首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
东准噶尔北缘和东天山雅满苏带是中国新疆北部地区两个重要的晚古生代铁氧化物-铜-金矿化潜力区,以老山口、乔夏哈拉和黑尖山矿床作为典型矿床代表。研究表明两区域的铁氧化物-铜-金矿床均产出于盆地闭合的弧盆转化体系下,且具有明显的铁、铜-金两阶段矿化。卤族元素和稀有气体同位素作为可靠的流体示踪剂,被应用于探究这一特定构造环境下的铁氧化物-铜-金矿床的流体演化和矿床成因。结果显示老山口、乔夏哈拉和黑尖山矿床的成矿流体具有明显的混合流体端员特征:(1)岩浆流体端员,主要参与黑尖山矿床磁铁矿阶段,I/Cl、Br/Cl和40Ar/36Ar比值分别为(16.3~18.0)×10-6、(1.03~1.06)×10-3和352~437;(2)海水表源蒸发成因盐卤水端员,主要参与老山口矿床铜-金矿化阶段,I/Cl、Br/Cl和40Ar/36Ar比值分别为(77.1~87.7)×10-6、(1.53~1.80)×10-3和672~883;(3)蒸发岩溶解或者深度水-岩反应成因的盐卤水/沉积岩地层水端员,主要参与到老山口、乔夏哈拉矿床的磁铁矿阶段以及黑尖山、乔夏哈拉矿床的铜-金矿化阶段,综合I/Cl、Br/Cl和40Ar/36Ar比值分别为(477~26 301)×10-6、(0.39~1.28)×10-3和288~510。明显的多阶段矿化和铜-金矿化阶段以非岩浆富Ca高盐度卤水为主的特征与世界范围内的IOCG型矿床极为相似,表明新疆北部的铁氧化物-铜-金矿床应为IOCG型矿床。  相似文献   

2.
We determined the boron isotope and chemical compositions of tourmaline from the Hira Buddini gold deposit within the Archean Hutti-Maski greenstone belt in southern India to investigate the evolution of the hydrothermal system and to constrain its fluid sources. Tourmaline is a minor but widespread constituent in the inner and distal alteration zones of metabasaltic and metadacite host rocks associated with the hydrothermal gold mineralization. The Hira Buddini tourmaline belongs to the dravite–schorl series with variations in Al, Fe/(Fe+Mg), Ca, Ti, and Cr contents that can be related to their host lithology. The total range of δ11B values determined is extreme, from −13.3‰ to +9.0‰, but 95% of the values are between −4 and +9‰. The boron isotope compositions of metabasalt-hosted tourmaline show a bimodal distribution with peak δ11B values at about −2‰ and +6‰. The wide range and bimodal distribution of boron isotope ratios in tourmaline require an origin from at least two isotopically distinct fluid sources, which entered the hydrothermal system separately and were subsequently mixed. The estimated δ11B values of the hydrothermal fluids, based on the peak tourmaline compositions and a mineralization temperature of 550°C, are around +1 and +10‰. The isotopically lighter of the two fluids is consistent with boron released by metamorphic devolatilization reactions from the greenstone lithologies, whereas the 11B-rich fluid is attributed to degassing of I-type granitic magmas that intruded the greenstone sequence, providing heat and fluids to the hydrothermal system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
This paper presents Nd-Sr-Pb isotope data on scheelite, inclusion fluids and residues of gangue quartz, and sulfides from the W-Sb-Au ore deposits at Woxi and Liaojiaping (LJP) in the Xuefeng Uplift Belt (XUB), Western Hunan, China. Sm and Nd concentrations in scheelite from Woxi are much lower than in scheelite from LJP and can be distinguished by their high 147Sm/144Nd ratios of ~1.25 from the much lower ratios around 0.26 in scheelites from the LJP. Nd values (compared to values at 200 Ma, which is the average timing of granitoid emplacement during the Indosinian-Yanshanian periods in the XUB) are around –10 for the LJP and compare well with the range of –5 to –11 defined by the granitoids, whereas they are around –27 for scheelite from Woxi. This might indicate that REEs in the mineralizing fluids at LJP originated from granitoids that are concentrated along the southern border of the XUB, whereas in the case of Woxi, the original fluids might have been masked by REEs released during intense high-temperature wall rock alteration of unexposed Precambrian basement rocks at depth. Sr isotopes of scheelite from these two deposits show similar relations to host / nearby rocks, in that 87Sr/86Sr (T=200 Ma) ratios of ~0.721 for LJP scheelite agree with values ranging between 0.718 – 0.726 for granitoids, whereas these ratios are much higher (i.e. 0.745) for scheelite from Woxi and correspond to the 87Sr/86Sr (T=200 Ma) ratio range of 0.743 – 0.749 for Precambrian host slates. Crushing experiments to release inclusion fluids from gangue quartz and sulfides deposited during later stages of ore deposition in both deposits failed to provide accurate and geologically meaningful two-point (fluid-residue) tie lines in Rb-Sr isochron diagrams. However, Sr released from fluid inclusions generally reveals lower initial 87Sr/86Sr ratios than the respective residues and shows affinities to 87Sr/86Sr (T=200 Ma) values of Indosinian-Yanshanian granitoids, both at Woxi and LJP. Pb stepwise leaching of scheelite and sulfides did not result in sufficient spreads in Pb isotope diagrams and therefore no information regarding exact mineralization ages in the two deposits could be deduced. Overall, ore Pb isotopes reveal upper crustal signatures and are compatible with Pb isotope signatures of the predominant Precambrian slates in the Woxi area. Steep trajectories through late stage quartz-sulfide mineralization in Pb isotope diagrams may hint at mixing scenarios involving Pb from the host rocks and a component with lower 207Pb/204Pb and 208Pb/204Pb ratios relative to 206Pb/204Pb ratios, which cannot be linked to any known reservoir in the XUB mining district. Sr isotopes of four out of seven residual sulfide samples from Woxi plot along a paleomixing line at an age of 199 ± 8 Ma, supporting a mixing scenario for the fluids indicated by the Pb isotopes and pointing to a possible genetic relationship with the emplacement of Indosinian—Yanshanian granitoids. The budgets of REEs, Rb-Sr and Pb in the original fluids were severely affected by contamination of these elements apparently during intense wall rock alteration but, after sealing of the major pathways, the mineralizing fluids tend to have better preserved their original signatures. These attest a genetic relationship between the metallogeny in the XUB W-Sb-Au province and the emplacement of Indosinian-Yanshanian granitoids during Mesozoic intracontinental tectonic uplift and thrusting.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial handling: B. Lehmann  相似文献   

4.
Fluid inclusion microthermometry, Raman spectroscopy and noble gas plus halogen geochemistry, complemented by published stable isotope data, have been used to assess the origin of gold-rich fluids in the Lachlan Fold Belt of central Victoria, south-eastern Australia. Victorian gold deposits vary from large turbidite-hosted ‘orogenic’ lode and disseminated-stockwork gold-only deposits, formed close to the metamorphic peak, to smaller polymetallic gold deposits, temporally associated with later post-orogenic granite intrusions. Despite the differences in relative timing, metal association and the size of these deposits, fluid inclusion microthermometry indicates that all deposits are genetically associated with similar low-salinity aqueous, CO2-bearing fluids. The majority of these fluid inclusions also have similar 40Ar/36Ar values of less than 1500 and 36Ar concentrations of 2.6–58 ppb (by mass) that are equal to or much greater than air-saturation levels (1.3–2.7 ppb). Limited amounts of nitrogen-rich fluids are present at a local scale and have the highest measured 40Ar/36Ar values of up to 5,700, suggesting an external or distinct source compared to the aqueous fluids. The predominance of low-salinity aqueous–carbonic fluids with low 40Ar/36Ar values, in both ‘orogenic’ and ‘intrusion-related’ gold deposits, is attributed to fluid production from common basement volcano-sedimentary sequences and fluid interaction with sedimentary cover rocks (turbidites). Aqueous fluid inclusions in the Stawell–Magdala deposit of western Victoria (including those associated with N2) preserve mantle-like Br/Cl and I/Cl values. In contrast, fluid inclusions in deposits in the eastern structural zones, which contain more abundant shales, have elevated molar I/Cl ratios with maximum values of 5,170 × 10−6 in the Melbourne Zone. Br/I ratios in this zone range from 0.5 to 3.0 that are characteristic of fluid interaction with organic-rich sediments. The maximum I/Cl and characteristic Br/I ratios provide evidence for organic Br and I released during metamorphism of the shales. Therefore, the regional data provide strong evidence for the involvement of sedimentary components in gold mineralisation, but are consistent with deeper metamorphic fluid sources from basement volcano-sedimentary rocks. The overlying sediments are probably involved in gold mineralisation via fluid–rock interaction.  相似文献   

5.
Four of the major plutons in the vicinity of the Candelaria mine (470 Mt at 0.95% Cu, 0.22 g/t Au, 3.1 g/t Ag) and a dike–sill system exposed in the Candelaria open pit have been dated with the U–Pb zircon method. The new geochronological data indicate that dacite magmatism around 123 Ma preceded the crystallization of hornblende diorite (Khd) at 118 ± 1 Ma, quartz–monzonite porphyry (Kqm) at 116.3 ± 0.4 Ma, monzodiorite (Kmd) at 115.5 ± 0.4 Ma, and tonalite (Kt) at 110.7 ± 0.4 Ma. The new ages of the plutons are consistent with field relationships regarding the relative timing of emplacement. Plutonism temporally overlaps with the iron oxide Cu–Au mineralization (Re–Os molybdenite ages at ∼115 Ma) and silicate alteration (ages mainly from 114 to 116 and 110 to 112 Ma) in the Candelaria–Punta del Cobre district. The dated dacite porphyry and hornblende diorite intrusions preceded the ore formation. A genetic link of the metallic mineralization with the quartz–monzonite porphyry and/or the monzodiorite is likely. Both of these metaluminous, shoshonitic (high-K) intrusions could have provided energy and contributed fluids, metals, and sulfur to the hydrothermal system that caused the iron oxide Cu–Au mineralization. The age of the tonalite at 110.7 Ma falls in the same range as the late alteration at 110 to 112 Ma. Tonalite emplacement may have sustained existing or driven newly developed hydrothermal cells that caused this late alteration or modified 40Ar/39Ar and K/Ar systematic in some areas.  相似文献   

6.
稀有气体同位素在示踪成矿作用流体来源方面具有独特优势。本文应用熔融质谱法测定了金川Cu-Ni-PGE硫化物矿床23个硅酸盐矿物和金属硫化物单矿物的He、Ne和Ar丰度和同位素组成。结果表明,硅酸盐矿物的3He/4He比值(0.239Ra)略低于硫化物(平均0.456Ra),且从橄榄石(平均0.291Ra)、斜方辉石(0.215Ra)到单斜辉石(0.174Ra)逐渐降低,20Ne/22Ne-21Ne/22Ne分布于MORB与大陆地壳演化线之间,扣除放射性成因4He*和40Ar*后橄榄石和辉石中3He/4He和40Ar/36Ar接近岩石圈地幔组成。He、Ne和Ar同位素组成示踪表明成矿岩浆中存在岩石圈地幔(SCLM)、地壳(CC)和大气饱和流体(ASW)三种端元成分,硫化物熔体的分离发生在岩浆结晶分异的早期。岩石圈地幔部分熔融形成的成矿初始岩浆经历了两阶段的演化。在深部岩浆房高温成矿岩浆同化围岩引入地壳混染组分,促使硫饱和及硫化物熔体的熔离,同时形成具有壳幔混合特征的混合岩浆组分(MC),上升至上部岩浆房后混入较高比例的大气饱和流体,进一步促使硫饱和及浸染状硫化物就地熔离堆积。  相似文献   

7.
Shear faults in Upper Cretaceous limestones of the central Negev desert adjacent to the Dead Sea Transform (DST) feature extensive ferruginous mineralization and dolomitization. This has been related to topographically driven flow of metalliferous groundwaters through an underlying clastic (Nubian Sandstone) aquifer and rise of the fluids up the fault zones. The present study combines Pb and Sr isotope measurements with detailed sampling and petrography at the eastern end of the Paran fault (Menuha Ridge) in order to identify the types of groundwater and the sources of enriched elements in this regional-scale sedimentary mineralization. Ferroan and non-ferroan dolomitization along the Paran fault caused significant enrichment of several elements (Mg, Cu, Mn, Ni, V, Zn, Pb, and U) and 87Sr/86Sr values that are significantly higher than the Upper Cretaceous limestone country rock. The non-ferroan dolomite and the ferroan dolomite sampled at three sites along the Menuha Ridge have similar 87Sr/86Sr values 0.7076-0.7089, and 0.7077-0.7086, respectively. Additionally, there is a positive correlation between Mg-content of the dolomites and their 87Sr/86Sr values. The isotopic composition of Sr and Pb of dolomite corresponds to the mineralogical type identified in the mineralized rock (non-ferroan dolomite, simple-zoned ferroan dolomite, and complex-zoned ferroan dolomite). The 207Pb/204Pb and 206Pb/204Pb ratios of Fe oxides and dolomites from the three sites plot on a straight line, where the simple-zoned ferroan dolomite values are at the non-radiogenic end of the line and the complex-zoned ferroan dolomites at the radiogenic end. Both 206Pb/204Pb and 207Pb/204Pb ratios in dolomites and to a lesser degree in Fe-oxides suggest that a mixing between two end-members controls the behavior of Pb in the mineralization products along the Paran fault. Rather than a single fluid source, the study indicates that two types of metalliferous groundwaters were involved in the dolomitization and mineralization along the Paran fault. The first, and hitherto undocumented, fluid source is the Mg-rich Dead Sea Rift brine, migrating in the sub-surface before dolomitizing the carbonate bedrock. Migration of the brines took a deep path to the site of mineralization, with temperatures reaching 75 °C. Based on the geological history of the region, this probably took place in the Late Miocene-Early Pliocene interval. The second type of groundwater acquired its high solute concentrations from leaching igneous rocks and clastic sediments in the sub-surface, and infiltrated along the Paran fault, precipitating Fe-rich minerals and caused the first stage of dolomitization. This groundwater flowed at shallower depth than the DSR brines, and at lower temperatures (T ? 50 °C). The study shows that sedimentary mineralization in faults adjacent to active transform fault zones may arise from the combination of several different fluid flow regimes.  相似文献   

8.
Groundwaters were collected around the Spence porphyry copper deposit, Atacama Desert, northern Chile, to study water-porphyry copper ore bodies interaction and test hypotheses regarding transport of metals through thick overburden leading to the formation of soil geochemical anomalies. The deposit contains 400 Mt of 1% Cu and is completely buried by piedmont gravels of Miocene age. Groundwaters were recovered from the eastern up hydraulic gradient (upflow) margin of the Spence deposit, from within the deposit, and for two kilometers down flow from the deposit. Water table depths decrease from 90 m at the upflow margin to 30 m 1.5 km down flow. Groundwaters at the Spence deposit are compositionally variable with those upflow of the deposit characterized by relatively low salinities (900-7000 mg/L) and Na+-SO42−-type compositions. These waters have compositions and stable isotope values similar to regional groundwaters recovered elsewhere in the Atacama Desert of Northern Chile. In contrast, groundwaters recovered within and down flow of the deposit range in salinity from 10,000 to 55,000 mg/L (one groundwater at 145,000 mg/L) and are dominantly Na+-Cl-type waters. Dissolved sulfate values are, however, elevated compared to upflow waters, and δ34SCDT decreases into the deposit (from >4‰ to 2‰), consistent with increasing influence of sulfur derived from oxidation of sulfide minerals within the deposit. The increase in salinity and conservative tracers (Cl, Br, Li+, and Na+) and the relationship between oxygen and hydrogen isotopes suggests that in addition to water-rock reactions within the deposit, most of the compositional variation can be explained by groundwater mixing (with perhaps a minor role for evaporation). A groundwater-mixing scenario implies a deeper, more saline groundwater source mixing with the less saline regional groundwater-flow system. Flow of deeper, more saline groundwater along pre-existing structures has important implications for geochemical exploration and metal-transport models.  相似文献   

9.
The Lince–Estefanía stratabound copper deposit in the Michilla district is one of the most important deposits in the Coastal Cordillera of northern Chile and is one of the most representative of this type of deposit. Chalcocite and bornite characterize the main stage of hypogene copper sulfide mineralization. Rhenium and osmium isotopes are used here to constrain the age of hypogene mineralization and the source of osmium contained in these ore minerals. A Re–Os isochron yielded an age of 160±16 Ma (2σ), with an associated initial 187Os/188Os ratio of 1.06±0.09 (mean square of weighted deviates=1.8). This age is consistent with available geochronological data from volcanic rocks that host the mineralization and associated alteration phases. The high initial 187Os/188Os ratio indicates a lower crustal component for the source of Os and, by inference, the Cu sulfides that contain this Os. Late hematite occurs as an isolated phase or, more commonly, is associated with the chalcocite–bornite and supergene chalcocite–covellite associations. Analyses performed on pure hematite indicate a disturbance of the Re–Os system, and hence, this mineral phase is not useful as a Re–Os geochronometer.  相似文献   

10.
河北承德黑山铁矿床热液成矿特征及流体包裹体研究   总被引:1,自引:2,他引:1  
黑山大型钒钛磁铁矿矿床产于大庙斜长岩杂岩体中,是承德地区最重要的"大庙式"岩浆型铁矿床。笔者在矿区野外地质观察过程中发现,穿插于斜长岩中的铁磷矿脉、磁铁矿硫化物矿脉有热液成矿作用的显示,表明黑山铁矿床成因除传统认为的岩浆期结晶、熔离、矿浆贯入成矿作用外,还有热液期的成矿作用发生。本文对热液成矿期铁磷矿石中磷灰石和矿化蚀变石英中的流体包裹体进行了显微测温和激光拉曼光谱分析。结果表明,磷灰石中原生包裹体可以分为气液两相包裹体、含子矿物包裹体、含液态CO2三相包裹体、单液相、单气相包裹体5类,均一温度主要集中于180~420℃,盐度主要集中于6.2%~38.9%NaCleq,流体包裹体气相成分主要为CO2、N2和CH4,液相成分主要为H2O,固相成分主要为方解石、石盐、白云石及铁氧化物子矿物。石英中流体包裹体类型和成分与磷灰石中的类似,但固相成分未发现石盐和不透明金属子矿物,均一温度变化于149~422℃,盐度变化于5.7%~22.9%NaCleq。成矿流体为CaCl2-NaCl-H2O-CO2体系,均一温度和盐度呈现正相关连续渐变的特征。铁磷矿石的磷灰石中原生包裹体为流体包裹体,盐度高,子矿物种类复杂,组成中富含CO2和CH4等,这些特征显示成矿流体以岩浆热液为主;成矿机理可能与大气降水对岩浆热液的稀释有关。  相似文献   

11.
Detailed zircon and apatite U-Pb dating and 40Ar/39Ar dating of actinolite have been carried out on the Carmen-Sierra Aspera Kiruna type magnetite-apatite and iron oxide Cu-Au (IOCG) district in the Coastal Cordillera of northern Chile (∼26°S). They define a precise succession of magmatic and hydrothermal events associated with early Cretaceous Andean magmatism. Apatite and magnetite from a magnetite-apatite tabular body with intergrowth texture in the Carmen deposit yield a total Pb-U isochron age of 131.0 ± 1.0 Ma. This result is the first direct dating of magnetite-apatite mineralization in an early Andean deposit, and the age coincides with zircon ages of a quartz diorite stock that partially hosts mineralization (130.6 ± 0.3 Ma). Magnetite from the studied tabular body contains only small amounts of radiogenic Pb and serves to constrain the initial common Pb isotopic composition. The high degree of correlation suggests that both minerals closed for Pb diffusion at essentially the same time and at a relatively high temperature (close to that of zircon), making the apatite-magnetite pair a reliable geochronometer for igneous or hydrothermal crystallization. Zircon from the Sierra Aspera composite pluton yields ages between 131.3 ± 0.3 Ma and 127.4 ± 0.1 Ma, clearly resolving the timing of intrusion of discrete intrusive phases. Actinolite 40Ar/39Ar ages partially overlap the ages of plutonic phases of the Sierra Aspera pluton, but are younger than the magnetite-apatite tabular body. The initial Pb isotopic composition of the melts and/or fluids from which the magnetite-apatite tabular bodies crystallized is very similar to the primitive Pb isotopic composition of granitic magmas associated with early Cretaceous plutons measured in K-feldspar. The Pb isotopic correspondence, combined with the temporal and spatial association between magnetite-apatite mineralization and the dioritic-quartz dioritic magmatism, strongly suggests a genetic relationship between early Cretaceous continental arc magmatism, massive magnetite-apatite deposits, and IOCG mineralization.  相似文献   

12.
New microthermometric data combined with stable isotope geochemistry and paragenetic relationships support a previously suggested cooling–mixing model for the iron oxide–copper–gold mineralization in the Mantoverde district. Fluid inclusions show characteristics of a CO2-bearing aqueous NaCl ± CaCl2 salt system. The evolution of the Mantoverde hydrothermal system is characterized by (1) an early hypersaline, high to moderate temperature fluid; (2) a moderate saline, moderate temperature fluid; and (3) a low saline, moderate to low temperature fluid. Early magnetite formation took place at median temperatures of 435.0°C, whereas hematite formed at median temperatures of 334.4°C. The main sulfide mineralization texturally post-dates the iron oxides and occurred before late-stage calcite, which developed at a median temperature of 244.8°C. Boiling occurs only locally and is of no relevance for the ore formation. The microthermometric and stable isotope data are supportive for a fluid cooling and mixing model, and suggestive for a predominantly magmatic–hydrothermal fluid component during the iron oxide and main sulfide mineralization. Thereafter, the incursion of a nonmagmatic fluid of ultimately meteoric or seawater gains more importance.  相似文献   

13.
《Chemical Geology》1999,153(1-4):53-79
Marine sediment sequences with CH4 hydrate are characterized by an atypical depth profile in dissolved Cl squeezed from pore space: a shallow subsurface Cl maximum overlies a lengthy and pronounced Cl minimum. This pore water Cl profile represents a combination of multiple processes including glacial–interglacial variations in ocean salinity, advection and diffusion of ions that are excluded during gas hydrate formation at depth, and release of fresh water from dissociation of hydrate during core recovery. In situ quantities of gas hydrate can be determined from a measured pore water Cl profile provided the in situ pore water signature prior to core recovery can be separated. Ocean Drilling Program (ODP) Site 997 was drilled into a large CH4 hydrate reservoir on the Blake Ridge in the western Atlantic Ocean. Previously we have constructed a high-resolution pore water Cl profile at this location; here we present a `coupled chloride-hydrate' numerical model to explain basic trends in the Cl profile and to isolate in situ Cl concentrations. The model is based on thermodynamic and ecological considerations, and uses established equations for describing chemical behavior in marine sediment–pore water systems. The model incorporates four key concepts: (1) most gas hydrate is formed immediately below the SO42− reduction zone; (2) fluid, dissolved ions and gas advect upward through the sediment column; (3) CH4 hydrate dissociates at the base of hydrate stability conditions; and (4) seawater salinity fluctuates during glacial–interglacial cycles of the late Pliocene and Quaternary. Rates of upward advection in the model are sufficient to account for measured Br and I concentrations as well as CH4 oxidation at the base of the SO42− reduction zone. In situ pore water Cl inferred from the model is similar to that determined by limited direct sampling; in situ CH4 hydrate amounts inferred from the model (an average of about 4% of porosity) are broadly consistent with those determined by direct gas sampling and indirect geophysical techniques. The model also predicts production of substantial quantities of free CH4 gas bubbles (>2.5% of porosity) at a depth immediately below the lowest accumulation of CH4 hydrate in the sediment column. Our explanation for the pore water Cl profile at Site 997 is important because it provides a theoretical mechanism for understanding the distribution of interstitial water Cl, gas hydrate, and free gas in a marine sediment column.  相似文献   

14.
The significance of isotopic data on constraining the physical conditions of fluid-rock interaction and mineralization processes in carbonate rocks is discussed, based on the example of barite-tetrahedrite mineralization in Lower Devonian platform carbonates of the Western Greywacke Zone (Tyrol, Austria). Available strontium, oxygen, carbon and sulfur isotopic data are complemented with oxygen isotopic data for barite. Barites are homogeneous in δ18OV-SMOW and δ34SCDT with values of + 15.4 and + 23.5‰, respectively. Their 87Sr/86Sr ratios vary between 0.7128 and 0.7113 for the first generation and between 0.7117 and 0.7123 for younger remobilization. The dolomitic host rock shows a significant variation in Sr, O and C isotopic composition between non-mineralized and mineralized zones: 87Sr/86Sr ratios vary between 0.7076 and 0.7133, δ18OV-SMOW-values between +28.11 and +20.65‰, and δ13CPDB-values between −1.15 and + 3.06‰. Fluid/rock volume ratios on the order of 1.3–3.2 are calculated for open-system behaviour by modelling Sr, O and C isotopic shifting capacities. The isotope data combined with other geological evidence support the following genetic model: Subsequent to synsedimentary sulfide mineralization during an Early Devonian rifting stage, collision tectonics in Carboniferous time led to the expulsion of Ba- and Sr-rich orogenic brines, which evolved from metamorphic fluids consisting essentially of H2O and some CH4, into an external sedimentary fold-and-thrust belt. The brines remobilized the synsedimentary sulfides, mixed with meteoric waters in the platform carbonates, reacted with evaporitic horizons and finally caused the recrystallization of dolomite and the precipitation of Sr-rich barite in structurally weak zones at 70–130°C. During the later Alpine orogeny supergene oxidation products were formed, and sulfates, sulfides and carbonates were further remobilized into late faults and fractures.  相似文献   

15.
郑旭  刘琰  欧阳怀  付浩邦  贾玉衡  丁岩 《岩石学报》2019,35(5):1389-1406
木落寨稀土矿床位于青藏高原东部,扬子克拉通西南缘,属于典型的碳酸岩型稀土矿床。与其他成矿过程复杂的碳酸岩型稀土矿床相比,该矿床具有完整而连续的流体演化过程,且几乎不受热液蚀变和后期构造-岩浆事件的影响,因此是研究碳酸岩型稀土矿床成矿过程的理想对象。本次研究结合详细的1∶5000矿区岩性-构造-蚀变-矿化野外地质调查和流体包裹体研究,将矿床形成过程划分为三期,即岩浆期、热液期和表生期。热液期作为主要的成矿期,又可细分为热液早阶段、热液中阶段和热液晚阶段三个阶段。对热液不同阶段的重晶石、萤石、石英和氟碳铈矿的流体包裹体研究表明,主要分为以下6类:(1)熔体(M类)包裹体;(2)熔流包裹体;(3)富CO_2包裹体(WC类);(4)含子矿物富CO_2包裹体(SC类);(5)含子矿物水溶液三相包裹体(S类);(6)气液两相包裹体(W类)。热液早阶段为岩浆-热液过渡阶段,以粗粒萤石和重晶石为特征,发育熔融和熔流包裹体,指示成矿流体来自岩浆出溶。WC、SC和S类包裹体主要在热液中阶段石英和萤石中而W类包裹体大部分存在于热液晚阶段氟碳铈矿中。WC类包裹体具有不同的CO_2充填度,表明热液中阶段成矿流体发生不混溶作用。结合WC类包裹体端元组成的显微测温结果和等容线法,模拟计算出不混溶作用发生的温度为280~320℃之间,压力为120~180MPa,盐度范围较大,为2. 4%~42. 4%Na Cleqv。热液成矿期晚阶段氟碳铈矿中的W类包裹体具有稳定的气液比,说明成矿环境较均匀,其测温结果显示大规模稀土矿化主要发生在200~260℃之间,压力200bars,盐度为6. 5%~11. 2%Na Cleqv。激光拉曼结果显示SC和S类包裹体中的子晶主要为重晶石、天青石和无水芒硝等硫酸盐,指示成矿流体富集Na~+、Ca~(2+)、K~+、Sr~(2+)、Ba~(2+)、SO_4~(2-)、F~-和Cl~-离子。成矿流体δD和δ~(18)O同位素组成分别为-96. 5‰~-50. 1‰和0. 9‰~6. 4‰,与区域上其他碳酸岩型稀土矿流体同位素组成相似,指示流成矿流体出溶过程中经历自岩浆脱气做作用,且晚阶段有大气降水加入。热液成矿期中阶段硫化物和硫酸盐的δ34SV-CDT分别为集中在-6. 10‰~-4. 77‰和4. 33‰~4. 90‰,与区域其他稀土矿床硫同位素值吻合,反应幔源岩浆硫特征。硫酸盐和硫化物的硫平衡分馏计算结果为16. 7‰~25. 1‰,远大于二者差值(9. 1‰~11. 0‰),显示成矿晚阶段为开放系统。以上研究结果和实验岩石学共同指示木落寨矿床稀土元素在热液中主要以[REE(SO4)2]-和[REECl]2+形式迁移,不混溶作用是流体演化的重要过程,提供成矿所需CO_2,而成矿流体冷却和大气降水混入致使络合物分解被认为是热液晚阶段稀土矿物大规模沉淀的主要机制。  相似文献   

16.
The world-class Idrija mercury deposit (western Slovenia) is hosted by highly deformed Permocarboniferous to Middle Triassic sedimentary rocks within a complex tectonic structure at the transition between the External Dinarides and the Southern Alps. Concordant and discordant mineralization formed concomitant with Middle Triassic bimodal volcanism in an aborted rift. A multiple isotopic (C, O, S) investigation of host rocks and ore minerals was performed to put constraints on the source and composition of the fluid, and the hydrothermal alteration. The distributions of the 13C and 18O values of host and gangue carbonates are indicative of a fracture-controlled hydrothermal system, with locally high fluid-rock ratios. Quantitative modeling of the 13C and 18O covariation for host carbonates during temperature dependent fluid-rock interaction, and concomitant precipitation of void-filling dolomites points to a slightly acidic hydrothermal fluid (13C–4 and 18O+10), which most likely evolved during isotopic exchange with carbonates under low fluid/rock ratios. The 34S values of hydrothermal and sedimentary sulfur minerals were used to re-evaluate the previously proposed magmatic and evaporitic sulfur sources for the mineralization, and to assess the importance of other possible sulfur sources such as the contemporaneous seawater sulfate, sedimentary pyrite, and organic sulfur compounds. The 34S values of the sulfides show a large variation at deposit down to hand-specimen scale. They range for cinnabar and pyrite from –19.1 to +22.8, and from –22.4 to +59.6, respectively, suggesting mixing of sulfur from different sources. The peak of 34S values of cinnabar and pyrite close to 0 is compatible with ore sulfur derived dominantly from a magmatic fluid and/or from hydrothermal leaching of basement rocks. The similar stratigraphic trends of the 34S values of both cinnabar and pyrite suggest a minor contribution of sedimentary sulfur (pyrite and organic sulfur) to the ore formation. Some of the positive 34S values are probably derived from thermochemical reduction of evaporitic and contemporaneous seawater sulfates.Editorial handling: P. Lattanzi  相似文献   

17.
Fluid inclusions have been studied in minerals infilling fissures (quartz, calcite, fluorite, anhydrite) hosted by Carboniferous and Permian strata from wells in the central and eastern part of the North German Basin in order to decipher the fluid and gas migration related to basin tectonics. The microthermometric data and the results of laser Raman spectroscopy reveal compelling evidence for multiple events of fluid migration. The fluid systems evolved from a H2O–NaCl±KCl type during early stage of basin subsidence to a H2O–NaCl–CaCl2 type during further burial. Locally, fluid inclusions are enriched in K, Cs, Li, B, Rb and other cations indicating intensive fluid–rock interaction of the saline brines with Lower Permian volcanic rocks or sediments. Fluid migration through Carboniferous sediments was often accompanied by the migration of gases. Aqueous fluid inclusions in quartz from fissures in Carboniferous sedimentary rocks are commonly associated with co-genetically trapped CH4–CO2 inclusions. P–T conditions estimated, via isochore construction, yield pressure conditions between 620 and 1,650 bar and temperatures between 170 and 300°C during fluid entrapment. The migration of CH4-rich gases within the Carboniferous rocks can be related to the main stage of basin subsidence and stages of basin uplift. A different situation is recorded in fluid inclusions in fissure minerals hosted by Permian sandstones and carbonates: aqueous fluid inclusions in calcite, quartz, fluorite and anhydrite are always H2O–NaCl–CaCl2-rich and show homogenization temperatures between 120 and 180°C. Co-genetically trapped gas inclusions are generally less frequent. When present, they show variable N2–CH4 compositions but contain no CO2. P–T reconstructions indicate low-pressure conditions during fluid entrapment, always below 500 bar. The entrapment of N2–CH4 inclusions seems to be related to phases of tectonic uplift during the Upper Cretaceous. A potential source for nitrogen in the inclusions and reservoirs is Corg-rich Carboniferous shales with high nitrogen content. Intensive interaction of brines with Carboniferous or even older shales is proposed from fluid inclusion data (enrichment in Li, Ba, Pb, Zn, Mg) and sulfur isotopic compositions of abundant anhydrite from fissures. The mainly light δ34S values of the fissure anhydrites suggest that sulfate is either derived through oxidation and re-deposition of biogenic sulfur or through mixing of SO42−-rich formation waters with variable amounts of dissolved biogenic sulfide. An igneous source for nitrogen seems to be unlikely since these rocks have low total nitrogen content and, furthermore, even extremely altered volcanic rocks from the study area do not show a decrease in total nitrogen content.  相似文献   

18.
The paper presents new geochronological and isotopic geochemical data on gold mineralization of the Kedrovskoe deposit. The deposit is located in the northeastern part of the Transbaikal metallogenic province, Russia’s largest. The Early Permian age (273 ± 4 Ma) of mineralization based on the results of Rb–Sr study of metasomatic rocks is correlated with the age of the final phases of Hercynian magmatism in the Baikal–Muya Foldbelt. The Sr, Nd, and Pb isotopic geochemical characteristics of mineralization show that the host rocks are involved in the formation of the latter. It has been established that ore lead was supplied to the hydrothermal system of the deposit mainly from a geochemical reservoir represented by the Neoproterozoic juvenile continental crust of the Baikal–Muya Foldbelt.  相似文献   

19.
The Quebrada Marquesa Quadrangle in Chile exhibits a series of mineralizations comprising manto-type manganese and copper deposits of Lower Cretaceous age, and copper and silver veins of Tertiary age. The deposits are hosted by volcanic and volcaniclastic units of the Arqueros (Hauterivian-Barremian) and Quebrada Marquesa (Barremian-Albian) Formations. Three episodes of manganese mineralization (Mn1-3) are recognized within the study area. Hydrothermal activity leading to episodes 1 and 3 was of minor importance, while the second one (Mn2) gave rise to major manto-type deposits of both manganese and copper in the Talcuna mining district. Extensional faulting during Tertiary time resulted in block faulting and the unroofing of the oldest andesitic volcanics and marine sediments (Arqueros Formation). This episode was accompanied by magmatic and hydrothermal activity leading to vein formation in the Arqueros (Ag) and Talcuna (Cu) districts. The latter veins cross-cut the previous manto-type copper deposits. Ore mineralogy is similar in both styles of mineralization (manto- and vein-type) and consists mainly of chalcopyrite and bornite, with variable amounts of galena, tetrahedrite (vein-related), chalcocite, sphalerite, pyrite, hematite, digenite and covellite. Alteration processes at Talcuna can be divided into two categories, those related to the Lower Cretaceous manto-type episode (LK alteration: chlorite-epidote-calcite-albite, prehnite, zeolite), and those associated with the locally mineralized normal faults of Tertiary age (Tt alteration: chlorite-calcite, sericite). The Arqueros silver veins display an ore mineralogy consisting of arquerite, argentite, native silver, polybasite, cerargyrite and pyrargyrite-proustite; associated alteration includes strong chloritization of the country rock. The manto-type deposits formed from fluids of salinity between 11 and 19 wt.% NaCl equivalent and temperatures between 120 and 205 °C. Mineralizing fluids during the vein-type stage circulated at lower temperatures, between 70 and 170 °C, with salinity values in a wide range from 3 to 27 wt.% NaCl equivalent. This distribution of salinities is interpreted as the result of the complex interplay of two different processes: boiling and fluid mixing; the former is considered to control the major mineralogical, textural and fluid inclusion features of the vein-type deposits. We suggest that the Lower Cretaceous mineralization (manto-type stage) developed in response to widespread hydrothermal activity (geothermal field-type) involving basinal brines. Received: 18 July 1997 / Accepted: 28 January 1998  相似文献   

20.
The source of metasomatic fluids in iron-oxide–copper–gold districts is contentious with models for magmatic and other fluid sources having been proposed. For this study, δ 18O and δ 13C ratios were measured from carbonate mineral separates in the Proterozoic eastern Mt Isa Block of Northwest Queensland, Australia. Isotopic analyses are supported by petrography, mineral chemistry and cathodoluminescence imagery. Marine meta-carbonate rocks (ca. 20.5‰ δ 18O and 0.5‰ δ 13C calcite) and graphitic meta-sedimentary rocks (ca. 14‰ δ 18O and −18‰ δ 13C calcite) are the main supracrustal reservoirs of carbon and oxygen in the district. The isotopic ratios for calcite from the cores of Na–(Ca) alteration systems strongly cluster around 11‰ δ 18O and −7‰ δ 13C, with shifts towards higher δ 18O values and higher and lower δ 13C values, reflecting interaction with different hostrocks. Na–(Ca)-rich assemblages are out of isotopic equilibrium with their metamorphic hostrocks, and isotopic values are consistent with fluids derived from or equilibrated with igneous rocks. However, igneous rocks in the eastern Mt Isa Block contain negligible carbon and are incapable of buffering the δ 13C signatures of CO2-rich metasomatic fluids associated with Na–(Ca) alteration. In contrast, plutons in the eastern Mt Isa Block have been documented as having exsolved saline CO2-rich fluids and represent the most probable fluid source for Na–(Ca) alteration. Intrusion-proximal, skarn-like Cu–Au orebodies that lack significant K and Fe enrichment (e.g. Mt Elliott) display isotopic ratios that cluster around values of 11‰ δ 18O and −7‰ δ 13C (calcite), indicating an isotopically similar fluid source as for Na–(Ca) alteration and that significant fluid–wallrock interaction was not required in the genesis of these deposits. In contrast, K- and Fe-rich, intrusion-distal deposits (e.g. Ernest Henry) record significant shifts in δ 18O and δ 13C towards values characteristic of the broader hostrocks to the deposits, reflecting fluid–wallrock equilibration before mineralisation. Low temperature, low salinity, low δ 18O (<10‰ calcite) and CO2-poor fluids are documented in retrograde metasomatic assemblages, but these fluids are paragenetically late and have not contributed significantly to the mass budgets of Cu–Au mineralisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号