首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Diadema aff. antillarum performs a key role in organizing and structuring rocky macroalgae assemblages in the Canary Islands. Densities of D. aff. antillarum higher than 2 individuals m(-2) are found to drastically reduce non-crustose macroalgal cover to below 30% and wave exposure appears as a major factor determining sea urchin density, which decreases with exposure level. Substrates containing >20% sand limit urchin to under 1 individual m(-2) but high relief rocky habitats show higher density. Moreover, several anthropogenic factors (number of islanders and tourists per coastal perimeter, and number of operational fishing boats) were positively correlated with urchin abundance. A trend of increasing urchin density through time was found, although well structured marine systems found at Mar de Las Calmas Marine Protected Area and at the no-take area of La Graciosa Marine Protected Area do not seem to follow this general trend.  相似文献   

2.
波纹钩鳞鲀(Balistapus undulatus)是一种在热带珊瑚礁海域中广泛分布的杂食性鱼类, 研究其自然环境中的食物组成有助于了解其食物来源及其在生态系统中的功能地位。但目前的认识仅限于他们是珊瑚礁区的海胆捕食者, 对其准确的食物组成和生态功能定位尚不清晰。本研究于2017年夏季在南沙珊瑚礁区采集了波纹钩鳞鲀样品, 通过特异性引物扩增波纹钩鳞鲀消化道中的线粒体细胞色素C氧化酶亚基Ⅰ(COⅠ)基因, 以高通量测序技术分析了其现场食物组成, 并测定了碳、氮稳定同位素以分析其营养级。研究结果显示, 波纹钩鳞鲀摄食的食物种类有13种, 分属于节肢动物门(Arthropoda)、脊索动物门(Chordata)和环节动物门(Annelida)。其中最主要的食物来源是节肢动物门扇蟹科的蟹类, 如滑面蟹(Etisus sp.)、Luniella pubescens、皱纹花瓣蟹(Liomera rugata)等, 分别占61.8%、6.7%和1.8%。鱼类也有一定的贡献, 占总食物序列的23.5%。同位素结果显示其营养级为3.71±0.07, 与分子检测的结果相符。研究结果表明波纹钩鳞鲀的主要食物是小型甲壳类动物以及植食性鹦嘴鱼, 这拓展了以往对波纹钩鳞鲀所扮演生态角色的认识。  相似文献   

3.
在生殖季节从大亚湾采集紫海胆Anthocidariscrassispina ,分离出生殖腺和棘壳 ,用ICP AES法测定其金属元素含量。结果表明 ,紫海胆生殖腺中含有Ca ,Mg ,Sr,Fe ,Mn等1 8种金属元素。这些元素几乎都同样在棘壳中存在 ,而且棘壳中的浓度比生殖腺的高出几十倍到几百倍。同时发现棘壳中金属元素的浓度比海水中的高很多 ,如Fe的浓度为海水的34万倍 ,Mn为 1 4.5万倍 ,说明紫海胆对海水中金属元素有很强的富集作用。结果还表明紫海胆生殖腺中金属元素的含量存在性别差异 ,雌性生殖腺中Zn含量是雄性生殖腺的 4倍 ,而雄性生殖腺中Mg的含量比雌性生殖腺高。以食品卫生标准来衡量 ,大亚湾紫海胆生殖腺金属元素含量完全符合国家标准GBn 2 38 84。如何开发和利用这一海产资源 ,值得深入研究。  相似文献   

4.
Numerous studies of interactions between urchins and algae in temperate areas have shown an important structuring effect of sea urchin populations. These studies focused almost wholly on the effect of high urchin densities on laminarian forests. In contrast, algal communities below 5–6 m depth in the northwestern Mediterranean are characterised by low sea urchin densities (<5 ind m−2) and the absence of laminarian forests. No previous research has addressed sea urchin/algal interactions in this type of community. To determine the effect of the most abundant echinoid species, Paracentrotus lividus, on well-established algal communities in this area, we performed a removal–reintroduction experiment in rocky patches located between 13 and 16 m depth in the northwestern Mediterranean, where sea urchin densities ranged between 0.9 and 3.4 ind m−2. After 6 months, the cover of non-crustose algae was significantly higher in the plots from which sea urchins had been removed than in control plots (84 vs 67% cover). These removal plots reverted to their original state upon reintroduction of sea urchins. The non-crustose algae consisted of turfing and frondose forms, with the former representing some 70% of the non-crustose algal cover. Change in the cover of turfing algae was responsible for the significant increase in algal development in the sea urchin removal plots. The response of frondose algae to the treatment varied between algal species. It is concluded that grazing by P. lividus exerts a significant effect on habitat structure, even in communities with low sea urchin densities, such as those found in vast areas of the Mediterranean sublittoral.  相似文献   

5.
The sea urchin Paracentrotus lividus is common in the Mediterranean in shallow subtidal rocky habitats and in Posidonia oceanica beds. The aim of this study is to investigate whether protection has the same effect on the population structure of P. lividus occurring in rocky reef habitats and in P. oceanica beds. These results are important to generate hypotheses about the influence of human harvesting, predatory pressure and migration processes on P. lividus in the two habitats.  相似文献   

6.
Man-made defence structures (e.g., breakwaters, jetties) are becoming common features of marine coastal landscapes all around the world. The ecology of assemblages of species associated with such artificial structures is, however, poorly known. In this study, we evaluated the density and size of fish predators of echinoids (i.e., Diplodus sargus, Diplodus vulgaris, Sparus aurata), and the density of sea urchins (i.e., Paracentrotus lividus) at defence structures (i.e., breakwaters) inside and outside the marine protected area of Miramare (northern Adriatic Sea) in order to: (1) assess possible differences in fish predator density and size between protected and fished breakwaters; (2) assess whether fish predation may have the potential to affect sea urchin density in artificial rocky habitats. Surveys were carried out at four random times over a period of two years. Total density, and density of medium- and large-sized individuals of the three predatory fishes were generally greater at the protected than at the fished breakwaters, whereas no differences were detected in the density of small-sized individuals. Density of the sea urchin P. lividus did not show any difference between protected and fished breakwaters. The results of this study suggest that: (1) protection may significantly affect predatory fishes in artificial rocky habitats; (2) differences in predatory fish density, and size may be unrelated with the density of the sea urchin P. lividus; (3) protected artificial structures such as breakwaters, originally planned for other purposes, could represent a potential tool for fish population recovery and enhancement of local fisheries.  相似文献   

7.
Abstract. The population densities, spatial distributions, size frequencies, growth rates, longevity and reproductive activities of sub‐populations of the sea urchin Lytechinus variegatus were investigated over a two‐year period. Sea urchins were examined in three habitats in Saint Joseph Bay, Florida, which is within the northern limits of their distribution. Densities of sea urchins, which ranged as high as 35 individuals ·?2, fluctuated seasonally at all sites and were higher in seagrass beds comprised of Thalassia testudinum than Syringodium filiforme or on a sand flat. A cold front caused large‐scale, catastrophic mortality among adult, and especially juvenile, sea urchins in nearshore habitats of the Bay in the spring of 1993, leading to a dramatic decline in sea urchin densities at the Thalassia seagrass site. The population recovered over 6 months at this site and was attributable to immigration of new adults. Juvenile recruitment displayed both interannual and site‐specific variability, with recruitment being highest in seagrass habitats in fall and spring. The most pronounced recruitment event occurred in fall 1993 at the Thalassia site. Spatial distributions of adult individuals ascertained monthly never varied from random in the seagrass beds (T. testudinum and S. filiforme) or during spring, summer or fall months on the sand flat. Nonetheless, aggregations of adult sea urchins were observed on the sand flat in the winter months and were associated with patchy distributions of plant food resources. Juvenile sea urchins (< 25 mm test diameter) exhibited aggregations at all sites and 67 % of all juveniles under 10 mm test diameter (91 of 165 individuals observed) were found under the spine canopies of adults. Measurements of the inducibility of spawning indicated peak gametic maturity in all three sub‐populations in spring and summer. Gonad indices varied between habitats and years, but distinct maxima were detected, particularly in spring 1993 and late summer 1994. The mean gonad index of individuals at the Syringodium seagrass site was 2‐ to 4‐fold higher than the other sites in spring 1993 and gonad indices were much higher at all sites in spring of 1993 than 1994. Estimates of growth based on changes in size frequency cohorts coupled with measurements of growth bands on lantern demipyramids indicated that L. variegatus in three habitats of Saint Joseph Bay have similar growth rates and attain a mean test diameter of approximately 35 mm in one year. In contrast to populations within the central biogeographical range of the species, which may attain test diameters up to 90 mm, the largest individuals recorded in Saint Joseph Bay were 60 mm in test diameter, and almost all individuals were no more than 45 mm in test diameter or two years of age. The demographics of L. variegatus in the northern limits of their distribution appear to be strongly influenced by latitudinally driven, low‐temperature events and secondarily by local abiotic factors, especially springtime low salinities, which may negatively impact larval development and recruitment.  相似文献   

8.
人工育苗是我国培育中间球海胆养殖业种苗的主要手段,然而传统的海胆附着基的人工育苗效果不尽如人意,尤其是在控制稚胆剥离损伤方面。目前,海上吊笼养殖是中间球海胆人工养殖最主要的养成方式之一,而随着室内工厂化养殖技术的更新和优化,海胆的室内工厂化养殖产业发展迅速并受到广泛关注。为探明以软质塑料膜作为中间球海胆附着基的育苗效果以及不同规格种苗养殖的效果,分别使用硬质波纹板和软质塑料膜作附着基进行中间球海胆人工育苗,并开展了大、小两种规格(壳径分别为0.5 cm和2.0 cm)的海胆种苗室内工厂化养殖和海区养殖研究,旨在明确软质塑料膜替代传统硬质波纹板作海胆育苗附着基的可行性以及中间球海胆室内工厂化养殖和海区养殖效果的优劣。实验结果表明:软质塑料膜在采苗效率方面与波纹板无异,但在促进稚胆生长和提高存活率方面优势显著(p<0.05);在不同规格中间球海胆种苗的工厂化养殖和海上养成研究中,相同养殖条件下,养殖12月龄的大规格种苗相较于小规格种苗在生长和存活方面优势显著(p<0.05),同时工厂化养殖能确保更高的养殖成活率和更优的生长性能(p<0.05),然而中间球海胆的工厂化养殖在...  相似文献   

9.
The Indo‐Pacific red lionfish Pterois volitans is widespread both in its native and its non‐native habitats. The rapid invasion of this top predator has had a marked negative effect on fish populations in the Western Atlantic and the Caribbean. It is now well documented that lionfish are invading many tropical and sub‐tropical habitats. However, there are fewer data available on the change in lionfish abundance over time and the variation of body size and diet across habitats. A recent study in San Salvador, Bahamas, found body size differences between individuals from mangrove and reef systems. That study further suggested that ontogenetic investigation of habitat use patterns could help clarify whether lionfish are using the mangrove areas of San Salvador as nurseries. The aim of the present study is to determine temporal trends in lionfish relative abundance in mangrove and reef systems in San Salvador, and to further assess whether there is evidence suggesting an ontogenetic shift from mangroves to reef areas. Accordingly, we collected lionfish from mangrove and reef habitats and calculated catch per unit effort (a proxy for relative abundance), compared body size distributions across these two systems, and employed a combination of stable isotope, stomach content, and genetic analyses of prey, to evaluate differences in lionfish trophic interactions and habitat use patterns. Our results show that populations may have increased in San Salvador during the last 4 years, and that there is a strong similarity in body size between habitats, stark differences in prey items, and no apparent overlap in the use of habitat and/or food resources. These results suggest that there is not evidence an for ontogenetic shift from mangroves to reefs, and support other studies that propose lionfish are opportunistic forages with little movement across habitats.  相似文献   

10.
温度对光棘球海胆不同发育阶段的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
于1988-1990年进行水温(0-30℃)对光棘球海胆不同发育阶段的影响的试验。结果表明,水温对光棘球海胆各发育阶段的生长等均有显著影响,并且,不同发育阶段对水温的要求不同。其中,低于5℃或者高于26℃时,受精卵不发育;低于15℃或者高于24℃时,浮游幼体发育不正常;低于0℃或者高至30℃时,幼海胆难以生存,生长适温在16-22℃;成海胆,0℃时活力显著减弱但短期内无死亡,30℃则大量死亡,生长  相似文献   

11.
The common tropical sea urchin Diadema antillarum Philippi is the dominant herbivore on fringing coral reefs in Barbados, West Indies. The biological importance of Diadema as an agent of energy transfer was evaluated from energy budgets constructed for the population and for individuals of 10 size groups. Monthly energy budgets for urchins of various size groups balance within 1 kcal except for urchins of the largest size group examined. Approximately 20% of the monthly net benthic primary production of the fringing coral reef is consumed by Diadema. This percentage is considerably larger than the 7% reported for the consumption of benthic algal production by a population of the temperate water sea urchin, Strongylocentrotus droebachiensis, feeding in kelp beds but is lower than the 47% reported for the consumption of sea grass by the tropical urchin Lytechinus variegatus. Higher rates of secondary production of Diadema compared to that of Strongylocentrotus may be in part due to higher net and gross growth efficiencies exhibited by Diadema. It is apparent that Diadema is more efficient at converting its algal food resources into urchin biomass than is Strongylocentrotus of similar size. In comparison to Strongylocentrotus and Lytechinus, Diadema releases as much energy to the benthos in the form of fecal pellet detritus as do the other two species. The production of fecal pellet detritus is the most important pathway of energy transfer on the fringing coral reef. Fecal pellet detritus contributes approximately 26 kcal m−2 month−1 to the benthic community. This amount is equivalent to 7·4% of the monthly net primary production of the benthic algae or approximately 37% of the caloric intake of the urchin population. In addition fecal pellet detritus produced by Diadema contains about 10 times the caloric content of surface sediments found to the north and south of the fringing reef and approximately 1·7 times the caloric content of sediments within the reef. The utilization of this energy-rich fecal pellet detritus by other reef organisms is discussed briefly.  相似文献   

12.
Abstract. Feeding and movement activity patterns and the foraging behavior of the sea urchin Tripneustes ventricosus were investigated in a Thalassia testudinum seagrass bed and on a patch reef at St. Croix, U.S. Virgin Islands.
Most of T. ventricosus in the seagrass bed fed during both the day and night. Consumption of seagrass blades amounted to 1.4 g dw · individual-1· d-1 (mean sea urchin size 12.1 cm ambitus diameter). The population consumed approximately 3.6% of the daily seagrass production.
The movement of T. ventricosus was diel with high nocturnal activity levels and rates of locomotion, and little activity during daylight hours. Foraging activity was reduced under turbulent conditions. Movement rates were not governed by food availability. T. ventricosus travelled 3.7 m · d-1 on the patch reef. Individuals in the seagrass bed moved 8.8 m · d-1, most of which was accomplished during the night. The area traversed contained more than one hundred times the amount of food consumed daily. It is assumed that this behavior requires high energy expenditures for locomotion, thus yielding a low net energy profit from feeding.
The high rate of movement in seagrass beds may represent an innate behavioral adaptation to predation by night-active helmet conchs ( Cassis spp.). Fitness optimization by T. ventricosus may have been achieved by minimizing the predation risk during night hours. In an evolutionary context, survival by means of an increased energy expenditure for locomotion may compensate for the lower net energy gain from foraging.  相似文献   

13.
The diets of eight demersal fish species from the upper continental slope (c. 24CM‐50 m) were determined from samples taken during late January and early February 2004, off the Wairarapa coast, North Island, New Zealand. Diets were from a combination of benthopelagic and benthic sources, with most species exhibiting ontogenetic shifts in diet, in that larger‐bodied food (fish and/or natant decapod prawns) was more important in the diets of larger fish. Javelinfish (Lepidorhynchus denticulatus), silver roughy (Hoplostethus mediterraneus), and capro dory (Capromimus abbreviatus) had predominantly benthopelagic diets, whereas the diets of sea perch (Helicolenus percoides), Bollons’ rattail (Caelorinchus bollonsi), two‐banded rattail (C. biclinozonalis), and silverside (Argentina elongata) were predominantly benthic, with the crab Carcinoplax victoriensis an important food item. The diet of Oliver's rattail (C. oliverianus) was a mix of benthopelagic and benthic organisms. Generally, levels of dietary overlap between the eight species were low. Overall, the diets of these fish probably reflect regional and seasonal levels of food availability. Notes on food observed in the stomachs of a further 18 species, for which there were fewer than 10 stomach samples per species are also provided.  相似文献   

14.
Sea urchins can alter the composition and dynamics of algal communities by grazing. Changes in their displacement capability can influence their grazing and thus their effect on algal communities. The daily and monthly movement of Paracentrotus lividus inside and outside a marine reserve in the NW Mediterranean Sea was studied in order to determine the role of predation in sea urchin movements and its potential grazing impacts. During the 3‐month study, the total distance travelled by sea urchins ranged from 71.8 to 673.6 cm (mean = 379.2 cm, SD = 221.3). Home ranges (distances from the initial position) were between 50 and 302 cm (mean = 150.7 cm, SD = 99.4). Movements were not directional but random, with a mean of 150 cm around the initial position. The activity of Paracentrotus lividus was significantly higher at night than during daylight. Total displacement at the end of the experiment was significantly higher in the unprotected area than in the reserve, as was the home range. The linear distance travelled in a 24‐h period ranged between 6 and 220 cm with a mean home range of 51 cm. These results agree with those of other authors, and allow us to rule out major migratory processes of sea urchin populations in this area. Nevertheless, these results underline the role of predatory fishes in reducing herbivory pressure by trophic cascades, reinforcing the evidence that sea urchin escape behaviour may be an important factor in structuring algal communities.  相似文献   

15.
During deteriorated prey availability, purely pelagic, specialised seabird species have to alter their feeding strategy by extending foraging radii and/or time spent at sea or reducing feeding intervals of chicks. In contrast, more generalised species such as the opportunistic black-headed gull (Larus ridibundus) breeding at the German North Sea coast, can be assumed to react on prey shortages by switching foraging habitats. The coastal zone of the German North Sea provides a rich habitat mosaic consisting of the offshore zone, tidal flats and terrestrial habitats. Thus, we expected distinct temporal and spatial patterns of habitat switch in accordance with prey availability and environmental constraints. We carried out ship-based and aerial surveys as well as dietary analyses and observations on flight activity. We found a significant switch from terrestrial to marine feeding sites both on a daily basis (related to tidal cycle) and over the whole breeding season. Most likely, the latter switch is the result of lower prey availability in the terrestrial habitats and an increasing quality (in terms of prey abundance and energy intake) of the marine area. While there was only moderate variability in habitat use among different years, we revealed significant differences in the diet of birds from different colonies. The high dietary plasticity and flexible feeding strategy, switching between terrestrial and marine prey is certainly of major importance for the success of an opportunistic avian top predator in a complex coastal zone. It is suggested that – compared to situations elsewhere – the number of breeding pairs of black-headed gulls in the German North Sea coast are still stable due to the switch of foraging habitats performed by individuals in this region.  相似文献   

16.
非肌肉运动蛋白近期已有综合报道,主要叙述了肌动蛋白和肌球蛋白在真核细胞存在的形式、结构和功能。如在海胆、海星的精、卵子方面的报道;另外亦有少量的文献报道了原肌球蛋白在非肌肉细胞中存在的位置、结构和功能。至于对结构和功能尚不很清楚的副肌  相似文献   

17.
The spread of human activities into the deep sea may pose a high risk to benthic communities and affect ecosystem integrity. The deep sea is characterized by physical and biological heterogeneity and different habitat types are likely to differ in their vulnerability to anthropogenic impacts. However, across‐habitat comparisons are rare, and no comprehensive ecological risk assessment has yet been developed. To address this gap in our knowledge, we compared macro‐infaunal community structure in four habitats (slope, canyons, seamounts and methane seeps) at depths between 700 and 1500 m in the Hikurangi Margin and Bay of Plenty regions off New Zealand. The most striking contrast in community structure was between the two study regions, due to an order of magnitude difference in macro‐infaunal abundance that we believe was caused by differences in surface productivity and food availability at the sea bed. We found differences in structural and functional attributes of macro‐infaunal communities among some habitats in the Hikurangi Margin (slope, canyon and seep), but not in the Bay of Plenty. We posit that differences between canyon and slope communities on the Hikurangi Margin are due to enhanced food availability inside canyons compared with adjacent slope habitats. Seep communities were characterized by elevated abundance of both symbiont‐bearing and heterotrophic taxa, and were the most distinct, and variable, among the habitats that we considered on the Hikurangi Margin. Communities of seamounts were not distinct from slope or canyon communities on the Hikurangi Margin, probably reflecting similar environmental conditions in these habitats. The communities of deep‐sea canyon and seep habitats on the Hikurangi Margin were sufficiently dissimilar from each other and from slope habitats to warrant separate management consideration. By contrast, the low dissimilarity between communities of canyon and slope habitats in the Bay of Plenty suggests that habitat‐based management is not required in this region, for macro‐infauna at least. Although the two study regions share similar species pools, populations of the Hikurangi Margin region may be less vulnerable than the sparser populations of the Bay of Plenty due to the higher availability of potential colonizers and faster population growth. Thus regions, and habitats in some regions, should be subject to separate ecological risk assessment to help identify the key risks and consequences of human activities, and to inform options for reducing or mitigating impacts.  相似文献   

18.
Catherine  Dance 《Marine Ecology》1987,8(2):131-142
Abstract. Tagged individuals of the sea urchin Paracentrotus lividus followed in Port Cros Island showed mostly nocturnal movements, with individual peaks of activity which were not coordinated for the population during the night period. The straight line distance travelled in 24 h has a mean value of 49 cm, with a range of 0 to 240 cm. Neither sea urchin size nor depth affect activity. The urchins living on rocky substrate moved significantly more than those on seagrass beds. From one day to another, the distance travelled by the population of urchins varies significantly; this is not related to season. The activity is negatively correlated with the mean wind speed; during a period of turbulence lasting several hours, movement was significantly oriented to the deep. Periods of inactivity of 1 or 2 days were observed; they are not coordinated for the individuals followed, and the relation between feeding and movement is not clear. Urchins seem to stay in a quite small area, at least for some months.  相似文献   

19.
Much of coral reef ecology has focused on how human impacts change coral reefs to macroalgal reefs. However, macroalgae may not always be a good indicator of reef decline, especially on reefs with significant sea urchin populations, as found in Kenya and Hawaii. This study tests the effects of trophic interactions (i.e. herbivory by fishes and sea urchins) and spatial competition (between algae and coral) on algal community structure of reefs surrounding two Hawaiian Islands that vary in their level of human impacts. Reef‐building organisms (corals and crustose coralline algae) were less abundant and turf algae were more abundant on Maui as compared to Lanai, where human impacts are lower. In contrast to previous studies, we found no evidence that macroalgae increased with human impacts. Instead, low turf and macroalgal abundance were best explained by the interactive effects of coral cover and sea urchin abundance. Fishing sea urchin predators appeared to have cascading effects on the benthic community. The absence of sea urchin predators and high sea urchin densities correspond to a disproportionately high abundance of turf and crustose coralline algae. We propose that high turf algal abundance is a better indicator of reef decline in Hawaii than high macroalgal abundance because turf abundance was highest on reefs with low coral cover and few fish. The results of this study emphasize that understanding changes in community composition are context‐dependent and that not all degraded reefs look the same.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号