首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
冈底斯岩浆弧东段沉积岩的早新生代变质作用及构造意义   总被引:1,自引:0,他引:1  
青藏高原南部冈底斯岩浆弧形成于中生代以来新特提斯洋俯冲和新生代印度与欧亚大陆碰撞过程中。岩浆弧东部出露的中—新生代变质岩是研究大陆地壳组成、生长和再造的理想窗口。本文选择早新生代的变质沉积岩——石榴子石矽线石云母片岩和石榴子石黑云母片麻岩进行了岩石学和锆石U-Pb年代学研究。研究结果表明,石榴子石矽线石云母片岩由石榴子石、黑云母、白云母、斜长石、钾长石、矽线石、石英和金红石组成,峰期变质条件为730~750℃和0.78~0.81GPa。片岩和片麻岩中的锆石由继承的碎屑核和变质边组成,变质边给出的~(206)Pb/~(238) U年龄为51~72Ma,继承碎屑核给出的~(206) Pb/~(238) U(或~(207) Pb/~(206) Pb)年龄在314~3286 Ma之间,并具有340Ma、550Ma、1100~1200Ma、1500~1600Ma和1800Ma年龄峰值,表明这些变质岩的原岩可能形成于晚石炭世。本文研究表明,冈底斯弧东段的古生代沉积岩在早新生代的碰撞造山过程中被埋藏到约25km深的中-下地壳,经历了角闪岩相变质作用和部分熔融,由此导致了岩浆弧中-下地壳组成和同碰撞岩浆岩化学成分的变化。  相似文献   

3.
《Gondwana Research》2014,25(3-4):865-885
Exhumation of middle and lower crustal rocks during the 450–320 Ma intraplate Alice Springs Orogeny in central Australia provides an opportunity to examine the deep burial of sedimentary successions leading to regional high-grade metamorphism. SIMS zircon U–Pb geochronology shows that high-grade metasedimentary units recording lower crustal pressures share a depositional history with unmetamorphosed sedimentary successions in surrounding sedimentary basins. These surrounding basins constitute parts of a large and formerly contiguous intraplate basin that covered much of Neoproterozoic to early Palaeozoic Australia. Within the highly metamorphosed Harts Range Group, metamorphic zircon growth at 480–460 Ma records mid-to-lower crustal (~ 0.9–1.0 GPa) metamorphism. Similarities in detrital zircon age spectra between the Harts Range Group and Late Neoproterozoic–Cambrian sequences in the surrounding Amadeus and Georgina basins imply that the Harts Range Group is a highly metamorphosed equivalent of the same successions. Maximum depositional ages for parts of the Harts Range Group are as low as ~ 520–500 Ma indicating that burial to depths approaching 30 km occurred ~ 20–40 Ma after deposition. Palaeogeographic reconstructions based on well-preserved sedimentary records indicate that throughout the Cambro–Ordovician central Australia was covered by a shallow, gently subsiding epicratonic marine basin, and provide a context for the deep burial of the Harts Range Group. Sedimentation and burial coincided with voluminous mafic magmatism that is absent from the surrounding unmetamorphosed basinal successions, suggesting that the Harts Range Group accumulated in a localised sub-basin associated with sufficient lithospheric extension to generate mantle partial melting. The presently preserved axial extent of this sub-basin is > 200 km. Its width has been modified by subsequent shortening associated with the Alice Springs Orogeny, but must have been > 80 km. Seismic reflection data suggest that the Harts Range Group is preserved within an inverted crustal-scale half graben structure, lending further support to the notion that it accumulated in a discrete sub-basin. Based on palaeogeographic constraints we suggest that burial of the Harts Range Group to lower crustal depths occurred primarily via sediment loading in an exceptionally deep Late Cambrian to Early Ordovician intraplate rift basin. High-temperature Ordovician deformation within the Harts Range Group formed a regional low angle foliation associated with ongoing mafic magmatism that was coeval with deepening of the overlying marine basin, suggesting that metamorphism of the Harts Range Group was associated with ongoing extension. The resulting lower crustal metamorphic terrain is therefore interpreted to represent high-temperature deformation in the lower levels of a deep sedimentary basin during continued basin development. If this model is correct, it indicates that regional-scale moderate- to high-pressure metamorphism of supracrustal rocks need not necessarily reflect compressional thickening of the crust, an assumption commonly made in studies of many metamorphic terrains that lack a palaeogeographic context.  相似文献   

4.
Chemical deposits in the Red Sea, Salton Sea, and Cheleken Peninsula have concentrations of Cu, Zn, Pb, Ag, and some Au. Brines emanating from these base metal systems have over 10% Cl and have chalcophile metals in excess of sulphide in solution. Siliceous sinters laden with Au, Ag, Hg, and Sb exist around vents and wells in California, western Nevada, and New Zealand. Hot CO2-H2O fluids that exhale from these noble metal systems have less than 2 % Cl and sulphide in excess of chalcophile metals. Some geothermal systems around the world have features intermediate between these two end-members. Cu-Fe and Ag-Au concentrations occur around the margin of an Archean felsic stock in the Wawa greenstone belt in Ontario, Canada. The interpretation is that an initial seawater dominated system concentrated exhalites rich in base metals. This culminated with regional metamorphism and the concentration of precious metal-bearing veins from low salinity fluids.
Zusammenfassung Die chemischen Ablagerungen im Roten Meer, Salton Sea (Californien) und auf der Cheleken Halbinsel (UDSSR) haben Anreicherungen von Cu, Zn, Pb, Ag und etwas Au. Sole, mit der die Ag-Pb-Zn-Cu Lösungen kommen, hat über 10% Cl und einen Überschuß an chalcophilen Metallen. Kieselsinter, die reich an Au, Ag, Hg und Sb sind, erscheinen an den Austrittsstellen der heißen Lösungen in Californien, West-Nevada und Neu-Seeland. Heiße CO2-H2O-Lösungen, die mit diesem Sb-Hg-Ag-Au-System ausströmen, enthalten weniger als 2% Cl und anstelle von chalcophilen Metallen kommen Sulfide vor. In verschiedenen geothermalen Provinzen gibt es Mischsysteme zwischen diesen Endgliedern.Zn-Cu und Ag-Au-Konzentrationen treten am Rande des archaischen Komplexes im Wawa Grundschiefergürtel in Ontario, Canada auf. Dies wird interpretiert als ein zunächst vom Meerwasser dominiertes System, in dem Exhalationen reich an unedlen Metallen eindrangen. Während einer folgenden Regionalmetamorphose erfolgt die Konzentration von Edelmetallen aus Lösungen mit geringer Salinität.

Résumé Les dépôts chimiques de la Mer Rouge, du lac de Salton (Californie) et de la presqu'île de Cheleken (URSS), présentent des enrichissements en Cu, Zn, Pb, Ag et, dans une certaine mesure, en Au. Les saumures qui émanent de ces systèmes à Ag-Pb-Zn-Cu renferment plus de 10% Cl et contiennent un excès de métaux chalcophiles par rapport à S. Des dépôts de précipitation siliceux, riches en Au, Ag, Hg, Sb se rencontrent autour d'évents et de sources chaudes en Californie, en W. Nevada et en Nouvelle Zélande. Les fluides chauds (H2O - CO2) qui émanent de ces systèmes à Sb - Hg - Ag - Au renferment moins de 2% Cl et les ions S– – y sont en excès sur les métaux chalcophiles. Divers systèmes géothermaux à travers le monde présentent des caractères intermédiaires entre ces deux types.Dans le »Greenstone belt« de Wawa (Ontario, Canada), des concentrations en Zn-Cu et en Ag-Au se présentent autour de la bordure d'un massif felsitique archéen. Cette disposition est interprétée comme le résultat: d'abord de l'action d'un système à eau de mer dans lequel les métaux usuels se sont concentrés, ensuite, au cours d'une phase ultérieure de métamorphisme régional, de la concentration des métaux précieux à partir de solutions peu salées.

, () () , , , . , , , 10% . , , , , . , , , , , 2% . . - - , , . , , , , . .
  相似文献   

5.
The cadmium contents of 11 shales, 11 sandstones, 7 limestones, 14 metamorphic rocks and 28 stream sediments, all from Pennsylvania, were determined by flameless atomic absorption spectrometry. On the basis of these cadmium values and those in the literature, cadmium is found to be enriched in dark shales and soils, depleted in red shales, sandstones and limestones, and about the same in stream sediments as in most igneous and metamorphic rocks and the crust. In stream sediments, cadmium correlates most significantly with zinc, followed by carbon, weight loss on ignition, cobalt, readily extractable lead and manganese. Examination of the correlation plots and of an Eh-pH diagram indicates that the primary cause of cadmium enrichment in the sedimentary environment is the adsorption and/or complexation of cadmium with organic matter followed by the accumulation of organic debris in a reducing depositional environment.  相似文献   

6.
The Meliata unit represents a mélange-like accretionary wedge, containing blueschist facies tectonic blocks and slices in a Triassic and Jurassic sedimentary matrix. The blueschist facies rocks are tectonic remnants of the subducted parts of the Meliata-Hallstatt branch of the Tethys. The phyllosilicate assemblages in very low-grade metapelites represent metastable disequilibrium stages which the assemblages have reached during reaction progress. Therefore, temperature and pressure values of low-T metamorphism of the sedimentary series and the late stages of decompressional cooling of blueschist facies rocks, obtained by phyllosilicate "crystallinity", chlorite thermometric and white K-mica geobarometric methods, can be regarded as semiquantitative estimates. However, results of chlorite–white mica thermobarometry suggest that local equilibrium was approached at a microscopic scale. For deciphering the age relations of prograde and retrograde events, K–Ar isotope geochronological methods were applied. The sedimentary series and related basalts of the Meliata unit experienced high-T anchizonal prograde regional metamorphism, the temperature and pressure of which can vary between ca. 280 and 350 °C and ca. 2.5 and 5 kbar. White K-mica b geobarometry suggests possible minimal pressures of ca. 1.5 to 3 kbar. The mylonitic retrogression of blueschist facies phyllites is characterised by 340 °C and 4 kbar (minimal P). The low-T prograde metamorphism was synchronous with the retrograde metamorphism of the blueschists. The ages of these two events may be between ca. 150 and 120 Ma, culminating most probably at around 140–145 Ma. Thus, the Upper Jurassic (lowermost Cretaceous) very low-grade metamorphism of the Meliata unit is younger than the subduction-related, 160–155 Ma blueschist facies event, and definitely older than the Cretaceous (100–90 Ma) metamorphism of the footwall Gemer Palaeozoic.  相似文献   

7.
Pelitic units in the eastern Great Smoky Mountains of the North Carolina Blue Ridge contain rutile grains only in kyanite and higher zones. Adjacent non-pelitic rocks do not contain rutile at kyanite grade but commonly contain sphene. Detrital rutile breaks down at metamorphic grades lower than those at which metamorphic rutile forms. Similarly, pelitic rocks in southeastern Connecticut contain rutile grains above, but not below, the sillimanite isograd. Most non-pelitic rocks there contain rutile only in the hypersthene zone. The slight difference in behavior of rutile in the two terranes is attributed primarily to a slight difference in calcium content of the pelites. In both areas, rutile commonly appears first as inclusions in garnet. Geologic maps showing metamorphic and stratigraphic or compositional information should be useful as prospecting tools for placer deposits. A variety of rocks at granulite facies and pelitic rocks of the upper amphibolite facies contain rutile and these could provide an extensive source for rutile in rutile placer deposits.  相似文献   

8.
Numerical simulations of diffusion‐controlled nucleation and growth of garnet porphyroblasts in regionally metamorphosed rocks constrain interfacial energy and rates of nucleation and Al intergranular diffusion. The 13 rocks analysed in this study were collected from seven localities exhibiting a diverse range of crystallization conditions. Kinetic parameters governing nucleation and intergranular diffusion were adjusted iteratively to achieve fits between simulated and natural porphyroblastic textures. Model fits were assessed primarily from textural characteristics precisely measured by high‐resolution X‐ray computed tomography. Interfacial energy for heterogeneous nucleation ranges from 0.007 to 0.255 J m?2 for the sample suite, assuming shape factors in the range 0.01–1.0. Nucleation rates change through space and time due to growth and impingement of Al depletion zones surrounding porphyroblasts. In some models, the overall rock‐wide nucleation rate rises steeply, achieves a steady state, and then falls rapidly as reactants are consumed; in others, the steady state is not achieved, but instead the rate simply peaks before falling. Maximum rock‐wide nucleation rates range from 10?14.7 to 10?10.7 nuclei cm?3 s?1, and maximum local rates range from 10?13.7 to 10?9.7 nuclei?cm?3 s?1 depending on Al supersaturation. Diffusive fluxes of Al are well constrained by the simulated textures, but rates of intergranular diffusion are subject to uncertainties in Al solubility and interconnected porosity. Best estimates of Al diffusivities at 600 °C span 10?12.3 to 10?10.5 m2 s?1 for the sample suite, a narrow range considering natural variability and the uncertainties in solubility and porosity. Eliminating some models suspected of higher uncertainty for these quantities yields diffusivities at 600 °C near 10?11.0 m2 s?1, with dispersion of less than half an order of magnitude. These simulations, which are among the first attempted for regionally metamorphosed rocks, emphasize that: (i) nucleation rates vary markedly in time and space during crystallization; (ii) nucleation extends well beyond equilibrium conditions; (iii) Al diffusivity likely varies over only a narrow range across common metamorphic circumstances; and (iv) better determinations of both Al solubility and interconnected porosity are needed to constrain rates of Al intergranular diffusion more precisely.  相似文献   

9.
Slake durability of rocks is an important property of rock-mass and rock-materials in geotechnical practice. The slake durability of rocks is closely related to their mineralogical composition. In this paper, mineralogical examinations and slake durability tests for argillaceous clastic rocks, especially pyroclastic rocks, sandstones and mudstones of Neogene Tertiary age from Japan, were performed in order to assess the slake durability and rock alteration process of these rocks as well as to understand the relationship between mineralogy and durability.The mineral composition and textural features of the rocks were studied by means of optical microscopy (OM), X-ray diffractometry (XRD), electron microprobe analysis (EPMA), and scanning electron microscopy (SEM). In addition, the slake durability test was carried out by using the standard testing method of ISRM [Int. J. Rock Mech. Min. Sci. 16 (1979) 148] in distilled water and in the aqueous solutions with dissolved electrolytes of NaCl and CaCl2.The pyroclastic rocks and tuffaceous sandstone, rich in di-octahedral and tri-octahedral Fe smectite, respectively, show distinctively different slaking behaviors. The pyroclastic rocks show relatively high slaking (Id2=55.5% and Id10=10.5%) than the tuffaceous sandstone (Id2=94.1% and Id10=87.8%, refer to text for Id2 and Id10). This difference in the slake durability observed in these rocks is due to the microscopic occurrences of smectite present in the interspaces between the particles (pyroclastic rocks) and zeolite cementing the interspaces (tuffaceous sandstone) as alteration minerals. In addition, the durability results of tuffaceous sandstone show that the slake durability decreases as the degree of weathering increases (weathered material Id2=88.7% and Id10=65.3%). Furthermore, two mudstones of Miocene and Pliocene ages, having different clay mineral compositions (smectite vs. illite+chlorite), show the lowest and the highest slake durability among the tested clastic rocks. Hard mudstone shows the highest (Id2=98.1% and Id10=95.5%) while the soft mudstone shows the lowest (Id2=33.9% and Id6=0.4%.) slake durability. Thus, the slake durability of pyroclastic and sedimentary rocks is greatly affected by their mineral composition and texture, and is closely related to their alteration history. Slake durability is also affected by the kind of dissolved electrolyte and its concentration in the aqueous solution, providing some useful information for geotechnical practice.  相似文献   

10.
11.
Eight zircon fractions from the Henderson Gneiss were analyzed from the Brevard mylonites and adjacent Inner Piedmont rocks near Rosman, North Carolina, to determine variations of U/Pb systematics of zircons in a pressure-dominated metamorphism. Substantial uranium gain occurred during zircon recrystallization and size reduction.At Rosman, the Henderson Gneiss zircons probably formed about 600 m.y. ago and now show evidence of being binary mixtures. They experienced mylonitization at about 450 m.y. ago during Taconic deformation and metamorphism in the almandine amphibolite facies. The lower intensity, upper greenschist or greenschist-amphibolite Acadian (360–390 m.y.) metamorphism and mylonitization (recrystallization) had little effect on the zircons but disturbed Rb/Sr systems.The ages of dynamic metamorphism and thrusting (450, 360–390) in the Piedmont and Blue Ridge near and along the Brevard zone at Rosman, North Carolina, agree well with the tectonic interpretations of the Valley and Ridge Taconic (ca. 470-400 m.y.) and Acadian (ca. 375-330 m.y.) clastic wedges. Intermittent thrusting, folding, and uplift rather than continuous secular uplift of the crystalline terrane seems indicated.  相似文献   

12.
The risk of Pb, Zn and Cd mobility is evaluated in soils from a depleted mine at Rubiais (Lugo, Spain). This area is under special protection because of its outstanding natural value. Soils from nine different areas were selected: at the mining zone (R1, R2, R3), at minespoils (R4, R5, R6) and soils developed on the settling pond (R7, R8, R9). A control soil (RC) was sampled outside the mine. The objectives are (i) to study the characteristics of soils with high influence on metal retention, (ii) to determine the content of Pb, Zn and Cd comparing it with the generic reference levels, and (iii) to evaluate the distribution and the interactions between the metals and the soil geochemical phases by means of sequential chemical extraction, X-ray diffraction, field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy (FE-SEM/EDS) and time of flight secondary ion mass spectrometry (TOF–SIMS). The concentration of Pb, Zn and Cd ranges 850–6,761, 1,754–32,287 and 1.8–43.7 mg kg?1, respectively, and the highest proportion is in the residual fraction. The Mn oxides highly influence the retention of Cd while Pb retention is mainly influenced by Fe oxides. Zn is uniformly distributed amongst the residual fraction and the Fe and Mn oxides. TOF–SIMS and SEM/EDS techniques confirm the fractionation results, showing how Pb and Zn are as sulphide and associated with Fe and Mn oxides. Nevertheless, care should be taken since oxides and sulphides could suffer sulphide oxidation processes or alteration of the oxides causing leaching and the contamination of the protected ecosystem.  相似文献   

13.
软黏土的触变性对于实际工程设计和施工具有重要意义。为了分析天津地区软黏土触变性,本文基于正交试验研究了含水率、矿粉含量和pH值对其十字板强度和触变强度比率等指标的影响。试验结果表明:影响天津软黏土触变强度比率的主次因素依次为含水率、矿粉含量、pH值;软黏土的触变强度比率随含水率的增大而呈指数增大;随矿粉含量增大而呈接近线性减小;随pH值的增大而增大,但其增加幅度逐渐降低,且碱性比酸性环境更有利于软黏土强度的恢复;通过回归分析,建立了包含含水率、矿粉含量、pH值3个因素的天津软黏土触变强度比率预测公式,据此预测触变强度,预测结果较好。研究成果能够为工程实践提供理论参考。  相似文献   

14.
李中尧  丁慧霞  袁玥  张泽明 《岩石学报》2021,37(11):3445-3463
位于青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯洋俯冲过程中,并在印度与欧亚大陆碰撞过程中叠加了新生代岩浆作用和变质作用。冈底斯岩浆弧东段出露的中、新生代变质岩是研究其深部组成与形成演化的理想窗口。本文对冈底斯东段米林田兴村地区的变沉积岩,即石榴夕线黑云片岩、含石榴钙硅酸盐岩、黑云斜长片麻岩和大理岩进行了岩石学和锆石U-Pb年代学研究。研究结果表明,石榴夕线黑云片岩由夕线石、黑云母、石榴石、斜长石、钾长石、石英和钛铁矿组成,经历了中压麻粒岩相变质作用,变质条件为810~820℃和6.4~7.8kbar。锆石年代学研究表明,石榴夕线黑云片岩、含石榴钙硅酸盐岩和大理岩经历了87~83Ma的变质作用。本文和现有研究表明,冈底斯弧东段林芝和米林地区的高压麻粒岩相变质岩分布区代表该岩浆弧的下地壳,而包括本文研究点在内的中压麻粒岩相到角闪岩相变质岩分布区为其中地壳组成部分。本文认为晚白垩世大体积幔源岩浆的注入和随后的新特提斯大洋岩石圈平俯冲,导致了冈底斯岩浆弧地壳的生长、加厚和底冲,使上地壳的沉积岩和岩浆岩运移到中-下地壳,并经历了高温变质与部分熔融,形成了分布在上地壳的花岗岩。这表明岩浆弧的新生地壳在晚白垩世新特提斯洋俯冲过程中发生了再造。以长英质岩石为主的表壳岩进入深地壳很可能是岩浆弧中-下地壳由基性转变成中性成分的重要方式。  相似文献   

15.
Based on back scattered electron images and electron micro-probe analysis results, four alteration layers, including a transition layer, a reticulated ferric oxide layer, a nubby ferric oxide layer and a cellular ferric oxide layer, were identified in the naturally weathering products of pyrite. These layers represent a progressive alteration sequence of pyrite under weathering conditions. The cellular ferric oxide layer correlates with the strongest weathering phase and results from the dissolution of nubby ferric oxide by acidic porewater. Leaching coefficient was introduced to better express the response of element mobility to the degree of pyrite weathering. Its variation shows that the mobility of S, Co and Bi is stronger than As, Cu and Zn. Sulfur in pyrite is oxidized to sulfuric acid and sulfate that are basically released into to porewater, and heavy metals Co and Bi are evidently released by acid dissolution. As, Cu and Zn are enriched in ferric oxide by adsorption and by co-precipitation, but they would re-release to the environment via desorption or dissolution when porewater pH becomes low enough. Consequently, Co, Bi, As, Cu and Zn may pose a substantial impact on water quality. Considering that metal mobility and its concentration in mine waste are two important factors influencing heavy metal pollution at mining-impacted sites, Bi and Co are more important pollutants in this case.  相似文献   

16.
The production of large volumes of fluid from metabasic rocks, particularly in greenstone terranes heated across the greenschist–amphibolite facies transition, is widely accepted yet poorly characterized. The presence of carbonate minerals in such rocks, commonly as a consequence of sea‐floor alteration, has a strong influence, via fluid‐rock buffering, on the mineral equilibria evolution and fluid composition. Mineral equilibria modelling of metabasic rocks in the system Na2O‐CaO‐FeO‐MgO‐Al2O3‐SiO2‐CO2‐H2O (NCaFMASCH) is used to constrain the stability of common metabasic assemblages. Calculated buffering paths on TXCO2 pseudosections, illustrate the evolution of greenstone terranes during heating across the greenschist‐amphibolite transition. The calculated paths constrain the volume and the composition of fluid produced by devolatilization and buffering. The calculated amount and composition of fluid produced are shown to vary depending on PT conditions, the proportion of carbonate minerals and the XCO2 of the rocks prior to prograde metamorphism. In rocks with an initially low proportion of carbonate minerals, the greenschist to amphibolite facies transition is the primary period of fluid production, producing fluid with a low XCO2. Rocks with greater initial proportions of carbonate minerals experience a second fluid production event at temperatures above the greenschist to amphibolite facies transition, producing a more CO2‐rich fluid (XCO2 = 0.2–0.3). Rocks may achieve these higher proportions of carbonate minerals either via more extensive seafloor alteration or via infiltration of fluids. Fluid produced via devolatilization of rocks at deeper crustal levels may infiltrate and react with overlying lower temperature rocks, resulting in external buffering of those rocks to higher XCO2 and proportions of carbonate minerals. Subsequent heating and devolatilization of these overlying rocks results in buffering paths that produce large proportions of fluid at XCO2 = 0.2–0.3. The production of fluid of this composition is of importance to models of gold transport in Archean greenstone gold deposits occurring within extensive fluid alteration haloes, as these haloes represent the influx of fluid of XCO2 = 0.2–0.3 into the upper crust.  相似文献   

17.
Numerical models of diffusion‐controlled nucleation and growth of garnet crystals, which successfully replicate diverse textures in 13 porphyroblastic rocks, yield quantitative estimates of the magnitudes of departures from equilibrium during crystallization. These estimates are derived from differences in chemical potential between subvolumes containing stable product assemblages and those containing persistent but metastable reactant assemblages. The magnitude of disequilibrium is evaluated in terms of the thermal overstepping, which is commonly referenced to the garnet‐in isograd; the reaction affinity in the intergranular fluid at the site and time of each nucleation event, and on average throughout the rock, and the ‘latent energy of reaction’ per unit volume, a measure of the average unreacted capacity of the bulk rock, which describes its overall metastability. Across all of the models, the first crystals nucleate after 5–67 °C of thermal overstepping (correspondingly, 0.7–5.8 kJ mol?1 of 12‐oxygen garnet); the maximum reaction affinity averaged across the intergranular fluid is between 4.7 and 16.0 kJ mol?1 of 12‐oxygen garnet; and the maximum latent energy of reaction ranges from 7.3 to 51.7 J cm?3. These results demonstrate that impediments to crystallization significantly delay nucleation and retard reaction, with the consequence that nucleation of new crystals extends throughout nearly the entire crystallization interval. This potential for protracted reaction during prograde metamorphism, with reactions continuing to temperatures and pressures well beyond equilibrium conditions, suggests the likelihood of overstepping of multiple – possibly competing – reactions that can progress simultaneously. Isograds and ranges of stability for metamorphic assemblages along a metamorphic field gradient may therefore be significantly offset from the positions predicted from calculations based on equilibrium assumptions, which poses a substantial challenge to accurate interpretations of metamorphic conditions and processes.  相似文献   

18.
The relative importance of mechanical re-mobilisation, hydrothermal dissolution and re-precipitation, and sulphide melting in controlling redistribution of metals during concurrent metamorphism and deformation is evaluated at the middle amphibolite facies Montauban deposit in Canada. As at many other deposits, ductile deformation was important in driving mechanical re-mobilisation of massive sulphides from limb regions into hinge regions of large-scale folds and is thus the most important for controlling the economics of Pb and Zn distribution. Two possible stages of hydrothermally driven re-mobilisation are discussed, each of which produces characteristically different alteration assemblages. Prograde hydrothermal re-mobilisation is driven by pyrite de-sulphidation and concurrent chlorite dehydration and is thus an internally driven process. At Montauban, the H2S-rich fluid generated through this process allowed re-mobilisation of gold into the wall rock, where it was deposited in response to sulphidation of Fe Mg silicates. Retrograde hydrothermal re-mobilisation is an externally driven process, whereby large volumes of fluids from outside the deposit may dissolve and re-precipitate metals, and cause hydration of silicate minerals. This second hydrothermally driven process is not recognised at Montauban. Sulphide melting occurred as temperatures neared the peak metamorphic conditions. Melting initiated in the massive sulphides through arsenopyrite breakdown, and a small volume of melt was subsequently re-mobilised into the wall rock. Trace element partitioning and fractional crystallisation of this melt generated a precious metal-rich fractionate, which remained mobile until well after peak metamorphism. Thus, prograde hydrothermal re-mobilisation and sulphide melting were the most important mechanisms for controlling the distribution of Au and Ag.  相似文献   

19.
陈安平  石永红  曾晓燕 《岩石学报》2019,35(10):3262-3270
球状结构是指由纤维状晶体组成的放射状集合体,其为一种高度不平衡的结构。它们常见于火山岩、假玄武玻璃、沉积岩以及热液沉积物中,在不同变质级别的变质岩中也有广泛报道。变质岩中的球状结构记录了丰富的变质作用信息,然而其在变质岩中的成因机制和对变质作用的指示意义尚缺少详细的研究。球状结构的生长需要温度、压力或成分的改变使得结晶体系远离平衡,它的结晶动力学过程受物质的扩散控制,要求晶体生长速率远大于物质扩散速率。详细解析球状结构和分析导致不平衡的因素有助于限定变质作用的条件和过程。本文拟从变质岩中报道的代表性球状结构出发,基于球状结构结晶所需的热力学和动力学条件,总结变质岩中球状结构的四种可能成因机制:流体结晶、变质熔体结晶、冲击变质作用和高度不平衡的变质反应。组成球状结构的纤维状晶体具有大的表面能,在持续保持温压和流体条件不变的情况下会快速重结晶使得球状结构消失,球状结构得以保留意味着其所处的环境要迅速转变为它不再结晶的条件。因此,变质岩中的球状结构指示寄主岩石经历了持续时间很短的非平衡变质作用过程。借鉴其它学科研究球状结构的定量方法和在变质作用条件下开展球状结构的实验研究是变质岩中球状结构研究的潜在方向。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号