首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Further observations of solar microbursts by the Clark Lake radioheliograph are reported. The microbursts have properties consistent with weak type III bursts, with the implication that type III's can have brightness temperatures as low as 106 K. We explore the importance of this result. A single model to explain the stronger type III bursts and the weaker microbursts is sought. We show that none of the models for stabilizing the strongest type III electron streams can explain the observed microbursts: these models have threshold levels of Langmuir waves which imply emission (due to spontaneous scattering off ions) with brightness temperatures in excess of those observed. It appears that either some vital physics is still missing from models for type III bursts, or that microbursts should have properties significantly different from those of type III bursts. In the latter case further observations should allow important tests of type III models.  相似文献   

2.
We report on a new investigation of microbursts at meter-decameter wavelengths observed using the Broad Band Array at Gauribidanur Radio Observatory. This is an independent set of observations of microbursts: previous observations had been obtained only by the Clark Lake multifrequency radioheliograph. We confirm several properties of microbursts reported earlier. In addition, we have studied some new properties of microbursts such as time profile characteristics, flux density and energy spectra for comparison with the corresponding properties of normal type III bursts. The present study supports the idea that the microbursts and the normal type III bursts are generated by electron beams of similar characteristics. We interpret the low brightness temperature of microbursts as follows: plasma waves generated by the electron beams through beam-plasma instability are quickly isotropized as they scatter on the density fluctuations in the corona. The resulting low levels of plasma waves are converted into transverse radiation of low brightness temperature. One important consequence of the isotropization is that the second harmonic plasma emission dominates the fundamental and hence the microbursts are expected to be predominantly a harmonic plasma emission.  相似文献   

3.
Ning  Zongjun  Fu  Qijun  Lu  Quankang 《Solar physics》2000,194(1):137-145
We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0–2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta 0.01 is much less than 1 and the beams have velocity of about 1.07×108 cm s–1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.  相似文献   

4.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

5.
Y. Ma  R. X. Xie  M. Wang 《Solar physics》2006,238(1):105-115
Detailed statistics and analysis of 264 type III bursts observed with the 625–1500 MHz spectrograph during the 23rd solar cycle (from July 2000 to April 2003) are carried out in the present article. The main statistical results are similar to those of microwave type III bursts presented in the literature cited, such as the correlation between type III bursts and flares, polarization, duration, frequency drift rate (normal and reverse slopes), distribution of type III bursts and frequency bandwidth. At the same time, the statistical results also point out that the average values of the frequency drift rates and degrees of polarization increase with the increase in frequency and the average value of duration decreases with the increase in frequency. Other statistical results show that the starting frequencies of the type III bursts are mainly within the range from 650 to 800 MHz, and most type III bursts have an average bandwidth of 289 MHz. The distributions imply that the electron acceleration and the place of energy release are within a limited decimetric range. The characteristics of the narrow bandwidth possibly involve the magnetic configuration at decimetric wavelengths, the location of electron acceleration in the magnetic field nearto the main flare, the relevant runaway or trapped electrons, or the coherent radio emission produced by some secondary shock waves. In addition, the number of type III bursts with positive frequency drift rates is almost equal to that with negative frequency drift rates. This is probably explained by the hypothesis that an equal number of electron beams are accelerated upwards and downwards within the range of 625 to 1500 MHz. The radiation mechanism of type III bursts at decimetric wavelengths probably includes these microwave and metric mechanisms and the most likely cause of the coherent plasma radiation are the emission processes of the electron cyclotron maser.  相似文献   

6.
Type III bursts often have brightness temperatures at the fundamental greater than 109K. If the fundamental emission is due to scattering of Langmuir waves into transverse waves by thermal ions, this implies that induced scattering dominates over spontaneous scattering, which in turn requires that the energy density in Langmuir waves be greater than some minimum value, e.g. W l > 3 × 10-10 erg cm-3 for bursts at f p = 100 MHz. Such Langmuir waves become isotropic on a time-scale shorter than the rise-time of type III bursts, e.g. < l s at f p = 100 MHz. Consequently, their coalescence, leading to emission at the second harmonic, proceeds. The above inequalities would imply a brightness temperature at the second harmonic in excess of 109K at f = 200 MHz.The predicted values of the brightness temperatures T1 t and T2 t (at the fundamental and second harmonic respectively) can be expressed in terms of an optical depth . After is eliminated a functional relation between T1 t , T2 t and the plasma frequency, f p , remains. The form of this relation is not dependent on a quantitative theory of how the Langmuir waves are generated by the stream of electrons. Consequently, comparison with observed quantities should provide further insight into the detailed properties of the emission processes.  相似文献   

7.
Willson  Robert F. 《Solar physics》2000,197(2):399-419
Very Large Array (VLA) observations of the Sun at 91 and 400 cm wavelength have been used to investigate the radio signatures of EUV heating events and coronal mass ejections (CMEs) detected by SOHO and TRACE. Our 91 cm observations show the onset of Type I noise storm emission about an hour after an EUV ejection event was detected by EIT and TRACE. The EUV event also coincided with the estimated start time of a CME detected by the LASCO C2 coronagraph, suggesting an association between the production of nonthermal particles and evolving plasma-magnetic field structures at different heights in the corona. On another day, our VLA 400 cm observations reveal weak, impulsive microbursts that occurred sporadically throughout the middle corona. These low-brightness-temperature (T b=0.7–22×106 K) events may be weak Type III bursts produced by beams of nonthermal electrons which excite plasma emission at a height where the local plasma frequency or its first harmonic equals the observing frequency of 74 MHz. For one microburst, the emission was contained in two sources separated by 0.7 R 0, indicating that the electron beams had access to widely-divergent magnetic field lines originating at a common site of particle acceleration. Another 400 cm microburst occurred in an arc-like source lying at the edge of EUV loops that appeared to open outward into the corona, possibly signaling the start of a CME. In most instances the 400 cm microbursts were not accompanied by detectable EUV activity, suggesting that particles that produce the microbursts were independently accelerated in the middle corona, perhaps as the result of some quasi-continuous, large-scale process of energy release.  相似文献   

8.
T. Takakura 《Solar physics》1979,62(2):383-391
Numerical simulation for the type III solar radio bursts in meter wavelengths was made with the electron beam of a high number density enough to emit fundamental radio waves comparable in intensity with the second harmonic.This requirement is fulfilled if the optical thickness 1 for the negative absorption (amplification) becomes -23 to -25. Since 1 is roughly proportional to the time-integral of the electron flux of the beam, the intensity of the fundamental waves depends strongly on the parameters which determine the electron flux. Therefore, it is most unlikely that the harmonic pairs of type III bursts of the first and the second harmonics occur frequently with comparable intensities in a wide frequency range, say 200 MHz to 20 MHz, if we take the working hypothesis that the fundamental waves are caused by the scattering of electron plasma waves by thermal ions and amplified during the propagation along the beam.However, we cannot rule out the possibility that single type III bursts with short durations or group of such bursts are the fundamental waves emitted by the above mechanism, but only if the observed large size of the radio source can be attributed to the radio scattering alone.  相似文献   

9.
Type III radio bursts observed at kilometric wavelengths ( 0.35 MHz) by the OGO-5 spacecraft are compared with > 45 keV solar electron events observed near 1 AU by the IMP-5 and Explorer 35 spacecraft for the period March 1968–November 1969.Fifty-six distinct type III bursts extending to 0.35 MHz ( 50 R equivalent height above the photosphere) were observed above the threshold of the OGO-5 detector; all but two were associated with solar flares. Twenty-six of the bursts were followed 40 min later by > 45 keV solar electron events observed at 1 AU. All of these 26 bursts were identified with flares located west of W 09 solar longitude. Of the bursts not associated with electron events only three were identified with flares west of W 09, 18 were located east of W 09 and 7 occurred during times when electron events would be obscured by high background particle fluxes.Thus almost all type III bursts from the western half of the solar disk observed by OGO-5 above a detection flux density threshold of the order of 10–13 Wm–2 Hz–1 at 0.35 MHz are followed by > 45 keV electrons at 1 AU with a maximum flux of 10 cm–2 s–1 ster–1. If particle propagation effects are taken into account it is possible to account for lack of electron events with the type III bursts from flares east of the central meridian. We conclude that streams of 10–100 keV electrons are the exciting agent for type III bursts and that these same electrons escape into the interplanetary medium where they are observed at 1 AU. The total number of > 45 keV electrons emitted in association with a strong kilometer wavelength type III burst is estimated to be 5 × 1032.  相似文献   

10.
T. Takakura 《Solar physics》1979,61(1):161-186
A simulation of normal type III radio bursts has been made in a whole frequency range of about 200 MHz to 30 kHz by the usage of the semi-analytical method as developed in previous papers for the plasma waves excited by a cloud of fast electrons. Three-dimensional plasma waves are computed, though the velocities of fast electrons are assumed to be one-dimensional. Many basic problems about type III radio bursts and associated solar electrons have been solved showing the following striking or unexpected results.Induced scattering of plasma waves, by thermal ions, into the plasma waves with opposite wave vectors is efficient even for a solar electron cloud of rather low number density. Therefore, the second harmonic radio emission as attributed to the coalescence of two plasma waves predominates in a whole range from meter waves to km waves. Fundamental radio emission as ascribed to the scattering of plasma waves by thermal ions is negligibly small almost in the whole range. On the other hand, third harmonic radio emission can be strong enough to be observed in a limited frequency range.If, however, the time integral of electron flux is, for example, 2 × 1013 cm–2 (>5 keV) or more at the height of 4.3 × 1010 cm ( p = 40 MHz) above the photosphere, the fundamental may be comparable with or greater than the second harmonic, but an effective area of cross-section of the electron beam is required to be very small, 1017 cm2 or less, and hence much larger sizes of the observed radio sources must be attributed to the scattering alone of radio waves.The radio flux density expected at the Earth for the second harmonic can increase with decreasing frequencies giving high flux densities at low frequencies as observed, if x-dependence of the cross-sectional area of the electron beam is x 1.5 or less instead of x 2, at least at x 2 × 1012 cm.The second harmonic radio waves are emitted predominantly into forward direction at first, but the direction of emission may reverse a few times in a course of a single burst showing a greater backward emission at the low frequencies.In a standard low frequency model, a total number of solar electrons above 18 keV arriving at the Earth orbit reduces to 12% of the initial value due mainly to the collisional decay of plasma waves before the waves are reabsorbed by the beam electrons arriving later. However, no deceleration of the apparent velocity of exciter appears. A change in the apparent velocity, if any, results from a change in growth rate of the plasma waves instead of the deceleration of individual electrons.Near the Earth, the peak of second harmonic radio flux as emitted from the local plasma appears well after the passage of a whole solar electron cloud through this layer. This is ascribed to the secondary and the third plasma waves as caused in non-resonant regions by the induced scattering of primary plasma waves in a resonant region.  相似文献   

11.
D. B. Melrose 《Solar physics》1989,120(2):369-381
There is a characteristic maximum brightness temperature T B 1015K for type III solar radio bursts in the solar wind. The suggestion is explored that the maximum observed values of T Bmay be attributed to saturation of the processes involved in the plasma emission. The processes leading to fundamental and second harmonic emission saturate when T Bis approximately equal to the effective temperature T Lof the Langmuir waves. The expected maximum value of T Bis estimated for this saturation model in two ways: from the growth rate for the beam instability, and from the maximum amplitude of the observed Langmuir turbulence. The agreement with the observed values is satisfactory in view of the uncertainties in the estimates (a) of the intrinsic brightness temperature from the observed brightness temperature, (b) of the actual growth rate of the beam instability, which must be driven by local, transient features (that are unobservable using available instruments) in the electron distribution, and (c) in the k-space volume filled by the Langmuir waves, and this is consistent with the observational data on two well-studied events at the orbit of the Earth and with statistical data for events over a range of radial distances from the Sun.  相似文献   

12.
G. S. Lakhina  B. Buti 《Solar physics》1985,99(1-2):277-284
A new coherent radiation mechanism, involving nonlinear interaction of whistler solitons with upperhybrid waves, excited by energetic electrons of energies of 10 keV–100 keV, is proposed for type IV solar bursts of both moving (type IV M) and stationary (type IV S) types. We show that the type IV M bursts occur when the interaction of whistler solitons and upperhybrid waves takes place in the coronal transients whereas the type IV S bursts originate provided this interaction takes place in stationary loops where density has been increased. The emitted radiation is right-hand circularly polarized with 100% polarization. Increase of brightness temperature, T b , at lower frequencies and also its decrease, at all frequencies, with the passage of time is predicted for type IV M bursts; this agrees fully with the observations. Furthermore, the decrease of T b , with time for stationary type IV component, is easily explained if the source which supplies energetic electron to the loop, becomes weaker with time.  相似文献   

13.
The Generating Region of Bidirectional Electron Beams in the Corona   总被引:1,自引:0,他引:1  
Xie  R.X.  Fu  Q.J.  Wang  M.  Liu  Y.Y. 《Solar physics》2000,197(2):375-385
Metric and decimetric type III bursts and microwave spike emissions with negative and positive frequency drift rates which were observed with radio spectrometers at Yunnan and Beijing Observatories are presented. The frequencies and heights at which the bidirectional electron beams originated are estimated. Three events reveal a separatrix frequency (at 250, 1300, and 2900 MHz) between normal- and reverse-drifting radio bursts, indicating a compact acceleration source where electron beams are injected in both upward and downward directions. These cases may indicate that the changeover frequencies of bidirectional electron beams are within a large band from 250 to 2900 MHz and the frequency bands of separatrices are in very small (4 to 100 MHz) and different bands. These type III bursts appear to be a plasma emission phenomenon from a beam of electrons which seem to have widely separated acceleration regions from the high to the low corona. These cases suggest that current sheets that separate open and closed magnetic fluxes in the low corona, and oppositely directed open field lines in the high corona are possible sites for bidirectional electron acceleration. The regions of magnetic topology from closed to open magnetic field structures should be very large (from about 20000 to 107000 km above the photosphere).  相似文献   

14.
G. Thejappa 《Solar physics》1991,132(1):173-193
A self-consistent theoretical model for storm continuum and bursts is presented. We propose that the Langmuir waves are emitted spontaneously by an anisotropic loss-cone distribution of electrons trapped in the magnetic field above active regions. These high-frequency electrostatic waves are assumed to coalesce with lower-hybrid waves excited either by the trapped protons or by weak shocks, making the observed brightness temperature equal to the effective temperature of the Langmuir waves.It is shown that whenever the collisional damping ( c ) is more than the negative damping (- A ) due to the anisotropic distribution, there is a steady emission of Langmuir waves responsible for the storm continuum. The type I bursts are generated randomly whenever the collisional damping ( c ) is balanced by the negative damping (- A ) at the threshold density of the trapped particles, since it causes the effective temperature of Langmuir waves to rise steeply. The number density of the particles responsible for the storm radiation is estimated. The randomness of type I bursts, brightness temperature, bandwidth and transition from type I to type III storm are self-consistently explained.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

15.
Mukul R. Kundu 《Solar physics》1982,113(1-2):87-94
In this article, we review some of the recent results obtained with imaging observations of the Sun at meter-decameter wavelengths, using the Clark Lake multifrequency radioheliograph. We briefly discuss the use of imaging observations to study the large scale structure of the upper corona. We discuss non-flare associated type II/type IV bursts associated with a coronal streamer disruption event associated with a slow (100 Km/s) CME. We discuss meter-decameter microbursts, which occur at coronal heights, often without any surface activity. Finally, we discuss a correlated type III burst whose emission originates almost simultaneously from two widely separated ( 105 Km) locations.  相似文献   

16.
An overview of particle beams in the solar atmosphere is separated into discussions of (i) current-carrying beams, (ii) current-neutralized electron beams, and (iii) ion beams. The Alfvén-Lawson limit on an electric current implies some severe limitations including the following: the current flowing into the corona cannot exceed about 1012 A; if the current density is near threshold for a current instability then the current must flow in thin layers; and, the primary electrons and ions cannot be accelerated simply by the particles falling down a parallel potential drop. Considerable progress has been made in understanding how electron beams in type III solar radio events propagate in a way that is consistent with the generation of Langmuir waves, but a completely consistent picture has not yet emerged. Such beams, and more importantly the electron beams that generate hard X-ray bursts require current neutralization; how the required return current is set up is still not entirely clear. There is direct evidence for ion beams with energies 10 MeV per nucleon from -ray line emission; there is no unambiguous evidence for ion beams of lower energy. A mechanism is suggested for bulk energization of electrons due to dissipation of a parallel current in solar flares. Some outstanding problems concerning particle beams are identified.  相似文献   

17.
统计分析了国家天文台2.6-3.8 GHz高时间分辨率射电动态频谱仪在23周峰年期间(1998.4—2003.1)观测到的266个III型爆发.对这些事件的频率漂移、持续时间、偏振、带宽、开始和结束频率做了详细分析.开始和结束频率的统计分析表明,开始频率在一个非常大的范围,从小于2.6 GHz到大于3.8 GHz,而结束频率的截止区相对集中,从2.82-3.76 G.Hz.这些现象说明,电子加速的高度相当分散,在观测频率范围内具有正、负漂移率的III型爆发数基本相等,这可能意味着被加速的向上和向下传播的电子束在2.6—3.8 GHz范围有相同的比例.统计结果表明,微波III型爆发的辐射机制主要是等离子体辐射和电子回旋脉泽辐射过程.  相似文献   

18.
We present observations of the solar flare on 1980 June 27, 16:14–16:33 UT, which was observed by a balloon-borne 300 cm2 phoswich hard X-ray detector and by the IKARUS radio spectrometer. This flare shows intense hard X-ray (HXR) emission and an extreme productivity of (at least 754) type III bursts at 200–400 MHz. A linear correlation was found between the type III burst rate and the HXR fluence, with a coefficient of 7.6 × 1027 photons keV–1 per type III burst at 20 keV. The occurrence of 10 type III bursts per second, and also the even higher rate of millisecond spikes, suggests a high degree of fragmentation in the acceleration region. This high quantization of injected beams, assuming the thick-target model, shows up in a linear relationship between hard X-ray fluence and the type III rate, but not as fine structures in the HXR time profile.The generation of a superhot isothermal HXR component in the decay phase of the flare coincides with the fade-out of type III production.Universities Space Research Associates.ST Systems Corporation.  相似文献   

19.
A theory for type I emission is developed based on fundamental plasma emission due to coalescence of Langmuir waves with low-frequency waves. The Langmuir waves are attributed to energetic electrons trapped in a magnetic loop over an active region. It is argued that the low-frequency waves should be generated in connection with the heating of the region. The continuum can be explained in terms of Langmuir waves generated by a gap distribution formed through collisional losses over a timescale of several tens of minutes. Bursts are attributed to local enhancements in the Langmuir turbulence associated with a loss-cone instability. No triggering mechanism for the bursts is identified. It is predicted that if the continuum is due to a large source then its brightness temperature should rise over several tens of minutes to a value which is roughly independent of frequency and of position across the source and which should not exceed 3 × 109 K. For bursts, it is predicted that a fainter second harmonic component should accompany bright bursts.  相似文献   

20.
We study the statistical relationship between type III radio bursts and optical flares, using the comprehensive flare data base at the NOAA National Geophysical Data Center (Boulder, Colorado), and the radio observations obtained with the ARTEMIS multichannel spectrograph in Nancay (France), operating at 500–100 MHz.At variance with previous results, we find that type III probability of occurrence depends only weakly upon the spatial extension of the flare observed in H, but strongly upon its brightness. We also confirm that type III probability increases with proximity to sunspots and with mass motions (surges and prominence activity); in addition, our statistical data are consistent with both relations holding at fixed flare brightness. Thus, some of the conditions favorable to type III occurrence are characteristic of compact flares, while others are characteristic of large and long-duration flares, which are often related to mass ejections. This apparent paradox suggests that particle acceleration and magnetic expansion are at work simultaneously in the ejection of electron streams out of flaring sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号