首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From 1955 to 1985 an intensive hydrogeological survey has been carried out in Slovakia, in order to ascertain the conditions of forming mineral and geothermal waters in various geological structures and to find new sources of the afore-mentioned waters. The survey helped to clarify the laws of their distribution and evaluate the quantitative and qualitative properties of water developing on the basis of geologic-tectonic conditions and physical-geographic terms of the given territory. The Slovakian territory belongs to the Carpathian geological system. Five separate geological units having a different hydrologic characteristic, quality and water yield of reserves and resources form this geological system. A great number of mineral and thermal springs in Slovakia displaying different quantities and quality, provide numerous possibilities of their practical utilization.  相似文献   

2.
The use of spring water as a drinking, therapeutic, and ornamental resource has historical origins that date back to the Romans. The most ancient regulations on mineral waters had been enacted in Italy long before the union (1870).  相似文献   

3.
The Rozvadov Pluton is a complex of mainly Variscan granitoid rocks situated near the Bohemian-Bavarian border between Bärnau, Tachov, Rozvadov and Waidhaus, 25 km ESE of the KTB site. Five mappable units can be distinguished, which intruded as folows: (1) slightly deformed leucocratic meta-aplite/metapegmatite dykes with garnet and tourmaline; (2) a complex of cordierite-bearing granitoids, which have been divided into three facies (a) biotite granite with cordierite (at the margin of the complex), (b) biotite-cordierite granite and (c) cordierite tonalite (in the centre of the complex; (3) fine-grained biotite granite of the Rozvadov type with associated pegmatite bodies; (4) two-mica Bärnau granite; and (5) geochemically specialized albite-zinnwaldite-topaz granite (Kríový kámen/Kreuzstein granite) with indications of Sn-Nb-Ta mineralization and associated phosphorus-rich pegmatite cupolas. Rare earth element data suggest that meta-aplite/pegmatite dykes are the result of a batch partial melting process, whereas the compositional variation of the other rock types was mainly controlled by fractional crystallization. The genesis of the cordierite granitoid suite is best explained in terms of a batch melting of metapelitic source followed by crystallization of a cordierite-rich cumulate and K-feldspar enriched melt. The leucocratic pluton constituents — the meta-aplites and the Bärnau and Kíový kámen granites are rich in phosphorus (0.5–0.8%). The main carriers of phosphorus are alkali feldspars, especially K-feldspar (up to 0.8% P2O5). The presence of P-rich leucocratic granites is one of the features distinguishing the Variscan granitoids within the Moldanubian zone from the nearly contemporaneous granitoids in the Saxothuringian zone.  相似文献   

4.
Thermal mineral waters and extractable geothermal energy are an important and still underestimated natural wealth of Bulgaria. Their diversity is due to the complex geological structure, intense neotectonic activity, and the resulting complex character of meteoric water circulation. Reproductive hydrogeothermal systems with low-mineralized thermal waters of meteoric origin and resrvoir temperatures ranging between 30 and 100 (maximum 120) °C occur in the southern and north-eastern part of the country. Their total reproductive potential is estimated at 14–15 m3s–1. In the northern part (Moesian platform), regional hydrogeothermal reservoir with connate (marine) and mixed (marine and meteoric) mineral waters and brines are identified, the temperatures varying from 40 to 140 (maximum 150) °C. Huge resources of geothermal energy with commercial importance are accumulated in them. The hydrogeothermal wealth of Bulgaria provides as important basis for the development of balneological and multi-seasonal tourism, bottling industries, geothermal heating of buildings and greenhouses, aquaculture and other related activities.  相似文献   

5.
Turkey lies on the Alpine-Himalayan belt which is one of the most important geothermal belts in the World. Therefore, there are numerous mineral waters in Anatolia where geological and tectonic activities are intense. Archeological studies conducted in Anatolia, which is the cradle of various civilizations, reveal the fact that mineral water has been used as a spa in many areas.The scope of this study is to evaluate mineral waters in Western Anatolia and their use in thermal resorts for balneological purposes. In this respect, 50 thermal waters used in spa centers were analyzed for various physical, chemical and bacteriological parameters.Among the 50 waters tested, 40 are thermomineral waters while 10 are acratothermal waters. Some of these waters have distinct chemical compositions. Their temperatures are between 21 and 90 °C. Various types of mineral water source occur within this region: 5 of these are sulfurous, 1 has carbon dioxide, 29 have fluorine, 1 has iodine and 3 are saliferous. The thermomineral sources with saline characteristics have balneotherapy potential for treating skin illnesses including psoriasis and rheumatological illnesses.Some waters with appreciable bicarbonate and sulfate concentrations can also be used for balneotherapy; for example for use as a cure for chronic inflammatory diseases of gastrointestinal and urinary systems. They could also be used as a cure for prophylactic and metaphylactic treatment of urolithiasis.However, among 38 sampling sites, 12 sites are bacteriologically contaminated. This indicates that regulations governing the protection of such zones are not properly enforced and that water sources within these regions are not sufficiently protected or inspected.  相似文献   

6.
Thermal waters of northern (18°–27°S) and southern (37°–45°S) Chile occur in two very different climatic, geologic and hydrologic environments: arid closed basins with abundant evaporites in the north; humid climate and well drained valleys in the south. The origin and behavior of the main components of the two groups of waters are examined and compared to each other. The modeling of the alteration of volcanic rocks leads to water compositions very different from those observed both in the north and south. In addition to hydrothermal alteration and deep emanations, the Cl/Br ratio reveals a major contribution of saline waters to the two groups: infiltrating brines from salt lakes in the north; seawater in the south.In the north, concentrations of Cl, Br, Na, K, Ca, SO4, Li, B, Si result from the mixing of alteration waters with recycled brines. Hydrothermal alteration is obscured by this massive saline input, except for Mg. δ34S values are consistent with an origin of sulfate from salar brines, which are themselves derived from deep Tertiary gypsum. In the south, two processes account for the composition of thermal waters: mixing of alteration waters with seawater and deep magmatic contribution. The mixing process controls the concentration of Cl, Br, Na, Alk, Si, K, Ca, Mg. Magmatic inputs are detectable for SO4, Li and B. δ34S suggests that sulfate stems from the mixing of alteration waters with either marine SO4 in coastal waters or with deep SO2 in inland waters. In both the north and south, the Mg concentration is drastically lowered (<1 μmol/L) by the probable formation of a chlorite-type mineral. In the south, very small amounts of seawater (<1% in volume) are sufficient to imprint a clear signature on thermal waters. Not only coastal springs are affected by seawater mixing, but also remote inland springs, as far as 150 km from the sea. Subduction of marine sediments in the accretive margin could be the source of the marine imprint in thermal waters of southern Chile. Seawater may be expelled from the subducted lithosphere and incorporated into the mantle source.  相似文献   

7.
Twenty three groups of thermomineral springs in eastern Chukotka with the discharge temperature of 2 to 97°C and mineralization of 1.47 to 37.14 g/l are studied and compared with surface freshwater from their localities. The δD and δ18O values in surface waters vary from ?121.4 to ?89.5‰ and from ?16.4 to ?11.1‰, respectively, while respective values in thermomineral waters range from ?134.2 to ?92.5‰ and from ?17.6 to ?10.5‰. The δD value in surface waters decreases from the east to west, i.e., toward interior areas of the peninsula. Hydrothermal springs most depleted in deuterium (δD < ?120‰) are localized in the geodynamically active Kolyuchinskaya-Mechigmen Depression. According to the proposed formation model of Chukotka thermomineral waters, their observed chemical and isotopic characteristics could result from the mixing (in different proportions) of surface waters with the deep-sourced isotopically light mineralized component (δD ≈ ?138‰, δ18O ≈ ?19‰, M = 9.5?14.7 g/l). The latter originates most likely from subpermafrost waters subjected to slight cryogenic metamorphism.  相似文献   

8.
The identification of the mineral species controlling the solubility of Al in acidic waters rich in sulfate has presented researchers with several challenges. One of the particular challenges is that the mineral species may be amorphous by X-ray diffraction. The difficulty in discerning between adsorbed or structural sulfate is a further complication. Numerous studies have employed theoretical calculations to determine the Al mineral species forming in acid sulfate soil environments. The vast majority of these studies indicate the formation of a mineral species matching the stoichiometry of jurbanite, Al(OH)SO4·5H2O. Much debate, however, exists as to the reality of jurbanite forming in natural environments, particularly in view of its apparent rare occurrence. In this work the use of Al, S and O K-edge XANES spectroscopy, in combination with elemental composition analyses of groundwater precipitates and a theoretical analysis of soluble Al concentrations ranging from pH 3.5 to 7, were employed to determine the mineral species controlling the solubility of Al draining from acid sulfate soils into Blacks Drain in north-eastern New South Wales, Australia. The results indicate that a mixture of amorphous Al hydroxide (Al(OH)3) and basaluminite (Al4(SO4)(OH)10·5H2O) was forming. The use of XANES spectroscopy is particularly useful as it provides insight into the nature of the bond between sulfate and Al, and confirms the presence of basaluminite. This counters the possibility that an Al hydroxide species, with appreciable amounts of adsorbed sulfate, is forming within these groundwaters.Below approximately pH 4.5, prior to precipitation of this amorphous Al(OH)3/basaluminite mixture, our studies indicate that the Al3+ activity of these acidic sulfate-rich waters is limited by the availability of dissolved Al from exchangeable and amorphous/poorly crystalline mineral species within adjacent soils. Further evidence suggests the Al3+ activity below pH 4.5 is then further controlled by dilution with either rainwater or pH 6-8 buffered estuarine water, and not a notional Al(OH)SO4 mineral species.  相似文献   

9.
Mineral and thermal waters are defined according to Polish geological and mining law. Their occurrence in particular hydrogeological provinces of the country is characterized. Besides their use in balneotherapeutics, their role as a heat carrier and source of chemical raw materials is stressed. Topics mentioned requiring further research are: the origin of saline formation waters and the origin of CO2 in carbonated waters.  相似文献   

10.
This paper reports new geochemical data on the low temperature nitric thermal waters of Sikhote Alin. The studied alkaline waters belong to the HCO3-Na type with significant trace element variations. The waters demonstrate an increase in temperature and TDS from the south northward of Sikhote Alin. The oxygen and hydrogen isotopic data suggest their infiltration origin. The chemical composition of these waters was formed by water-rock interaction.  相似文献   

11.
The composition of waters from 10 thermal springs located in western Virginia near the 38th parallel lineament have been analysed for major dissolved components and for Sr, Fe, Cu, Zn and Cd; from these analyses, free ion activities have been calculated. The temperatures of the springs range from 17° to 39°C, the heat apparently being derived simply from deep circulation along synclinal, Middle Ordovician limestones. More than 95 per cent of the dissolved solids consist of Ca2+, Mg2+ HCO3?, and SO42?. The concentrations of these components, as well as the spring temperatures, have not changed appreciably in 140 yr in some springs. The waters that have temperatures below 25° are all undersaturated with respect to calcite and dolomite, possibly because they have been contaminated by shallow ground waters. The waters with temperatures above 25° are in equilibrium with calcite and dolomite. Furthermore, in this latter group, the calcium-sulfate activity product and the sulfate-carbonate activity ratio are nearly constant, even though the waters are under saturated with respect to gypsum, anhydrite, celestite and strontianite. This can be explained if CaSO4 is coprecipitated in a mineral such as aragonite. The waters have absorbed some dissolved oxygen near the surface, but at depth they may be anoxic with Eh controlled by the oxidation of pyrite to goethite. The extremely low chloride concentrations of these waters clearly distinguish them from the brines which deposited Mississippi Valley and Appalachian type epithermal ore deposits.  相似文献   

12.
The Oylat spa is located 80 km southeast of Bursa and 30 km south of Ineg?l in the Marmara region. With temperature of 40°C and discharge of 45 l/s, the Oylat main spring is the most important hot water spring of the area. Southeast of the spa the Forest Management spring has a temperature of 39.4°C and discharge of 2 l/s. The G?z spring 2 km north of the spa, which is used for therapy of eye disease, and cold waters of the Saadet village springs with an acidic character are the further important water sources of the area. EC values of Main spring and Forest Management hot spring (750–780 μS/cm) are lower than those of Saadet and G?z spring waters (2,070–1,280 μS/cm) and ionic abundances are Ca > Na + K > Mg and SO4 > HCO3 > Cl. The Oylat and Sızı springs have low Na and K contents but high Ca and HCO3 concentrations. According to AIH classification, these are Ca–SO4–HCO3 waters. Based on the results of δ18O, 2H and 3H isotope analyses, the thermal waters have a meteoric origin. The meteoric water infiltrates along fractures and faults, gets heated, and then returns to surface through hydrothermal conduits. Oylat waters do not have high reservoir temperatures. They are deep, circulating recharge waters from higher enhanced elevations. δ13CDIC values of the Main spring and Forest Management hot spring are −6.31 and −4.45‰, respectively, indicating that δ13C is derived from dissolution of limestones. The neutral pH thermal waters are about +18.7‰ in δ34S while the sulfate in the cold waters is about +17‰ (practically identical to the value for the neutral pH thermal waters). However, the G?z and Saadet springs (acid sulfate waters) have much lower δ34S values (~+4‰).  相似文献   

13.
A large number of chemical analyses of Greek thermal waters were evaluated in order to investigate spring water origin, water–rock interaction mechanisms, and estimate the thermal potential of the geothermal areas. Four water types were distinguished from geochemical diagrams. The relatively fresher waters include samples of Ca–HCO3 and Mg–HCO3 type waters originating from the schistose Rhodope Massif and the Quaternary basin of Aridea, respectively. Samples of the Na–HCO3 water type are typical of springs located in the post-orogenic basins of northern Greece. These hot, deep-rising Na–HCO3 waters circulate in a CO2-rich environment that favours the solubility of alkaline ions such as Na from siliceous rocks. Most of the samples belong to the Na–Cl water type and originate from Greek islands and coastal springs. These are characterized by the mixing of deep thermal solutions with seawater and fresh water. The presence of CO2 in thermal and mineral springs is due to the metamorphism of buried marine carbonate horizons while H2S is due to both local pyrite oxidation and the reduction of sulphates. The use of geothermometers suggested that the investigated geothermal areas have low enthalpy fluids at depth, while higher temperatures are likely present in Milos, Lesvos, Nisyros islands and Xanthi Basin.
Resumen Se ha evaluado un gran número de análisis químicos de aguas termales griegas con objeto de investigar el origen del agua en los manantiales, los mecanismos de interacción agua-roca, y estimar el potencial termal de las áreas geotérmicas. Se distinguieron cuatro tipos de aguas a partir de diagramas geoquímicos. Las aguas relativamente frescas incluyen muestras de agua tipo Ca–HCO3 y Mg–HCO3 que se originan en los esquistos del Macizo Rhodope y la cuenca Cuaternaria de Aridea, respectivamente. Las muestras de agua tipo Na–HCO3 son típicas de manantiales localizados en las cuencas post-orogénicas del norte de Grecia. Estas aguas calientes y profundas, de tipo Na–HCO3, circulan en un ambiente rico en CO2 que favorece la solubilidad de iones alcalinos, tal como Na proveniente de rocas silícicas. La mayoría de las muestras pertenecen al tipo de agua Na–Cl y se originan en islas y manantiales costeros griegos. Estas aguas se caracterizan por la mezcla de soluciones termales profundas con agua de mar y agua dulce. La presencia de CO2 en manantiales termales y minerales se debe a el metamorfismo de horizontes carbonatados marinos enterrados mientras que el H2S se debe a oxidación local de pirita y reducción de sulfatos. El uso de geotermómetros sugiere que las áreas termales investigadas tienen fluidos de baja entalpía a profundidad, mientras que las temperaturas más elevadas es probable que se presenten en Milos, Lesvos, islas de Nisyros y la cuenca Xanthi.

Résumé Un grand nombre danalyses chimiques des eaux thermales grecques ont été menées de manière à investiguer lorigine des eaux des sources thermales, les mécanismes dinteraction avec les roches traversées, et destimer le potentiel des zones géothermiques. Quatre types deau ont été distinguées sur base des diagrammes géochimiques. Les eaux les plus fraîches correspondent respectivement aux échantillons des eaux calco et magnéso carbonatées du massif schisteux de Rhodope et du bassin quaternaire dAridea. Les échantillons deaux sodi carbonatées proviennent typiquement des sources localisées dans les bassins posts-orogéniques du Nord de la Grèce. Ces chaudes et très profondes eaux sodi carbonatées circulent dans des environnements riches en CO2 qui favorisent la solubilité des ions alcalins, tel que le sodium, des roches siliceuses. La plus part des échantillons ont un facies chloruré sodique et proviennent des îles grecques ou des environnement côtier. Ces eaux sont caractérisées par des mélanges entre eaux profondes avec des eaux de mer et des eaux de surface. La présence de CO2 dans les eaux de sources thermales et minérales est due au métamorphisme des horizons de calcaires marins et couverts, tandis que la présence de H2S est due à loxydation locale de la pyrite et à la réduction des sulfates. Lutilisation de géothermomètres suggère que les zones géothermiques étudiées contiennent des eaux à faible enthalpie en profondeur, bien que des températures assez élevées soient rencontrées à Milos, Lesvos, sur les îles Nisyros et dans le bassin de Xanthi.
  相似文献   

14.
Artesian basins contain the largest mineral water resources of the world. There are several types of mineral therapeutic water: sulfate, chloride, radon-rich, iron-rich waters, etc. Artesian basins occupy very large areas in Russia. However, genesis of water and brines is still not very clear. This is one of the most important hydrogeological problems that is being attempted to solve for many years. Most of the Russian hydrogeologists traditionally consider that these waters are of sedimentary origin. However, higher concentrations of bromine, iodine, iron, radon and other balneologically active components can be of different origin, for example, of infiltration or juvenile water. As an example, two areas will be considered – West-Siberian basin and East-European artesian area.West-Siberian artesian basin has very distinct latitudinal and vertical zonation. Latitudinal zonation is caused by climate changes from north to south. As for the vertical zonation, mineralization and chemical composition change in the vertical cross-section and from the periphery to the center within the same aquifer. The main mineral water resources of West-Siberian artesian basin are concentrated in Mesozoic rocks. Brackish waters and low-saturated brines without specific components are used for medical purposes. The most well-known spa is Karachi, which exploits chloride-hydrocarbonate brackish water. Sodium chloride bromine and iodine-bromine waters are used at other health resorts. It is possible to organize extraction of iodine from brines of Tcherkashinsko-Tobolskoe occurrence in Tumen region.East-European artesian area occupies most of the Russian Platform. The most widespread types of mineral water within the Russian Platform are sodium-chloride and magnesium-sulfate waters and brines. Such well-known spas, like Moscow mineral waters, Krainka, Staraya Russa and many others, belong to this type. Resources of these waters are definitely connected with sedimentogenic processes. The upper hydrodynamic zone contains iron-rich, hydrogen sulfide, and sometimes radon-rich water. Their formation is caused by the interaction between waters of infiltration and sedimentary genesis, or between infiltration waters and host rocks. One of the examples is Polustrovo iron-rich water. There are industrially valuable waters containing bromine and iodine.The resources of therapeutic water of sedimentary basins allow to increase balneological potential of spas in Russia.  相似文献   

15.
Reduced and intermediate S species (sulfide, thiosulfate, sulfite) were determined in 26 thermal water samples from the granitic massifs of south-west Bulgaria. Analysis of these S species was performed in the field, using a potentiometric-titration technique. Reduced and intermediate S species were found to enhance the solubility of Cu, Zn and Pb to an appreciable extent. According to thermodynamic equilibrium calculations, the prevailing complexes for sulfide-containing waters are CuS(HS), Zn(OH)(HS)0, ZnS(HS) and PbS(HS). For waters which do not contain sulfide S, Cu(S2O3), Cu(SO3), Zn(OH)+, Zn(OH)20, HZnO2, ZnCO30, ZnSO40, Zn2+ and PbCO30 are the important species. Whereas Cu and Pb are found to be controlled by their respective endmember sulfide phases, Zn appears to be controlled by formation of an FeZnS solid solution.  相似文献   

16.
A conceptual hydrogeological model of the Viterbo thermal area (central Italy) has been developed. Though numerous studies have been conducted on its geological, geochemical and geothermal features, there is no generalized picture defining the origin and yield of the hydrothermal system. These latter aspects have therefore become the objectives of this research, which is based on new hydrogeological and geochemical investigations. The geological setting results in the coexistence of overlapped interacting aquifers. The shallow volcanic aquifer, characterized by fresh waters, is fed from the area around the Cimini Mountains and is limited at its base by the semiconfining marly-calcareous-arenaceous complex and low-permeability clays. To the west of Viterbo, vertical upflows of thermal waters of the sulphate-chloride-alkaline-earth type with higher gas contents, are due to the locally uplifted carbonate reservoir, the reduced thickness of the semiconfining layer and the high local geothermal gradient. The hot waters (30–60°C) are the result of deep circulation within the carbonate rocks (0.5–1.8 km) and have the same recharge area as the volcanic aquifer. The upward flow in the Viterbo thermal area is at least 0.1 m3/s. This flow feeds springs and deep wells, also recharging the volcanic aquifer from below.  相似文献   

17.
西非矿产资源的地质背景及重要成矿分区   总被引:2,自引:0,他引:2  
西西非地区蕴藏着丰富的矿产资源,尤其以产出众多大型超大型的铝土矿、铁矿、金矿、金刚石矿等著称,在全球占有重要地位。矿床集中分布在三个构造域内,形成于不同的成矿期:(1)太古宙马恩(Man)地盾和雷圭巴特(Reguibat)地盾、古元古界莱奥(Leo)地盾及凯涅巴(Kéniéba)和卡伊(Kayes)构造窗,主要成矿事件包括在2.5-2.3Ga形成了多个巨型铁矿床;几乎所有金矿、斑岩型铜矿、铅锌矿和沉积型锰矿都形成于2.2-2.1Ga;原生金刚石矿床形成于两个时间段,分别是2.2-2.0Ga左右和中生代。(2)泛非期和海西期活动带成矿域,主要成矿事件包括前寒武纪2.1Ga左右以及680Ma左右发生的铁氧化物铜金矿床(IOCG)成矿事件,以及新元古代沉积型铁矿和磷矿。(3)克拉通内盆地和海岸盆地带,包括新生代在中生代辉绿岩之上发生的铝土矿化作用,新近纪/第四纪形成的砂矿床、鲕状铁矿床和沉积型磷矿。西非地区的矿产分布规律与成矿时代、赋矿岩石、区域构造密切相关,不同矿种区域集中分布特征明显。根据已发现的铁矿、铝土矿、金矿、金刚石矿等主要经济矿产的分布,结合区域地质背景等因素,在西非克拉通南部划分了3个重要成矿区:(1)马恩太古宙地盾铁、金刚石巨型成矿区;(2)莱奥古中元古界地盾(包括凯涅巴构造窗)金矿等巨型成矿区;(3)博韦(Bove)新元古-古生代盆地铝土矿巨型成矿区。这些巨型成矿区也是西非地区最重要的矿产地和成矿远景区。  相似文献   

18.
This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 6900 μg·l− 1 and from 2.6 to 3800 μg·l− 1 in the Phlegrean Fields and on Ischia, respectively. They increase with increasing water temperature and chlorine contents, and in the sequence bicarbonate groundwaters < steam-heated groundwaters < NaCl brines. According to thermochemical modeling, we propose that high As concentrations in NaCl brines form after prolonged water-rock interactions at reservoir T, fO2 and fH2S conditions, and under the buffering action of an arsenopyrite + pyrite + pyrrhotite rock assemblage. On their ascent toward the surface, NaCl brines become diluted by As-depleted meteoric-derived bicarbonate groundwaters, giving rise to hybrid water types with intermediate to low As contents. Steam-heated groundwaters give their intermediate to high As concentrations to extensive rock leaching promoted by interaction with As-bearing hydrothermal steam.  相似文献   

19.
Northeastern Morocco is characterised by a large number of surface geothermal manifestations. Thermal waters are hosted within sedimentary rocks, and in particular the Liassic dolomitic limestones act as a reservoir. The presence of geothermal waters is closely related to important fault systems. Meteoric water infiltrates along those fractures and faults, gets heated, and then returns to the surface through hydrothermal conduits. Most of the thermal waters are of Na–Cl and Ca–Mg–HCO3 types. In this paper different geochemical approaches were applied to infer the reservoir temperature. Na–K–Mg1/2 ternary diagram points to temperatures ranging from 100 to 180 °C. Cation geothermometers suggest an average reservoir temperature of about 100 °C. Mineral solution equilibria analysis yields temperatures ranging from 50 to 185 °C. The silica enthalpy mixture model gives an average value (about 110 °C) higher than that inferred from cation geothermometers.  相似文献   

20.
In this study, the physicochemical parameters (Conductivity, pH, Cl?, HCO 3 ? , PO 4 3? , SO 4 2? , NO 3 ? , NO 2 ? , F?, TH, Ca2+, K+, Mg2+, Na+, and DS) were determined for 41 samples collected from fourteen places in Algeria. The temperature of the thermal water samples at collection sites varied from 26°C to 86°C. pH values varied from 6.5 to 8.5 (i.e., from slightly acidic to moderately alkaline); 90.24% of the samples exhibited relatively high salinity (DS?=?550–5,500 mg L?1). Total hardness measurements indicated these waters to be moderately hard. Forty-six percent of the samples are Na–Cl in character. The ratios Na+/Ca2+, Na+/Mg2+, and (Na+ + K+)/(Ca2+ + Mg2+) were high in 90.24% of the samples. This indicates the ion exchange process is important, which indicates that most of the Algerian thermal waters had developed over a long period at a depth sufficient to react with the rock. Statistical analyses of the physicochemical data gave positive correlation values, thereby enabling good interpretation of the results and revealing the composition of ions present in the thermal waters, as well as some information about their origin. The therapeutic properties associated with thermal waters encourage people at spas to drink the water they bathe in. Therefore, we examined the drinkability of these thermal waters. World Health Organization (WHO 1993) standards were used to evaluate the thermal water quality for drinking. With respect to hardness, the samples were classified as moderately hard (58.54% of the samples), very hard (36.58% of the samples), and soft (4.88% of the samples). The drinkability study shows that only 16 samples of the investigated waters were drinkable and thus could be consumed without special precaution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号