首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barrington shield volcano was active for 55 million years, based on basalt K–Ar and zircon fission track dating. Activity in the northeast, at 59 Ma, preceded more substantial activity between 55 and 51 Ma and more limited activity on western and southern flanks after 45 Ma. Eruptions brought up megacrystic gemstones (ruby, sapphire and zircon) throughout the volcanism, particularly during quieter eruptive periods. Zircon fission track dating (thermal reset ages) indicates gem‐bearing eruptions at 57, 43, 38, 28 and 4–5 Ma, while U–Pb isotope SHRIMP dating suggests two main periods of zircon crystallisation between 60 and 50 Ma and 46–45 Ma. Zircons show growth and sector twinning typical of magmatic crystallisation and include low‐U, moderate‐U and high‐U types. The 46 Ma high‐U zircons exhibit trace and rare‐earth element patterns that approach those of zircon inclusions in sapphires and may mark a sapphire formation time at Barrington. Two Barrington basaltic episodes include primary lavas with trace‐element signatures suggesting amphibole/apatite‐enriched lithospheric mantle sources. Other basalts less‐enriched in Th, Sr, P and light rare‐earth elements have trace‐element ratios that overlap those of HIMU‐related South Tasman basalts. Zircon and sapphire formation is attributed to crystallisation from minor felsic melts derived by incipient melting of amphibole‐enriched mantle during lesser thermal activity. Ruby from Barrington volcano is a metamorphic type, and a metamorphic/metasomatic origin associated with basement ultramafic bodies is favoured. Migratory plate/plume paths constructed through Barrington basaltic episodes intersect approximately 80% of dated Palaeogene basaltic activity (65–30 Ma) along the Tasman margin (27–37°S) supporting a migratory plume‐linked origin. Neogene Barrington activity dwindled to sporadic gem‐bearing eruptions, the last possibly marking a minor plume trace. The present subdued thermal profile in northeastern New South Wales mantle suggests future Barrington activity will be minimal.  相似文献   

2.
The Jiaodong Peninsula, the most productive gold province in China, is dominated by Jiaojia-type gold deposits that formed at ca. 120 Ma. The deposits are characterized by widespread alteration and mineralization resulted from fluid–rock reactions in the footwall of regional faults. It is known that the interrupted appearance of continuous mineralization zones and barren zones along regional faults is controlled by changes in the dip direction and dip angle of these faults, which can cause local dilational sense. In the continuous mineralization zone, intensive fluid–rock reactions occurred. Yet whether and how the fluid–rock reaction impacted on the mineralization intensity are not well constrained. In this study, we selected the Xinli Jiaojia-type gold deposit associated Sanshandao–Cangshang fault, located on the northwest margin of the Jiaodong Peninsula, to examine in detail the distribution of orebody parameters and to observe the mineralization occurrences. We applied the number–size fractal model and the lacunarity method to quantify the distribution of gold concentration along drifts, with the goal of clarifying the ambiguities noted above. The drifts in continuous mineralization zones can be divided into stable and unstable types, according to lateral changes in the dip direction and dip angle of the Sanshandao–Cangshang fault. Stable and unstable drifts share several common features. (1) Statistical results show that changes in the dip direction and dip angle of this fault bear almost no relationship to the thickness or grade–thickness of the orebody. (2) Mineralization along drifts is most intense at some distance from the fault plane rather than at locations immediately adjacent to the fault plane where fracturing is most extensive and, according to fluid infiltration theory, would be the most likely regions of intense mineralization. (3) Gold-bearing sulfide pods and veinlets in the alteration zone commonly possess irregular and corroded boundaries that are considered to be an indicator of fluid–rock reactions. (4) The threshold (the gold concentration that divides a segment with a lower fractal dimension in a lower concentration range from one with a higher fractal dimension in a higher concentration range) and the lacunarity (the parameter that evaluates the evenness of high gold concentration distribution) show positive and negative relationships, respectively, to the thickness and grade–thickness of a drift. We thereby argue on the basis of these features that fluid–rock reactions were an important factor responsible for the mineralization upgrade in continuous mineralization zones. An increase in the threshold and a decrease in the lacunarity indicate that fluid–rock reactions causing gold precipitation are more intensive and more evenly distributed throughout the footwall for better mineralization. These phenomena suggest that fluid–rock reactions responsible for the gold precipitation possibly own the characteristics of spatial self-organization mechanism, which is widely developed in various geological fluid–rock reaction processes.  相似文献   

3.
《Gondwana Research》2014,26(4):1445-1468
The continental crust of the North China Craton (NCC) is a major reservoir of mineral resources with imprints of secular changes in tectonics and metallogeny. The Jiaodong Peninsula, located in the eastern margin of the North China Craton (NCC), is currently one of the largest gold producers over the globe, and preserves the records of multiple magmatic and metamorphic events. Here we characterize the timing and tectonics of the major Mesozoic magmatism and the associated gold metallogeny in this region through a comprehensive U–Pb geochronological and Hf isotope investigation of zircons in a suite of granitoids, mafic magmatic enclaves, melanocratic dikes and melted basement rocks.The Linglong granite, hosting one of the major gold deposits in Jiaodong, shows emplacement ages between 150 and 160 Ma, and the dominantly negative εHf (t) values (− 34.0 to − 23.8) of zircons from this intrusion suggest magma derivation from recycled components in the Archean basement. The Guojialing granodiorite and its mafic magmatic enclaves show similar ages between 123 and 127 Ma, with negative εHf (t) values (− 19.3 to − 16.8), corresponding to crustal magma source. The melanocratic dikes, belonging to pre- and syn-mineralization stages, with U–Pb age range of 126 to 166 Ma display large variation in their zircon εHf (t) values (− 25.7 and 2.3) suggesting the involvement of both recycled crustal and juvenile mantle components. Zircons in the melted basement rocks with ages in the range of ca. 127–132 Ma also display both positive and negative εHf (t) values (− 44.6 and 9.8) indicating a mixture of recycled ancient crust and juvenile magmas. Our study shows that although the peak of gold metallogeny coincided with the tectonics associated with Pacific plate subduction which mobilized and concentrated the ores, the source materials of gold mineralization and magmatism had multiple origins including from the Precambrian basement rocks, Mesozoic granitoids and mantle-derived mafic magmas with extensive mixing of crustal, lithosphere mantle and asthenospheric components. A combination of delamination, mantle upwelling, subduction-related metasomatic enrichment and recycling of ancient components facilitated the gold metallogeny in this region. Our study provides a typical case of juvenile and recycled components in the formation and evolution of continental crust and associated mineral resources.  相似文献   

4.
Cratons are generally assumed to be regions of long-lasting tectonic stability. In particular the study of the Phanerozoic exhumation history of cratons has been largely hampered by the scarcity of suitable stratigraphic controls onshore. This fact is even more pronounced in terranes lacking Mesozoic or younger penetrative structural fabrics and metamorphic overprinting. Our study in the Limpopo belt shows that modern apatite fission track thermochronology provides a hitherto unavailable perspective in the study of these rocks, and has profound implications for the crustal evolution of the Zimbabwe Craton.Apatite fission track data from 35 samples taken along two transects, in the southern edge of the Zimbabwe Craton and in the Central Zone of the Limpopo Belt, suggest that extensive regions experienced kilometer-scale exhumation in two discrete events, as recently as the Cretaceous. The first occurred at around 130 Ma, and the second at around 90 Ma. Basin subsidence and sedimentation loads on the Mozambique margin support the timing of these events and provide strong indications of the source and pathways for the eroded material. Further, the results indicate that young and old “surfaces” (in a geomorphological sense) may be structurally juxtaposed in regions of high elevation in Zimbabwe. This is contrary to early ideas of surface chronologies based on summit accordances or invoking pediplanation.  相似文献   

5.
This study presents new zircon U–Pb geochronology, geochemistry, and zircon Hf isotopic data of volcanic and subvolcanic rocks that crop out in the Bayanhushuo area of the southern Great Xing’an Range (GXR) of NE China. These data provide insights into the tectonic evolution of this area during the late Mesozoic and constrain the evolution of the Mongol–Okhotsk Ocean. Combining these new ages with previously published data suggests that the late Mesozoic volcanism occurred in two distinct episodes: Early–Middle Jurassic (176–173 Ma) and Late Jurassic–Early Cretaceous (151–138 Ma). The Early–Middle Jurassic dacite porphyry belongs to high-K calc-alkaline series, showing the features of I-type igneous rock. This unit has zircon εHf(t) values from +4.06 to +11.62 that yield two-stage model ages (TDM2) from 959 to 481 Ma. The geochemistry of the dacite porphyry is indicative of formation in a volcanic arc tectonic setting, and it is derived from a primary magma generated by the partial melting of juvenile mafic crustal material. The Late Jurassic–Early Cretaceous volcanic rocks belong to high-K calc-alkaline or shoshonite series and have A2-type affinities. These volcanics have εHf(t) and TDM2 values from +5.00 to +8.93 and from 879 to 627 Ma, respectively. The geochemistry of these Late Jurassic–Early Cretaceous volcanic rocks is indicative of formation in a post-collisional extensional environment, and they formed from primary magmas generated by the partial melting of juvenile mafic lower crust. The discovery of late Mesozoic volcanic and subvolcanic rocks within the southern GXR indicates that this region was in volcanic arc and extensional tectonic settings during the Early–Middle Jurassic and the Late Jurassic–Early Cretaceous, respectively. This indicates that the Mongol–Okhotsk oceanic plate was undergoing subduction during the Early–Middle Jurassic, and this ocean adjacent to the GXR may have closed by the Late Middle Jurassic–Early Late Jurassic.  相似文献   

6.
《International Geology Review》2012,54(13):1616-1625
We report new zircon U–Pb and pyrite Re–Os geochronological studies of the Yinjiagou poly-metallic deposit, sited along the southern margin of the North China Craton (SMNCC). In this deposit, pyrite, the most important economic mineral, is intergrown/associated with Mo, Cu, Au, Pb, Zn, and Ag. Prior to our new work, the age of chalcopyrite–pyrite mineralization was known only from its spatial relationship with molybdenite mineralization and with intrusions of known ages. The U–Pb and Re–Os isotope systems provide an excellent means of dating the mineralization itself and additionally place constraints on the ore genesis and metal source. Zircons separated from the quartz–chalcopyrite–pyrite veins include both detrital and magmatic groups. The magmatic zircons confine the maximum age of chalcopyrite–pyrite mineralization to 142.0 ± 1.5 Ma. The Re–Os results yield an age of 141.1 ± 1.1 Ma, which represents the age of the chalcopyrite–pyrite mineralization quite well. The common Os contents are notably low (0.5–20.1 ppt) in all samples. In contrast, the Re contents vary considerably (3.0–199.2 ppb), most likely depending on intensive boiling, which resulted in an increase of Re within the pyrite. This study demonstrates that the main chalcopyrite–pyrite mineralization occurred late in the magmatic history and was linked to a deeper intrusion involving dominant mantle-derived materials. This mineralization event might be related to the Early Cretaceous lithospheric destruction and thinning of the SMNCC.  相似文献   

7.
Detrital zircon U–Pb ages have been shown to be a powerful tool for provenance analysis and determining the exhumation of sediment source areas. This paper presents the results of detrital zircon LA-ICPMS U–Pb ages for Cretaceous sediments from the Yichang area of the Jianghan Basin, central China. The results provide new information on the provenance of these sediments and the detailed exhumation process of the Huangling Dome. Zircons with different age populations have been derived from the strata of the Huangling Dome. The Liantuo, Gucheng and Nantuo formations and the Kongling complex were exhumed, leading to deposition of the early Cretaceous Wulong Formation, which provides the sources of zircons with age peaks at 3.1–3.0, 2.5 and 1.8 Ga. Exhumation of the Huangling granitoid and contemporary volcanics provided the source of the late Cretaceous Luojingtan Formation, which contains zircons with age peaks at 1.1–0.95 and 0.83–0.74 Ga. The Qinling-Dabie orogeny supplied zircons with an age cluster of 0.27 to 0.18 Ga. These results indicate the timing of initial exhumation for the Huangling granite. They also show how overlying strata was first uplifted and eroded, followed by exposure of underlying strata at the surface during continued exhumation.  相似文献   

8.
Traditionally the Chinese South Tianshan has been regarded as a late Paleozoic orogenic belt. However, little is known about the early Paleozoic tectonic architecture of the region. This paper presents the first evidence of Cambrian–Ordovician MORB-type basalts and adakitic diorites on the southern margin of the Yili plate in China. Basalts from Xiate in southwestern Tianshan show a typical transitional (T-) MORB and ferrobasalt composition, which indicate a formation at a propagating spreading ridge. The basalts give a weighted mean 206Pb/238U crystallization age of 516.3 ± 7.4 Ma by SHRIMP U–Pb zircon dating and have experienced contact metamorphism due to the intrusion of a dioritic pluton. The dioritic pluton has a weighted mean 206Pb/238U crystallization age of 470 ± 12 Ma and geochemical characteristics resembling that of adakitic rocks. The pluton is considered to have been formed by partial melting of garnet amphibolites from thickened lower crust in arc or continental collision settings. The basalts and diorites are considered to outline the eastern extension of the early Paleozoic suture zone, the Nikolaev Line, which stretches east–west for hundreds of kilometers between the Northern Tianshan and Central Tianshan terranes of Kyrgyzstan. Our findings substantiate that the Yili and Central Tianshan plates were separated by the early Paleozoic Terskey ocean. The Terskey ocean probably closed during the early stage of the late Ordovician (Lomize et al. in Geotectonics 31(6):463–482, 1997), resulting in the final amalgamation of the Yili and Central Tianshan plates. Consequently, an early Paleozoic suture zone is documented in the Chinese Tianshan region, which is most likely represented by the North Nalati fault.  相似文献   

9.
Located along the southern part of the Yarlung Zangbo suture zone in southern Tibet, Bangbu is one of the largest gold deposits in Tibet. Auriferous sulfide-bearing quartz veins are controlled by second- or third-order brittle fractures associated with the regional Qusong–Cuogu–Zhemulang brittle-ductile shear zone. Fluid inclusion studies show that the auriferous quartz contains aqueous inclusions, two-phase and three-phase CO2-bearing inclusions, and pure gaseous hydrocarbon inclusions. The CO2-bearing inclusions have salinities of 2.2–9.5% NaCleq, and homogenization temperatures (Th) of 167–336 °C. The δD, δ18O, and δ13C compositions of the Bangbu ore-forming fluids are − 105.5 to − 44.4‰, 4.7 to 9.0‰ and − 5.1 to − 2.2‰, respectively, indicating that the ore-forming fluid is mainly of metamorphic origin, with also a mantle-derived contribution. The 3He/4He ratio of the ore-forming fluids is 0.174 to 1.010 Ra, and 40Ar/36Ar ranges from 311.9 to 1724.9. Calculations indicate that the percentage of mantle-derived He in fluid inclusions from Bangbu is 2.7–16.7%. These geochemical features are similar to those of most orogenic gold deposits. Dating by 40Ar/39Ar of hydrothermal sericite collected from auriferous quartz veins at Bangbu yielded a plateau age of 44.8 ± 1.0 Ma, with normal and inverse isochronal ages of 43.6 ± 3.2 Ma and 44 ± 3 Ma, respectively. This indicates that the gold mineralization was contemporaneous with the main collisional stage between India and Eurasia along the Yarlung Zangbo suture, which resulted in the development of near-vertical lithospheric shear zones. A deep metamorphic fluid was channeled upward along the shear zone, mixing with a mantle fluid. The mixed fluids migrated into the brittle structures along the shear zone and precipitated gold, sulfides, and quartz because of declining temperature and pressure or fluid immiscibility. The Bangbu is a large-scale Cenozoic syn-collisional orogenic gold deposit  相似文献   

10.
The Trans-North China Orogen (TNCO), a Paleoproterozoic suture that amalgamates the Western and Eastern Blocks of the North China Craton (NCC), witnessed extensive magmatism and metallogeny during Mesozoic, associated with intraplate tectonics and differential destruction of the cratonic lithosphere. Here we investigate a suite of porphyry dykes surrounding the Mapeng batholith in the Fuping Complex within the TNCO in relation to the Mesozoic gold and molybdenum mineralization. The major element chemistry of these dykes show a range of SiO2 (57.92 to 69.47 wt.%), Na2O (3.20 to 4.77 wt.%), K2O (3.12 to 4.60 wt.%) and MgO (0.51 to 3.67 wt.%), together with high concentration of LREE and LILE, and relatively low contents of HREE and HFSE. The rocks display (La/Yb)N = 13.53–48.11, negative Nb, Ta, Th, U and Zr anomalies, and distinctly positive Ba, K and Sm anomalies. The mineralogy and geochemistry of the porphyry dykes indicate the rocks to be high-K calc-alkaline, and I-type, with adakitic features similar to those of the adjacent Mapeng batholith. The source magma for these rocks was derived from a mixture of reworked ancient continent crust and juvenile mantle materials. The zircon U–Pb data from these rocks show ages in the range of 124 to 129 Ma, broadly coinciding with the emplacement age of the Mapeng intrusion. The inherited zircons of ca. 2.5, 2.0 and 1.8 Ga in the dykes represent capture from the basement rocks during melting. The zircon Lu–Hf isotopic compositions show negative εHf(t) values varying from − 27.8 to − 11.3, with Hf depleted model ages (tDM) ranging from 1228 Ma to 1918 Ma and Hf crustal model ages (tDMC) of 1905 Ma to 2938 Ma, suggesting that the Mesozoic magmatism and associated metallogeny involved substantial recycling of ancient basement rocks of the NCC. We present an integrated model to evaluate the genesis of the porphyry systems and their relation to mineralization. We envisage that these dykes probably acted as stoppers (impermeable barriers) that prevented the leakage and run-off of the ore-bearing fluids, and played a key role in concentrating the gold and molybdenum mineralization.  相似文献   

11.
The genesis of polymetallic deposits in southern Altay, NW China has been disputed between a syngenetic seafloor hydrothermal process and an epigenetic orogenic-type mineralization. The Dadonggou Pb–Zn deposit occurs as NW-trending veins in the Devonian Kangbutiebao Formation volcanic-sedimentary sequence in the Kelan basin, southern Altay. A set of integrated zircon U–Pb and biotite 40Ar/39Ar geochronological data were applied to constrain the forming ages of the ores and their country rocks. Three samples of host volcanic rocks yielded weighted mean 206Pb/238U ages of 397.1 ± 4.5 Ma, 391.7 ± 3.6 Ma and 391.1 ± 4.2 Ma, respectively, indicating that the Kangbutiebao Formation was deposited in a Devonian back-arc basin. Two biotite samples separated from the Pb–Zn-containing quartz veins yielded 40Ar/39Ar plateau ages of 205.9 ± 2.1 Ma and 204.3 ± 2.2 Ma, respectively, which represent the age of the Pb–Zn mineralization that is attributed to the closure of the Kelan back-arc basin and the Late Triassic orogeny. Combining the available geological and geochronological data, this contribution outlines the successive evolution from the development of a Devonian back-arc basin to the Late Triassic post-subduction orogeny, and proposes that the Dadonggou Pb–Zn deposit is an epigenetic orogenic-type deposit placed in the Late Triassic orogeny.  相似文献   

12.
We conducted geochemical and isotopic studies on the Oligocene–Miocene Niyasar plutonic suite in the central Urumieh–Dokhtar magmatic belt, in order better to understand the magma sources and tectonic implications. The Niyasar plutonic suite comprises early Eocene microdiorite, early Oligocene dioritic sills, and middle Miocene tonalite + quartzdiorite and minor diorite assemblages. All samples show a medium-K calc-alkaline, metaluminous affinity and have similar geochemical features, including strong enrichment of large-ion lithophile elements (LILEs, e.g. Rb, Ba, Sr), enrichment of light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, e.g. Nb, Ta, Ti, P). The chondrite-normalized rare earth element (REE) patterns of microdiorite and dioritic sills are slightly fractionated [(La/Yb)n = 1.1–4] and display weak Eu anomalies (Eu/Eu* = 0.72–1.1). Isotopic data for these mafic mantle-derived rocks display ISr = 0.70604–0.70813, ?Nd (microdiorite: 50 Ma and dioritic sills: 35 Ma, respectively) = +1.6 and ?0.4, TDM = 1.3 Ga, and lead isotopic ratios are (206Pb/204Pb) = 18.62–18.57, (207Pb/204Pb) = 15.61–15.66, and (208Pb/204Pb) = 38.65–38.69. The middle Miocene granitoids (18 Ma) are also characterized by relatively high REE and minor Eu anomalies (Eu/Eu* = 0.77–0.98) and have uniform initial 87Sr/86Sr (0.7065–0.7082), a range of initial Nd isotopic ratios [?Nd(T)] varying from ?2.3 to ?3.7, and Pb isotopic composition (206Pb/204Pb) = 18.67–18.94, (207Pb/204Pb) = 15.63–15.71, and (208Pb/204Pb) = 38.73–39.01. Geochemical and isotopic evidence for these Eocene–Ologocene mafic rocks suggests that the magmas originated from lithospheric mantle with a large involvement of EMII component during subduction of the Neotethyan ocean slab beneath the Central Iranian plate, and were significantly affected by crustal contamination. Geochemical and isotopic data of the middle Miocene granitoids rule out a purely crustal-derived magma genesis, and suggest a mixed mantle–crustal [MASH (melting, assimilation, storage, and homogenization)] origin in a post-collision extensional setting. Sr–Nd isotope modelling shows that the generation of these magmas involved ~60% to 70% of a lower crustal-derived melt and ~30% to 40% of subcontinental lithospheric mantle. All Niyasar plutons exhibit transitional geochemical features, indicating that involvement of an EMII component in the subcontinental mantle and also continental crust beneath the Urumieh–Dokhtar magmatic belt increased from early Eocene to middle Miocene time.  相似文献   

13.
TPost-orogenic intrusive complexes from the Sulu belt of eastern China consist of pyroxene monzonites and dioritic porphyrites. We report new U–Pb zircon ages, geochemical data, and Sr–Nd–Pb isotopic data for these rocks. Laser ablation-inductively coupled plasma-mass spectrometry U–Pb zircon analyses yielded a weighted mean 206Pb/238U age of 127.4 ± 1.2 Ma for dioritic porphyrites, consistent with crystallization ages (126 Ma) of the associated pyroxene monzonites. The intrusive complexes are characterized by enrichment in light rare earth elements and large ion lithophile elements (i.e. Rb, Ba, Pb, and Th) and depletion in heavy rare earth elements and high field strength elements (i.e. Nb, Ta, P, and Ti), high (87Sr/86Sr)i ranging from 0.7083 to 0.7093, low ?Nd(t) values from ?14.6 to ? 19.2, 206Pb/204Pb = 16.65–17.18, 207Pb/204Pb = 15.33–15.54, and 208Pb/204Pb = 36.83–38.29. Results suggest that these intermediate plutons were derived from different sources. The primary magma-derived pyroxene monzonites resulted from partial melting of enriched mantle hybridized by melts of foundered lower crustal eclogitic materials before magma generation. In contrast, the parental magma of the dioritic porphyrites was derived from partial melting of mafic lower crust beneath the Wulian region induced by the underplating of basaltic magmas. The intrusive complexes may have been generated by subsequent fractionation of clinopyroxene, potassium feldspar, plagioclase, biotite, hornblende, ilmenite, and rutile. Neither was affected by crustal contamination. Combined with previous studies, these findings provide evidence that a Neoproterozoic batholith lies beneath the Wulian region.  相似文献   

14.
This paper deals with the petrology and U–Pb dating of coesite-bearing garnet–phengite schist from the Kebuerte Valley, Chinese western Tianshan. It mainly consists of porphyroblastic garnet, phengite, quartz and chlorite with minor amounts of paragonite, albite, zoisite and chloritoid. The well preserved coesite inclusions (∼100 μm) in garnet are encircled by a narrow rim of quartz. They were identified by optical microscopy and confirmed by Raman spectroscopy. Using the computer program THERMOCALC, the peak metamorphic conditions of 29 kbar and 565 °C were obtained via garnet isopleth geothermobarometry. The predicted UHP peak mineral assemblage comprises garnet + jadeite + lawsonite + carpholite + coesite + phengite. The metapelite records prograde quartz–eclogite-facies metamorphism, UHP coesite–eclogite-facies peak metamorphism, and a late greenschist-facies overprint. Phase equilibrium modeling predicts that garnet mainly grew in the mineral assemblages garnet + jadeite + lawsonite + chloritoid + glaucophane + quartz + phengite and garnet + jadeite + lawsonite + carpholite + glaucophane + quartz + phengite. SHRIMP U–Pb zircon dating of the coesite-bearing metapelite yielded the peak metamorphic age 320.4 ± 3.7 Ma. For the first time, age data of coesite-bearing UHP metapelite from the Chinese western Tianshan are presented in this paper. They are in accord with published ages obtained from eclogite from other localities in the Chinese western Tianshan and the Kyrgyz South Tianshan and therefore prove a widespread occurrence of UHP metamorphism.  相似文献   

15.
The Yitong Basin is an oil-bearing basin with unique characteristics in Northeast China. On the basis of apatite fission track ages and geological relationship, the tectonic uplift history of the Yitong Basin since the Oligo-cene was discussed. Based on apatite fission track analysis of five samples from the Luxiang and Chaluhe fault de-pressions and basin modeling study, it can be concluded that since the Oligocene (36.6 Ma) in the Yitong Basin, the Chaluhe fault depression has undergone two episodes of uplift during 24.9–19.1 Ma and 6.9–4.9 Ma. And the Luxi-ang fault depression also had undergone two episodes of uplift during 30–27.8 Ma and 22.6–11.1 Ma. Moreover, the average apparent exhumation rates for the Chaluhe fault depression and Luxiang fault depression, could be calcu-lated to be 70.34 and 60.33 m/Ma since 21.8 Ma and 18.9 Ma, respectively. The results of thermochronological analysis can also be supported by the evidence from geological relationships such as geodynamics, volcanic activity, and stratigraphic division and correlation.  相似文献   

16.
The Pulang complex is located tectonically at the southern margin of the Yidun–Zhongdian island arc belt in Yunnan province, China, and is closely related to formation of the Pulang copper deposit, which is the largest copper deposit in Asia. The Pulang complex can be divided into three intrusion stages based on contact relationships and petrological characteristics: (1) a first stage of quartz dioritic porphyry; (2) a second stage of quartz monzonitic porphyry; and (3) a third stage of granodioritic porphyry. The crystallization ages of these intrusion stages were determined by single-zircon U–Pb dating, yielding ages of 221.0 ± 1.0, 211.8 ± 0.5, and 206.3 ± 0.7 Ma for the first, second, and third stages, respectively. These dates, integrated with previous geochronological data and field investigations, indicate that the second-stage quartz monzonitic porphyry has a close spatial and temporal relationship with the large Pulang porphyry copper deposit. These age data, geochemical and Sr–Nd isotopic results suggest that the Pulang complex formed in the Indo-Chinese epoch (257 ~ 205 Ma) by multiphase intrusion of a mixture of mantle- and crust-derived magmas.  相似文献   

17.
The Krishna–Godavari (KG) basin, a passive margin Late Carboniferous to Holocene basin along the rifted east coast of India, includes the deltaic and inter-deltaic regions of the Krishna and Godavari rivers onshore and extends into the offshore. It is one of India’s premier hydrocarbon-bearing basins. In an attempt to better understand the thermal history of the basin, apatite fission track (AFT) data has been obtained from six exploration wells (five onshore and one offshore). AFT thermal history models as well as other thermal indicators e.g. vitrinite reflectance (VR), Rock–Eval Tmax data reveal that the host rocks are currently at their maximum post-depositional temperatures and that any possible heating related to small-scale tectonism or rifting episodes in the basin bears little significance on the maturation of the sediments. In the case of one borehole (M-1) however, the organic maturity data reveals a period of Oligocene cooling across an unconformity when ∼1000 m of section was eroded due to falling sea-level. This information offers the potential for improved basin modeling of the KG basin.  相似文献   

18.
《Precambrian Research》2001,105(2-4):247-267
The Umba igneous complex consists of an enderbite–charnockite suite, including porphyritic variety of charnockites, and a porphyritic granite. Both are intruded by irregular veins or minor bodies of later reddish granite. The porphyritic charnockites locally contains abundant xenoliths of country rocks and its contamination by sedimentary material is expressed by a minor content of garnet, that increases in amount in areas with sedimentary inclusions. The Umba igneous complex and the Umba block metasediments were deformed together during two episodes of deformation. The first one was a major episode of thrusting with the formation of a penetrative shear foliation (S1), which dips gently eastwards, and a gently SE-plunging lineation. Coeval with this thrusting, the boundary between the Umba block and the Poriya Guba series in the southeast developed as a strike-slip shear zone, that juxtaposed the two blocks along a tectonic melange zone. The S1-shearing deformed the enderbite–charnockite suite, and probably also the porphyritic granite, into plate-like, eastward-dipping bodies. Predating the shearing, the metasediments underwent high-grade metamorphism and anatexis leading to a high degree of partial melting. This anatexis is also found in the enderbite–charnockite suite, but in a much smaller scale and mainly in the marginal parts of the bodies. The second episode of deformation formed narrow localized extensional shear zones (S2), which are developed in all rock units. The S1-shearing in the tectonic melange zone occurred under high-pressure metamorphism during cooling at constant pressure (T=806–818°C, P=9.3–9.5 kbar) and then at decreasing pressure due to tectonic uplift. Both seem to have gone through the same deformation events as the metasediments. The S2-extension occurred under decompression (P=7.5–8.0 kbar, T=860–840°C) caused by uplift or tectonic erosion of the thrust pile. Though indistinguishable in the field the enderbite–charnockite suite form a discontinuous suite with a trondhjemitic trend for the former, and a calc–alkaline trend for the latter. Geochemical study shows that the charnockite group is more strongly differentiated than the enderbite group and that magmatic differentiation in the charnockites were controlled by K-feldspar fractionation. The enderbites, on the other hand, lack differentiation and are considered to have crystallized rapidly from its magma source. The charnockites came from a different source that, judging from the high K/Rb ratio, formed at a deeper crustal level than the enderbites. Both members of the enderbite–charnockite suite formed due to subduction in an island arc setting, and Sm–Nd model ages of 2.1–1.9 Ga indicate that the Palaeoproterozoic suite has a juvenile character. Conventional U-Pb zircon dating of the porphyritic charnockite has given discordant ages of 1912.5±7.7 Ma, 1949±7 Ma and 1966±9. Our preferred interpretation is that the 1912.5±7.7 Ma age represents the age of intrusion, or maximum intrusion age of the charnockites, and that the 1949±7 Ma and 1966±9 Ma ages for the abraded type represent ages or mixed ages of inherited zircons from the contaminating Umba block metasediments. The youngest detrital zircons in these metasediments have similar ages. Their source could have been early magmatic arc intrusives, which were eroded shortly after their formation. If the Umba metasediments were deposited in a magmatic arc setting their initial deformation in an evolving arc may have provided the necessary heat flow for anatexis and high-grade peak metamorphism of the metasediments. Therefore, the intrusions of the enderbite–charnokite suite during the later evolution of the magmatic arc could have post-dated the peak of metamorphism, but still pre-date collision and thrusting leading to tectonic telescoping of the units, and thus explain the lower metamorphic grade in the Umba igneous complex compared to the metasediments. If the 1912.5±7.7 Ma age represents the maximum time of intrusion, the true intrusion age might be slightly younger.  相似文献   

19.
《China Geology》2022,5(4):696-721
The Dayin’gezhuang gold deposit is located in the central part of the Zhaoping Fault metallogenic belt in the Jiaodong gold province —the world ’s third-largest gold metallogenic area. It is a typical successful case of prospecting at a depth of 500‒2000 m in recent years, with cumulative proven gold resources exceeding 180 t. The main orebodies (No. 1 and No. 2 orebody) generally have a pitch direction of NNE and a plunge direction of NEE. As the ore-controlling fault, the Zhaoping Fault is a shovel-shaped stepped fault, with its dip angle presenting stepped high-to-low transitions at the elevation of −2000‒0 m. The gold mineralization enrichment area is mainly distributed in the step parts where the fault plane changes from steeply to gently, forming a stepped metallogenic pattern from shallow to deep. It can be concluded from previous studies that the gold mineralization of the Dayin’gezhuang gold deposit occurred at about 120 Ma. The ore-forming fluids were H2O-CO2-NaCl-type hydrothermal solutions with a medium-low temperature and medium-low salinity. The H-O isotopic characteristics indicate that the fluids in the early ore-forming stage were possibly magmatic water or mantle water and that meteoric water gradually entered the ore-forming fluids in the late ore-forming stage. The S and Pb isotopes indicate that the ore-forming materials mainly originate from the lower crust and contain a small quantity of mantle-derived components. The comprehensive analysis shows that the Dayin ’gezhuang gold deposit was formed by thermal uplifting-extensional tectonism. The strong crust-mantle interactions, large-scale magmatism, and the material exchange arising from the transformation from adakitic granites to arc granites and from the ancient lower crust to the juvenile lower crust during the Early Cretaceous provided abundant fluids and material sources for mineralization. Moreover, the detachment faults formed by the rapid magmatic uplift and the extensional tectonism created favorable temperature and pressure conditions and space for fluid accumulation and gold precipitation and mineralization.©2022 China Geology Editorial Office.  相似文献   

20.
The West Qinling Orogen (WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits (>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Triassic to Early Jurassic (T3–J1) and one only recently identified in the Late Jurassic to Early Cretaceous (J3–K1). Few studies have focused on the origin and geotectonic setting of the J3–K1 gold deposits.Textural relationships, LA-ICP-MS trace element and sulfur isotope compositions of pyrites in hydrothermally altered T3 dykes within the J3–K1 Daqiao deposit were used to constrain relative timing relationships between mineralization and pyrite growth in the dykes, and to characterize the source of ore fluid. These results are integrated with an overview of the regional geodynamic setting, to advance understanding of the tectonic driver for J3–K1 hydrothermal gold systems. Pyrite in breccia- and dyke-hosted gold ores at Daqiao have similar chemical and isotopic compositions and are considered to be representative of J3–K1 gold deposits in WQO. Co/Ni and sulfur isotope ratios suggest that ore fluids were derived from underlying Paleozoic Ni- and Se-rich carbonaceous sedimentary rocks. The geochemical data do not support the involvement of magmatic fluids. However, in the EQO (East Qinling Orogen), J3–K1 deposits are genetically related to magmatism. Gold mineralization in WQO is contemporaneous with magmatic deposits in the EQO and both are mainly controlled by NE- and EW-trending structures produced by changes in plate motion of the Paleo-Pacific plate as it was subducted beneath the Eurasian continent. We therefore infer that the J3–K1 structural regime facilitated the ascent of magma in the EQO and metamorphic fluids in the WQO with consequent differences in the character of contemporaneous ore deposits. If this is correct, then the far-field effects of subduction along the eastern margin of NE Asia extended 1000's of km into the continental interior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号