb to magnetohydrodynamic instability leading to magnetic reconnections.We suggest that the reconnection timescale and efficiency could strongly depend on the geometry of the jet,which determines the length scale on which the orientations of the field lines change.In contrast to a usuallyassumed conical jet,the acceleration of a collimated jet can be found to be more rapid and efficient(i.e.a much more highly saturated Lorentz factor can be reached)while the jets with lateral expansion show the opposite behavior.The shape of the jet could be formed due to the lateral squeezing on the jet by the stellar envelope of a collapsing massive star or the interaction of the jet with stellar winds.  相似文献   

13.
Observations of supersonic jet propagation in low-current x-pinches are reported. X-pinches comprising of four 7.5 ??m diameter tungsten wires were driven by an 80 kA, 50 ns current pulse from a compact pulser. Coronal plasma surrounding the wire cores was accelerated perpendicular to their surface due to the global J×B force, and traveled toward the axis of the x-pinch to form an axially propagating jet. These jets moved towards the electrodes and, late in time (??150 ns), were observed to propagate well above the anode with a velocity of 3.3±0.6×104 m/s. Tungsten jets remained collimated at distances of up to 16 mm from the cross point, and an estimate of the local sound speed gives a Mach number of ??6. This is the first demonstration that supersonic plasma jets can be produced using x-pinches with such a small, low current pulser. Experimental data compares well to three-dimensional simulations using the GORGON resistive MHD code, and possible scaling to astrophysical jets is discussed.  相似文献   

14.
In spite of the large number of global three-dimensional (3-D) magnetohydrodynamic (MHD) simulations of accretion disks and astrophysical jets, which have been developed since 2000, the launching mechanisms of jets is somewhat controversial. Previous studies of jets have concentrated on the effect of the large-scale magnetic fields permeating accretion disks. However, the existence of such global magnetic fields is not evident in various astrophysical objects, and their origin is not well understood. Thus, we study the effect of small-scale magnetic fields confined within the accretion disk. We review our recent findings on the formation of jets in dynamo-active accretion disks by using 3-D MHD simulations. In our simulations, we found the emergence of accumulated azimuthal magnetic fields from the inner region of the disk (the so-called magnetic tower) and also the formation of a jet accelerated by the magnetic pressure of the tower. Our results indicate that the magnetic tower jet is one of the most promising mechanisms for launching jets from the magnetized accretion disk in various astrophysical objects. We will discuss the formation of cosmic jets in the context of the magnetic tower model.  相似文献   

15.
In recent years, we have carried out experiments at the University of Rochester’s Omega laser in which supersonic, dense-plasma jets are formed by the interaction of strong shocks in a complex target assembly (Foster et al., Phys. Plasmas 9 (2002) 2251). We describe recent, significant extensions to this work, in which we consider scaling of the experiment, the transition to turbulence, and astrophysical analogues. In new work at the Omega laser, we are developing an experiment in which a jet is formed by laser ablation of a titanium foil mounted over a titanium washer with a central, cylindrical hole. Some of the resulting shocked titanium expands, cools, and accelerates through the vacuum region (the hole in the washer) and then enters a cylinder of low-density foam as a jet. We discuss the design of this new experiment and present preliminary experimental data and results of simulations using AWE hydrocodes. In each case, the high Reynolds number of the jet suggests that turbulence should develop, although this behaviour cannot be reliably modelled by present, resolution-limited simulations (because of their low-numerical Reynolds number).  相似文献   

16.
In this paper we present the first comprehensive statistical study of EUV coronal jets observed with the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) imaging suites of the two STEREO spacecraft. A catalogue of 79 polar jets is presented, identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008, when solar activity was at a minimum. The twin spacecraft angular separation increased during this time interval from 2 to 48 degrees. The appearances of the coronal jets were always correlated with underlying small-scale chromospheric bright points. A basic characterization of the morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evolution. Though each jet appeared morphologically similar in the coronagraph field of view, in the sense of a narrow collimated outward flow of matter, at the source region in the low corona the jet showed different characteristics, which may correspond to different magnetic structures. A classification of the events with respect to previous jet studies shows that amongst the 79 events there were 37 Eiffel tower-type jet events, commonly interpreted as a small-scale (~35 arc?sec) magnetic bipole reconnecting with the ambient unipolar open coronal magnetic fields at its loop tops, and 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipole footpoints. Five events were termed micro-CME-type jet events because they resembled the classical coronal mass ejections (CMEs) but on much smaller scales. The remaining 25 cases could not be uniquely classified. Thirty-one of the total number of events exhibited a helical magnetic field structure, indicative for a torsional motion of the jet around its axis of propagation. A few jets are also found in equatorial coronal holes. In this study we present sample events for each of the jet types using both, STEREO A and STEREO B, perspectives. The typical lifetimes in the SECCHI/EUVI (Extreme UltraViolet Imager) field of view between 1.0 to 1.7 R and in SECCHI/COR1 field of view between 1.4 to 4 R are obtained, and the derived speeds are roughly estimated. In summary, the observations support the assumption of continuous small-scale reconnection as an intrinsic feature of the solar corona, with its role for the heating of the corona, particle acceleration, structuring and acceleration of the solar wind remaining to be explored in more detail in further studies.  相似文献   

17.
In the present paper, we discuss an MHD model for the formation of astrophysical jets, in which the directed flows are ejected along the rotation axis of an accretion disk formed from a cloud having a large scale magnetic field parallel to the angular momentum axis of the disk. The acceleration of jets is due to thej×B force in the relaxing magnetic twist which is produced by the rotation of the disk. The characteristic features of the jets, predicted by our mechanism and hopefully to be proven by observations, are the helical velocity and the hollow cylindrical shape of the jet, with a diameter of roughly the size of the region from which the acceretion disk collected its mass. Justification for the assumption of the perpendicular orientation of the disk, or the parallelism of the jets, to the external magnetic field may be provided by the fact that the component of rotation whose axis is perpendicular to the field may have been damped in the earlier phase of the cloud contraction.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 Septemper–6 October, 1984.  相似文献   

18.
We present new data from High-Energy Density (HED) laboratory experiments designed to explore the interaction of a heavy hypersonic radiative jet with a cross wind. The jets are generated with the MAGPIE pulsed power machine where converging conical plasma flows are produced from a cylindrically symmetric array of inclined wires. Radiative hypersonic jets emerge from the convergence point. The cross wind is generated by ablation of a plastic foil via soft-X-rays from the plasma convergence region. Our experiments show that the jets are deflected by the action of the cross wind with the angle of deflection dependent on the proximity of the foil. Shocks within the jet beam are apparent in the data. Analysis of the data shows that the interaction of the jet and cross wind is collisional and therefore in the hydrodynamic regime. We consider the astrophysical relevance of these experiments applying published models of jet deflection developed for AGN and YSOs. We also present results of 3-D numerical simulations of jet deflection using a new astrophysical Adaptive Mesh Refinement code. These simulations show highly structured shocks occurring within the beam similar to what was observed in the experiments.  相似文献   

19.
The interaction of supersonic plasma jets with dense gases and plasmas has been studied experimentally and theoretically. Collimated plasma jets were generated from the laser pulse interaction with solid targets. The jet propagates with the velocity exceeding 400 km/s and transports the energy of a few kJ/cm2. The interaction of such a jet with an Ar and He gases at various pressures has been studied by using optical and X-ray diagnostics. Qualitative estimates and numerical simulations with a radiative hydrodynamic code explain a sequence of physical processes during the interaction. Experimental and numerical results show that, by changing ambient material, the working surface structure changes from an adiabatic outflow to a radiative cooling jet. The applications of this phenomenon to astrophysical conditions and the inertial confinement fusion are discussed.  相似文献   

20.
We present a dynamo mechanism arising from the presence of barotropically unstable zonal jet currents in a rotating spherical shell. The shear instability of the zonal flow develops in the form of a global Rossby mode, whose azimuthal wavenumber depends on the width of the zonal jets. We obtain self-sustained magnetic fields at magnetic Reynolds numbers greater than 103. We show that the propagation of the Rossby waves is crucial for dynamo action. The amplitude of the axisymmetric poloidal magnetic field depends on the wavenumber of the Rossby mode, and hence on the width of the zonal jets. We discuss the plausibility of this dynamo mechanism for generating the magnetic field of the giant planets. Our results suggest a possible link between the topology of the magnetic field and the profile of the zonal winds observed at the surface of the giant planets. For narrow Jupiter-like jets, the poloidal magnetic field is dominated by an axial dipole whereas for wide Neptune-like jets, the axisymmetric poloidal field is weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号