首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fourteen stratiform, stratabound and vein-type sulphide occurrences in the Upper Allochthon of the Central–North Norwegian Caledonides have been studied for their sulphur, oxygen and hydrogen isotope composition. Depositional ages of host rocks to the stratabound and stratiform sulphide occurrences range from 590 to 640?Ma. The sulphides and their host rocks have been affected by polyphase deformation and metamorphism with a peak temperature of 650?°C dated to 432?Ma. A total of 104 sulphide and 2 barite samples were analysed for δ34S, 16 whole-rock and quartz samples for δ18O and 12 samples of muscovite for δD. The overall δ34S values range from ?14 to +31‰ with the majority of sampled sulphides lying within a range of +4 to +15‰. In most cases δ34S within each hand specimen behaves in accordance with the equilibrium fractionation sequence, δ34Sgn34Scp34Ssph34Spy. A systematic increase in δ34S from the vein sulphides (?8‰) through schist/amphibolite-hosted (+6‰) and schist-hosted (+7 to +12‰) to dolomite-hosted (+12 to +31‰) occurrences is documented. The δ34S averages of the stratiform schist-hosted sulphides are 17 to 22‰ lower than in the penecontemporaneous seawater sulphate. The Bjørkåsen (+4 to +6‰) occurrence is a volcanogenic massive sulphide (VMS) transitional to sedimentary massive sulphide (SMS), exhalative, massive, pyritic deposit of Cu–Zn–Pb sulphides formed by fluids which obtained H2S via high-temperature reduction of seawater sulphate by oxidation of Fe2+ during the convective circulation of seawater through underlying rock sequences. The Raudvatn, volcanic-hosted, disseminated Cu sulphides (+6 to +8‰) obtained sulphur via a similar process. The Balsnes, stratiform, ‘black schist’-hosted, pyrite–pyrrhotite occurrence (?6 to ?14‰) is represented by typical diagenetic sulphides precipitated via bacteriogenic reduction of coeval (ca. 600?Ma) seawater sulphate (+25 to +35‰) in a system open to sulphate supply. The δ34S values of the Djupvik–Skårnesdalen (+7 to +12‰), Hammerfjell (+5 to 11‰), Kaldådalen (+10 to +12‰) and Njallavarre (+7 to +8‰) stratiform, schist-hosted, massive and disseminated Zn–Pb (±Cu) sulphide occurrences, as well as the stratabound, quartzite-hosted, Au-bearing arsenopyrite occurrence at Langvatnet (+7 to +11‰), suggest that thermochemically reduced connate seawater sulphate was a principal sulphur source. The Sinklien and Tårstad, stratabound, dolomite- and dolomite collapse breccia-hosted, Zn (±Cu–Pb) sulphides are marked by the highest enrichment in 34S (+20 to +31‰). The occurrences ?are?assigned to the Mississippi-Valley-type deposits.?High δ34S values require reduction/replacement of contemporaneous (ca. 590?Ma) evaporitic sulphate (+23 to +34‰) with Corg-rich fluids in a closed system. The Melkedalen (+12 to +15‰), stratabound, fault-controlled, Cu–Zn sulphide deposit is hosted by the ca. 595?Ma dolomitised Melkedalen marble. The deposit is composed of several generations of ore minerals which formed by replacement of host dolomite. Polyphase hydrothermal fluids were introduced during several reactivation episodes of the fault zone. The positive δ34S values with a very limited fractionation (<3‰) are indicative of the sulphide-sulphur generated through abiological, thermochemical reduction of seawater sulphate by organic material. The vein-type Cu (±Au–W) occurrences at Baugefjell, Bugtedalen and Baugevatn (?8 to ?4‰) are of hydrothermal origin and obtained their sulphur from igneous sources with a possible incorporation of sedimentary/diagenetic sulphides. In a broad sense, all the stratiform/stratabound, sediment-hosted, sulphide occurrences studied formed by epigenetic fluids within two probable scenarios which may be applicable separately or interactively: (1) expulsion of hot metal-bearing connate waters from deeper parts of sedimentary basins prior to nappe translation (late diagenetic/catagenetic/epigenetic fluids) or (2) tectonically driven expulsion in the course of nappe translation (early metamorphic fluids). A combination of (1) and (2) is favoured for the stratabound, fault-controlled, Melkedalen and Langvatnet occurrences, whereas the rest are considered to have formed within option (1). The sulphides and their host rocks were transported from unknown distances and thrust on to the Fennoscandian Shield during the course of the Caledonian orogeny. The displaced/allochthonous nature of the Ofoten Cu–Pb–Zn ‘metallogenetic province’ would explain the enigmatically high concentration of small-scale Cu–Pb–Zn deposits that occur only in this particular area of the Norwegian Caledonides.  相似文献   

2.
《Sedimentary Geology》1999,123(3-4):255-273
This study investigates the sulphur source of gypsum sulphate and dissolved groundwater sulphate in the Central Namib Desert, home to one of Africa's most extensive gypsum (CaSO4·2H2O) accumulations. It investigates previously suggested sulphate precursors such as bedrock sulphides and decompositional marine biogenic H2S and studies the importance of other potential sources in order to determine the origin of gypsum and dissolved sulphate in the region. An attempt has been made to sample all possible sulphur sources, pathways and types of gypsum accumulations in the Central Namib Desert. We have subjected those samples to sulphur isotopic analyses and have compiled existing results. In addition, ionic ratios of Cl/SO4 are used to determine the presence of non-sea-salt (NSS) sulphur in groundwater and to investigate processes affecting groundwater sulphate. In contrast to previous work, this study proposes that the sulphur cycle, and the formation of gypsum, in the Namib Desert appears to be dominated by the deposition of atmospheric sulphates of phytoplanktonic origin, part of the primary marine production of the Benguela upwelling cells. The aerosol sulphates are subjected to terrestrial storage within the gypsum deposits on the hyper-arid gravel plain and are traceable in groundwater including coastal sabkhas. The hypothesis of decompositional marine biogenic H2S or bedrock sulphide sources, as considered previously for the Namib Desert, cannot account for the widespread accumulation of gypsum in the region. The study area in the Central Namib Desert, between the Kuiseb and Omaruru rivers, features extensive gypsum accumulations in a ca. 50–70 km wide band, parallel to the shore. They consist of surficial or shallow pedogenic gypsum crusts in the desert pavement, hydromorphic playa or sabkha gypsum, as thin isolated pockets on bedrock ridges and as discrete masses of gypsum selenite along some faults. The sulphur isotopic values (δ34S ‰CDT) of these occurrences are between δ34S +13.0 and +18.8‰, with lower values in proximity to sulphuric ore bodies (δ34S +3.1 and +3.4‰). Damaran bedrock sulphides have a wide range from δ34S −4.1 to +13.8‰ but seem to be significant sources on a local scale at the most. Dissolved sulphate at playas, sabkhas, springs, boreholes and ephemeral rivers have an overall range between δ34S +9.8 and +20.8‰. However, they do not show a systematic geographical trend. The Kalahari waters have lower values, between δ34S +5.9 and +12.3‰. Authigenic gypsum from submarine sediments in the upwelling zone of the Benguela Current between Oranjemund and Walvis Bay ranges between δ34S −34.6 to −4.6‰. A single dry atmospheric deposition sample produced a value of δ34S +15.9‰. These sulphur isotopic results, complemented by meteorological, hydrological and geological information, suggest that sulphate in the Namib Desert is mainly derived from NSS sulphur, in particular oxidation products of marine dimethyl sulphide CH3SCH3 (DMS). The hyper-arid conditions prevailing along the Namibian coast since Miocene times favour the overall preservation of the sulphate minerals. However, sporadic and relatively wetter periods have promoted gypsum formation: the segregation of sulphates from the more soluble halite, and the gradual seaward redistribution of sulphate. This study suggests that the extreme productivity of the Benguela Current contributes towards the sulphur budget in the adjacent Namib Desert.  相似文献   

3.
The Tyndrum Pb+Zn veins, hosted by late Proterozoic quartzites, were probably generated in the Tournaisian (360 Ma). By determination of sulphur isotopic ratios of vein minerals three aspects of the Tyndrum mineralization were addressed, (i) sulphate sulphur sources; (ii) reduced sulphur source; (iii) isotopic equilibrium in the vein system including geothermometry. Twelve galenas have δ34S values ranging from +3.55 ‰ to +6.38 ‰ (this excludes one value of +11.21 ‰ from a large but nearly barren quartz vein). Other sulphides are enriched or depleted in 34S in the sense expected for isotopic equilibrium although there is no evidence for isotopic equilibrium between the vein minerals. The sulphide sulphur source was probably in the Dalradian metasediments where disseminated pyrite averages +6 ‰. Baryte had δ34S values averaging 14 ‰ and was therefore not in isotopic equilibrium with sulphides: a continental groundwater source is most likely.  相似文献   

4.
Sulphur cycling in organic-rich marine sediments from a Scottish fjord   总被引:1,自引:0,他引:1  
In this study, the biogeochemical transformations of sulphur in organic‐rich marine sediments in a Scottish fjord are investigated by a combination of pore water and sediment geochemistry with sulphide diffusive gradient thin‐film probes and sulphate isotopic data (δ34S and δ18O). Particular attention is paid to sulphur cycling in the upper sediment profile where sulphate reduction occurs but free sulphide is below the detection limits of conventional pore water geochemical analysis but quantifiable by sulphide diffusive gradient thin film. In the uppermost part of the sediment core, δ18O sulphate decreased from near‐sea water values to +7‰, indicating that anoxic sulphide oxidation dominated during this interval. Sulphate δ34S remained unchanged as there was no net sulphate reduction (i.e. reduction was balanced by re‐oxidation). Below 4 cm depth, there was a slight increase in sulphate δ34S from 20‰ to 23‰ associated with minor accumulation of iron sulphide. The δ18O of the sulphate also increased, to around +10‰ at 10 cm depth, as a result of the isotopic exchange of sulphate–oxygen with pore water and/or sulphur disproportionation reactions mediated during sulphur cycling. These processes continued to increase the δ18O of the sulphate to 14‰ at 20 cm depth with no further change in the δ34S of the sulphate. Below 20 cm depth, free sulphide is detectable in pore waters and both the δ34S of the sulphate and sulphide increase with depth with an offset controlled by kinetic fractionation during bacterial sulphate reduction. The δ34S of the sedimentary organic fraction shifted towards lower, more bacteriogenic, values with depth in the profile, without any increase in the size of this sulphur pool. Thus, the organic sulphur fraction was open to interaction with bacteriogenic sulphide without the occurrence of net addition. Therefore, caution should be exercised when using sulphur isotopic compositions to infer simple net addition of bacteriogenic sulphide to the organic sulphur fraction.  相似文献   

5.
The Konkola deposit is a high grade stratiform Cu–Co ore deposit in the Central African Copperbelt in Zambia. Economic mineralisation is confined to the Ore Shale formation, part of the Neoproterozoic metasedimentary rocks of the Katanga Supergroup. Petrographic study reveals that the copper–cobalt ore minerals are disseminated within the host rock, sometimes concentrated along bedding planes, often associated with dolomitic bands or clustered in cemented lenses and in layer-parallel and irregular veins. The hypogene sulphide mineralogy consists predominantly of chalcopyrite, bornite and chalcocite. Based upon relationships with metamorphic biotite, vein sulphides and most of the sulphides in cemented lenses were precipitated during or after biotite zone greenschist facies metamorphism. New δ34S values of sulphides from the Konkola deposit are presented. The sulphur isotope values range from −8.7‰ to +1.4‰ V-CDT for chalcopyrite from all mineralising phases and from −4.4‰ to +2.0‰ V-CDT for secondary chalcocite. Similarities in δ34S for sulphides from different vein generations, earlier sulphides and secondary chalcocite can be explained by (re)mobilisation of S from earlier formed sulphide phases, an interpretation strongly supported by the petrographic evidence. Deep supergene enrichment and leaching occurs up to a km in depth, predominantly in the form of secondary chalcocite, goethite and malachite and is often associated with zones of high permeability. Detailed distribution maps of total copper and total cobalt contents of the Ore Shale formation show a close relationship between structural features and higher copper and lower cobalt contents, relative to other areas of the mine. Structural features include the Kirilabombwe anticline and fault zones along the axial plane and two fault zones in the southern limb of the anticline. Cobalt and copper behave differently in relation to these structural features. These structures are interpreted to have played a significant role in (re)mobilisation and concentration of the metals, in agreement with observations made elsewhere in the Zambian Copperbelt.  相似文献   

6.
Sulphur isotope data from coexisting sulphides and sulphates from the Taolin Pb-Zn ore deposit have been used to estimate the temperatures of sulphur mineral precipitation. The data indicate that sulphide was the dominant sulphur species in solution at high temperatures and that sulphate was dominant at low temperatures. Also the data show that the δ34S value of total sulphur in solution was close to zero at high temperatures (~325°C) but had high positive values (+15%.) at low temperatures (~250°C). We interpret this phenomenon in terms of the effects of mineral precipitation on the isotopic composition of the solution. The increase in the δ34S value of total sulphur with decreasing temperature was brought about by the removal from the system, by precipitation, of isotopically light sulphides.  相似文献   

7.
Pb–Zn deposits are widespread and common in various parts of the Taurus Belt. Most of the deposits are of pyrometasomatic and hydrothermal origin. The Keban Pb–Zn deposits are located along the intrusive contact between the Paleozoic – Lower Triassic Keban Metamorphic Formation and the syenite porphyry of the Upper Cretaceous Keban igneous rocks. Various studies have already been carried out; using fluid inclusion studies on fluorite, calcite and quartz on the pyrite–chalcopyrite bearing Keban ore deposits. This study focuses on the interpretation of stable isotope compositions in connexion with fluid inclusion data. Sulphur isotope values (δ34S) of pyrite are within the range of ?0.59 to +0.17‰V-CDT (n = 10). Thus, the source of sulphur is considered to be magmatic, as evidenced by associated igneous rocks and δ34S values around zero“0”. Oxygen isotope values δ18O of quartz vary between +10.5 and +19.9‰(SMOW). However, δ18O and δ13C values of calcite related to re-crystallized limestone (Keban Metamorphic Formation) reach up to +27.3‰(SMOW) and +1.6‰(PDB), respectively. The δ34S, δ13C and δ18O values demonstrate that skarn-type Pb–Zn deposits formed within syeno-monzonitic rocks and calc-schist contacts could have developed at low temperatures, by mixing metamorphic and meteoric waters in the final stages of magmatism.  相似文献   

8.
Measurements were made of sulphur and oxygen isotope ratios of sulphate in some Slovenian rivers, lakes and tap waters. δ34S ranged from −0.2 to + 13.3‰, δ18O ranged from +4.9 to + 13.6‰, and the sulphate content varied from 0.8 to 41.4 mg/L. Rivers flowing from the Julian Alps contain a very low amount of sulphate that is leached from a thin horizon of soil by rain. As confirmed by their low δ18O values, these sulphates do not enter the rivers directly in rain, but arise from biochemical cycling in the soil. The low δ34S of this sulphate indicates that it originates from the oxidation of sedimentary sulphides. The evolution of sulphates along the river course was investigated for the Sava and Ljubljanica rivers. The variations observed in sulphate from the waters studied result from variations in the contribution of sulphates of different origin. Downstream the Sava River sulphate is depleted in the heavy isotopes of both sulphur and oxygen, with δ-values gradually tending toward the δ-values of groundwater sulphates in the watershed. In contrast, the δ-values of sulphate in the Ljubljanica River are almost constant and similar to those of sulphate in local groundwater. Introduction of water from Italian and Slovenian mines was recorded in the Soča River, where the lowest δ34S value of sulphate sulphur (−0.2‰) was observed. In addition, the influence of sulphate from the oxidation of sedimentary sulphides was recorded in the Sotla River. No evidence was found for introduction of sulphate from factories.  相似文献   

9.
The Lumwana Cu (± Co ± U) deposits of NW Zambia are large, tabular, disseminated ore bodies, hosted within the Mwombezhi Dome of the Lufilian Arc. The host rocks to the Lumwana deposits are two mineralogically similar but texturally distinct gneisses, a granitic to pegmatitic gneiss and a banded to augen gneiss which both comprise quartz–feldspar ± biotite ± muscovite ± haematite ± amphibole and intervening quartz–feldspar ± biotite schist. The sulphide ore horizons are typically developed within a biotite–muscovite–quartz–kyanite schist, although mineralization locally occurs within internal gneiss units. Contacts between the ore and host rocks are transitional and characterized by a loss of feldspar. Kinematic indicators, such as S-C fabrics and pressure shadows on porphyroblasts, suggest a top to the north shear sense. The sulphides are deformed by a strong shear fabric, enclosed within kyanite or concentrated into low strain zones and pressure shadows around kyanite porphyroblasts. This suggests that the copper mineralization was introduced either syn- or pre-peak metamorphism. In addition to Cu and Co, the ores are also characterized by enrichments in U, V, Ni, Ba and S and small, discrete zones of uranium mineralization, occur adjacent to the hanging wall and footwall of the copper ore bodies or in the immediate footwall to the copper mineralization. Unlike typical Copperbelt mineralization, unmineralized units show very low background copper values. Whole rock geochemical analyses of the interlayered schist and ore schist, compared to the gneiss, show depletions in Ca, Na and Sr and enrichments in Mg and K, consistent with replacement of feldspar by biotite. The mineral chemistry of muscovite, biotite and chlorite reflect changes in the bulk rock chemistry and show consistent increases in X Mg as the schists develop. δ34S for copper sulphides range from +2.3?‰ to +18.5?‰, with pyrite typically restricted to values between +3.9?‰ and +6.2?‰. These values are atypical of sulphides precipitated by bacteriogenic sulphate reduction. δ34S data for Chimiwungo (Cu + Co) show a broader range and increased δ34S values compared to the Malundwe (Cu) mineralization. The Lumwana deposits show many characteristics which distinguish them from classical Copperbelt mineralization and which suggests that they are formed by metasomatic alteration, mineralization and shearing of pre-Katangan basement. Although this style of mineralization is reported elsewhere in the Copperbelt, sometimes associated with the more widely reported stratiform ores of the Lower Roan, none of the previously reported occurrences have so far developed the tonnages of ore reported at Lumwana.  相似文献   

10.
Abstract: Sulfur isotope data (δ34S) of sulfides of more than 6700 samples from 157 ore deposits associated with Early and Late Yanshanian granitic and volcanic activities in South China are reviewed and summarized. Averaged δ34S values of individual deposits vary from ‐9. 3 to +20. 6%, and show a normal distribution pattern with the average of +2%. About 88 % of the ore deposits have values within the range, ?2.5 ? +13.6‰, of associated Yanshanian granitoids. There is a temporal‐spatial variation of δ34S values of the ore deposits. However, no clear zonal distribution parallel to geotectonic NNE lineaments was observed. Spatial distribution of ore sulfide δ34S values in most of the NE part of the whole studied area coincides with that of Yanshanian granitoids and volcanic rocks. A downward tendency of the average values in time is: +3. 0% (n=7, J1) → +1. 6% (n=29, J2) → +1. 7% (n=68, J3) → +1. 8% (n=37, K1) → ?1. 5% (n=16, K2). There is an “island” of high and variable δ34S values (0? +16.5‰) occurring within a generally low trough zone (?8 ? 0%) of N‐S about 800 km and E‐W 100 to 300 km, bounded by 110°E ? 116°E longitudes and 22°N ? 31°N latitudes. The island occurs at the junction of three tectonic units and a NE‐trending crustal matching line implying a variety of magmatism occurred at the junction. The low trough zone coincides with a low ferric/ferrous ratio zone of Early Yanshanian granitoids, indicating their genetic relationship. Different genetic types of ore deposits show different histogram patterns suggesting different relationships to magmatic rocks and host strata. Granite/greisen/pegmatite type deposits are most closely associated with granitoids, with average ore sul‐fide δ34S values for individual ore deposits ranging between ‐2. 0 and +4. 1%, and an average of +0. 5% (n = 15) close to type meteoric value of 0%. Porphyry‐type deposits have also narrow range of ?2.2 ? + 4.9‰, with an average value of +1. 1% (n = 18). Skarn‐type dominated ore deposits have a nearly normal distribution pattern with an average of +1. 6% (n = 62), ranging from ‐5. 3 to +11. 5%. Volcano‐subvolcanic ore deposits range between ‐3. 1 and +5. 9% with an average of +2. 3% (n = 19). Other types of hydrothermal ore deposits have averaged δ34S values of individual ones from ‐9. 3 to +20. 6%, with average value of +1. 3% (n=43). Vertical and horizontal zonations of δ34S values of ore deposits around their associated granitoid plutons are observed in several localities. Such zonations may be caused by interaction between magma and/or magmatic fluids and host sedimentary rocks, as well as the evolution of physico‐chemical conditions of ore‐forming fluids. Spatial distribution of ore sulfur isotope compositions is also clearly controlled by tectonics and deep faults. Ore sulfur isotope composition is sometimes strongly affected by host sedimentary rocks, especially by evaporite sulfur with much higher δ34S value and partly by biogenic sulfur with low δ34S value. The δ34S values of Yanshanian granitoids are from ‐2. 5 to +13. 6% for both rock samples and pyrite/pyrrhotite separates from granitic rocks, with similar spatial distribution pattern to those of associated ore deposits. The ore deposits associated with ilmenite‐series granitoids have δ34S values ranging between ‐7. 5 and +10. 4% with an average of +1. 0%, while the ore deposits associated with magnetite‐series granitoids ranging between ?8.0 ? +11.5‰ with an average of +1. 1%. δ34S values of ore deposits tend to converge to +3% as the Fe2O3/FeO ratio of associated granitoids increases from 0. 45 to 8. 7.  相似文献   

11.
Bituminous mud shales of the Upper Permian Ravnefjeld Formation (Zechstein 1 equivalent) are mineralised with zinc, lead and copper within a ca. 50 km2 area on Wegener Halvø in central East Greenland. The occurrence of base-metal sulphides in shale nodules cemented prior to compaction indicates an early commencement of base-metal mineralisation. In other cases, post-compactional sulphide textures are observed. Homogeneous lead isotope signatures of galena and sphalerite from the shales (206Pb/204Pb: 18.440–18.466; 207Pb/204Pb: 16.554–16.586; 208Pb/204Pb: 38.240–38.326) suggest that all base metals were introduced during a single hydrothermal event. Therefore, post-compactional textures are believed to result from recrystallisation of early diagenetic sulphides during deep burial in the Upper Cretaceous to Tertiary. Lead isotope signatures of galena hosted in Upper Permian carbonate build-ups are relatively heterogeneous compared to those of the shale-hosted sulphides. The observed relations indicate a shared lead source for the two types of mineralisation, but different degrees of homogenisation during mineralisation. This suggests that lead was introduced to the carbonate rocks and black shales during two separate events. δ34S of base-metal sulphides in the Ravnefjeld Formation lie between –12 and –4‰, whereas synsedimentary and early diagenetic pyrite in unmineralised shales in general have δ34S between –47 and –16.5‰. Early diagenetic pyrite in the Wegener Halvø area in general has δ34S 15 to 20‰ higher than the same pyrite morphotype in Triaselv in the western part of the basin. This relatively high δ34S can be explained by extensive microbial sulphate reduction within persistent euxinic (super-anoxic) bottom waters under which supply of isotopically light seawater sulphate (and disproportionation of intermediate sulphur compounds) was restricted. The sulphur in the base-metal sulphides is believed to represent sulphide-dominated pore water, enriched in 34S due to preferential removal of 32S by sulphate-reducing bacteria and precipitation of diagenetic pyrite in the near-seafloor environment. We suggest that the sulphide-dominated pore water was trapped in the shale formation prior to introduction of base-metal-bearing fluids through fractures in the underlying carbonates, and that sulphide precipitation took place when the two fluids met. δ34S values of carbonate-hosted base-metal sulphides fall within the same range as the shale-hosted ones. The relationship between barite and sulphides and evidence for pre-mineralisation entrapment of liquid hydrocarbons in the carbonates suggest that the sulphide in this case is derived by in-situ thermochemical sulphate reduction (TSR). Measured fractionation between sulphide and sulphate ranges from 18.5 to 24.4‰, suggesting temperatures of TSR around 70 to 100 °C. Vitrinite reflectance measurements in mineralised shale samples are all between 1.7 and 2.0%, except for samples taken close to a Tertiary dyke giving ca. 3.0%. Vitrinite reflectance data are comparable to previously published data from unmineralised shale samples in the area and could not be proven to correlate with the degree of mineralisation. This indicates that any early hydrothermal effect has been overprinted later, probably during deep burial in the Late Cretaceous to Early Tertiary as previously proposed.  相似文献   

12.
The Ohori ore deposit is one of the Cu–Pb–Zn deposits in the Green Tuff region, NE Japan, and consists of skarn‐type (Kaninomata) and vein‐type (Nakanomata) orebodies. The former has a unique origin because its original calcareous rocks were made by hydrothermal precipitation during Miocene submarine volcanism. Carbon and oxygen isotope ratios of skarn calcite and sulfur isotope ratios of sulfides were measured in and around the deposit. Carbon and oxygen isotope ratios of the skarn calcite are δ13C = ?15.51 to ?5.1‰, δ18O = +3.6 to +22.5‰. δ13C values are slightly lower than those of the Cretaceous skarn deposits in Japan. These isotope ratios of the Kaninomata skarn show that the original calcareous rocks resemble the present submarine hydrothermal carbonates at the CLAM Site, Okinawa Trough, than Cenozoic limestones, even though some isotopic shifts had occurred during later skarnization. δ34S ratios of the sulfide minerals from the Kaninomata and Nakanomata orebodies are mostly in a narrow range of +4.0 to +7.0‰ and they resemble each other, suggesting the same sulfur origin for the both deposits. The magnetite‐series Tertiary Kaninomatasawa granite is distributed just beneath the skarn layer and has δ34S ratios of +7.5 to 8.1‰. The heavy sulfur isotope ratio of the skarn sulfides may have been affected by the Kaninomatasawa granite.  相似文献   

13.
城门山及武山铜矿床的硫同位素研究   总被引:1,自引:0,他引:1  
地质概况江西城门山矿床和武山矿床是长江中下游铁铜成矿带大冶-九江成矿亚带东南部位的两个与斑岩有成因关系的铜矿床。在地质构造上,前者处于九江-瑞昌东西向拗陷带中的长山-城门湖背斜倾伏端的北翼,后者处在横立山-黄桥向斜东端的北翼。两矿区的地层分布相似,主要是志留系至三叠系地层。其中,泥盆系上统五通组砂岩及石炭系中统黄龙组灰岩与矿床关系密切。  相似文献   

14.
青海虎头崖铜铅锌多金属矿床硫、铅同位素组成及成因意义   总被引:11,自引:0,他引:11  
马圣钞 《地质与勘探》2012,48(2):321-331
[摘 要] 青海虎头崖铜铅锌多金属矿是东昆仑祁漫塔格成矿带内多金属矿床的典型代表之一。本文对该矿床硫、铅同位素组成进行详细研究,探讨了成矿物质来源和矿床成因。结果表明,该矿床黄铜矿、方铅矿、闪锌矿、黄铁矿等硫化物的δ34S 值变化于+0.6‰~+8.3‰,平均+4.4‰,反映成矿流体中的硫为海水硫酸盐的地层硫和深源岩浆硫的混合硫,而不同矿带硫同位素均值的差别,可能与围岩地层硫的差异及参与程度有关。矿石矿物铅同位素组成总体变化较小(206Pb/204Pb、207Pb/204Pb 和208Pb/204Pb比值分别为18.476~18.688、15.560~15.688 和38.261~38.599),主要分布于造山带和上地壳铅演化线范围内,为岩浆作用导致的上地壳和地幔混合成因。由于赋矿层位及主控矿因素不同,各矿带的矿石铅同位素出现一定的差异。比如滩间山群内6号铜多金属矿点207Pb/204Pb 值和产于岩体与缔敖苏组接触带上的域矿带207Pb/204Pb 值相比,后者的上地壳铅参与程度较高,进一步证明壳幔混合作用对本矿区的影响。该矿床为与岩浆侵入活动密切相关的矽卡岩型铜铅锌多金属矿床。  相似文献   

15.
《Applied Geochemistry》1987,2(2):205-211
Carbon and sulphur isotope investigations of human urinary stones have been expanded to relate such data to various body components and to diet. Techniques include isotopic determinations for various body components, for example, hair and urine, as well as trace sulphate and sulphide in apatite-struvite stones.Hair from individuals in Calgary was found to be, on average, about 3‰ depleted in13C in comparison to samples from Hawaii. Uric acid stones from both locations were found to be 1 to 3‰ enriched in13C, compared to hair. Oxalate stones from Calgary had δ13C values very close to those of hair. In contrast, oxalate stones from 31 patients from Honolulu fit the regression lineδ13Coxalate= 0.8 δ13Chair− 4.4‰, with a correlation coefficient of 0.77. It remains debatable as to whether the isotopic differences between the stones and hair reflects preferential incorporation of dietary components or kinetic isotope effects during biochemical conversions. There was no evidence in the data from Honolulu that ethnic background significantly influenced the carbon isotope composition of hair or kidney stones. There was a suggestion that recent arrivals had hair and stones slightly depleted in13C as compared to longer residents.The δ34S values of cystine stones from Calgary were markedly consistent, near 0‰, and isotopic variations among different body components of individuals were of the order of 1‰.The trace sulphate content of a bladder stone from Papua New Guinea, was 300ppm S, whereas the sulphide content was negligible (determined by in vacuo Kiba extraction). The total S content of three samples from Calgary averaged 250 ppm, whereas 150 ppm was found for two stones each from Quito, Ecuador and Honolulu, Hawaii. For stones other than the speciment from Papua New Guinea, the sulphate-to-sulphide ratio varied from 1 to 4. The source of sulphide is uncertain but degradation of organic S could contribute to this fraction during Kiba extraction. The small range of δ34S values (+3.5 to +7.4‰) for trace total S in the phosphate-containing urinary stones is believed to reflect only a fraction of the global variation of these materials. Trace sulphate was variably enriched in34S (0 to 9‰) as compared to sulphide. Neither these enrichments, nor the sulphate-to-sulphide ratio, could be related to the struvite-to-apatite ratio.There were no significant differences in the carbon and sulphur isotope compositions of hair from patients and non-stone formers. Both the carbon and sulphur isotope variations can be attributed to the isotopic compositions of diets and the superposition of small kinetic isotope effects during biochemical conversions.  相似文献   

16.
《International Geology Review》2012,54(14):1635-1648
The Koushk zinc–lead deposit in the central part of the Zarigan–Chahmir basin, central Iran, is the largest of several sedimentary–exhalative (SEDEX) deposits in this basin, including the Chahmir, Zarigan, and Darreh-Dehu deposits. The host-rock sequence consists of carbonaceous, fine-grained black siltstone with interlayered rhyolitic tuffs. It corresponds to the upper part of the Lower Cambrian volcano-sedimentary sequence that was deposited on the Posht-e-Badam Block due to back-arc rifting of the continental margin of the Central Iranian Microcontinent. This block includes the late Neoproterozoic metamorphic basement of the Iran plate, overlain by rocks dating from the Early Cambrian to the Mesozoic. Based on ore body structure, mineralogy, and ore fabric, we recognize four different ore facies in the Koushk deposit: (1) a stockwork/feeder zone, consisting of a discordant mineralization of sulphides forming a stockwork of sulphide-bearing dolomite (quartz) veins cutting the footwall sedimentary rocks; (2) a massive ore/vent complex, consisting of massive replacement pyrite, galena, and sphalerite with minor arsenopyrite and chalcopyrite; (3) bedded ore, with laminated to disseminated pyrite, sphalerite, and galena; and (4) a distal facies, with minor disseminated and laminated pyrite, banded cherts, and disseminated barite. Carbonatization and sericitization are the main wall-rock alterations; alteration intensity increases towards the feeder zone. The δ34S composition of pyrite, sphalerite, and galena ranges from?+6.5 to?+36.7‰. The highest δ34S values correspond to bedded ore (+23.8 to?+36.7‰) and the lowest to massive ore (+6.5 to?+?17.8‰). The overall range of δ34S is remarkably higher than typical magmatic values, suggesting that sulphides formed from the reduction of seawater sulphate by bacteriogenic sulphate reduction in a closed or semi-closed system in the bedded ore, whereas thermochemical sulphate reduction likely played an important role in the feeder zone. Sulphur isotopes, along with sedimentological, textural, mineralogical, and geochemical evidences, suggest that this deposit should be classified as a vent-proximal SEDEX ore deposit.  相似文献   

17.
34S/32S ratios have been measured in a suite of samples from the stratabound, volcanogenic massive sulphide deposit at Woodlawn, N.S.W. 34S values for the sulphides vary as follows: in the ore horizon, pyrite +6.7 to +9.2%. (mean +8.1‰), sphalerite +5.2 to +8.6‰. (mean +6.9‰), chalcopyrite +6.4 to +7.0‰ (mean +6.7‰) and galena +2.8 to +5.5‰ (mean +4.4‰); in the vein mineralization, the host volcanics—pyrite +8.7 to +11.4%. (mean +9.8‰), sphalerite +7.8 to + 10.3‰ (mean +9.2‰), chalcopyrite; +8.8 to +10.1‰ (mean +9.2‰) and galena +6.9 to +7.2‰ (mean +7.1‰). Barite from the upper ore horizon levels has an isotopic composition of +30.0‰, consistent with its having originated from Silurian ocean sulphate. The general order of 34S enrichment in the sulphides is pyrite > chalcopyrite sphalerite > galena. Isotopic fractionations in the systems galena/sphalerite/pyrite and chalcopyrite/pyrite indicate an equilibration temperature of 275–300°C. This temperature is considered to represent that of sulphide deposition.  相似文献   

18.
Fluid inclusion studies in combination with hydrogen, oxygen and sulphur isotope data provide novel insights into the genesis of giant amethyst-bearing geodes in Early Cretaceous Paraná continental flood basalts at Amestita do Sul, Brazil. Monophase liquid inclusions in colourless quartz, amethyst, calcite, barite and gypsum were analysed by microthermometry after stimulating bubble nucleation using single femtosecond laser pulses. The salinity of the fluid inclusions was determined from ice-melting temperatures and a combination of prograde and retrograde homogenisation temperatures via the density maximum of the aqueous solutions. Four mineralisation stages are distinguished. In stage I, celadonite, chalcedony and pyrite formed under reducing conditions in a thermally stable environment. Low δ34SV-CDT values of pyrite (?25 to ?32?‰) suggest biogenic sulphate reduction by organotrophic bacteria. During the subsequent stages II (amethyst, goethite and anhydrite), III (early subhedral calcite) and IV (barite, late subhedral calcite and gypsum), the oxidation state of the fluid changed towards more oxidising conditions and microbial sulphate reduction ceased. Three distinct modes of fluid salinities around 5.3, 3.4 and 0.3 wt% NaCl-equivalent characterise the mineralisation stages II, III and IV, respectively. The salinity of the stage I fluid is unknown due to lack of fluid inclusions. Variation in homogenisation temperatures and in δ18O values of amethyst show evidence of repeated pulses of ascending hydrothermal fluids of up to 80–90 °C infiltrating a basaltic host rock of less than 45 °C. Colourless quartz and amethyst formed at temperatures between 40 and 80 °C, while the different calcite generations and late gypsum precipitated at temperatures below 45 °C. Calculated oxygen isotope composition of the amethyst-precipitating fluid in combination with δD values of amethyst-hosted fluid inclusions (?59 to ?51?‰) show a significant 18O-shift from the meteoric water line. This 18O-shift, high salinities of the fluid inclusions with chloride-sulphate composition, and high δ34S values of anhydrite and barite (7.5 to 9.9?‰) suggest that sedimentary brines from deeper parts of the Guaraní aquifer system must have been responsible for the amethyst mineralisation.  相似文献   

19.
Located in the western Yangtze Block, the Qingshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province, contains 0.3 million tonnes of 9.86 wt.% Pb and 22.27 wt.% Zn. Ore bodies are hosted in Carboniferous and Permian carbonate rocks, structurally controlled by the Weining–Shuicheng anticline and its intraformational faults. Ores composed of sphalerite, galena, pyrite, dolomite, and calcite occur as massive, brecciated, veinlets, and disseminations in dolomitic limestones.

The C–O isotope compositions of hydrothermal calcite and S–Pb–Sr isotope compositions of Qingshan sulphide minerals were analysed in order to trace the sources of reduced sulphur and metals for the Pb–Zn deposit. δ13CPDB and δ18OSMOW values of calcite range from –5.0‰ to –3.4‰ and +18.9‰ to +19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid had a mixed origin of mantle, marine carbonate rocks, and sedimentary organic matter. δ34S values of sulphide minerals range from +10.7‰ to +19.6‰, similar to Devonian-to-Permian seawater sulphate (+20‰ to +35‰) and evaporite rocks (+23‰ to +28‰) in Carboniferous-to-Permian strata, suggesting that the reduced sulphur in hydrothermal fluids was derived from host-strata evaporites. Ores and sulphide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.561 to 18.768, 207Pb/204Pb = 15.701 to 15.920, and 208Pb/204Pb = 38.831 to 39.641) that plot in the upper crust Pb evolution curve, and are similar to those of Devonian-to-Permian carbonate rocks. Pb isotope compositions suggest derivation of Pb metal from the host rocks. 87Sr/86Sr ratios of sphalerite range from 0.7107 to 0.7136 and (87Sr/86Sr)200Ma ratios range from 0.7099 to 0.7126, higher than Sinian-to-Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than Proterozoic basement rocks. This indicates that the ore strontium has a mixture source of the older basement rocks and the younger cover sequence. C–O–S–Pb–Sr isotope compositions of the Qingshan Pb–Zn deposit indicate a mixed origin of the ore-forming fluids and metals.  相似文献   

20.
An integrated mineralogical-geochemical and stable isotopic study of Pb-Zn deposits located at Kayar-Ghugra (Zn-Pb ± Ag), Rampura-Agucha (Zn-Pb, Ag), Dariba-Bethumni (Zn-Pb) and Zawar (Pb-Zn ± Cd, Ag) in Rajasthan is presented in this paper. The Kayar Zn-Pb deposit hosted by (i) phlogopite-tremolite bearing dolomitic carbonates and (ii) scapolite bearing calc-silicates, both belonging to Mesoproterozoic Delhi Supergroup exhibit distinctly different δ13C signatures being close to zero permil for the former reflecting deposition in pristine marine environment and much depleted isotopic values for the latter possibly related to post-depositional alterations. The Zn-Pb sulphides of Agucha, hosted in amphibolite facies to lower granulite facies metasedimentary units belonging to the Bhilwara Supergroup have δ34S values that indicate (i) H2S dominated regime characterized by low fO2, low pH, wherein the δ34S(fluid) responsible for mineralisation approximates the δ34S(sulphide); (ii) the role of seawater in the generation of Agucha ores; (iii) the process of a low temperature oxidation of sulphides in the hydrothermal fluids resulting in the formation of sulphate, by the interaction of ground water; (iv) isotopic disequilibrium in sulphatesulphide pairs that explain oxidation of H2S by acid groundwater (low pH) and deposition of sulphides at higher temperatures and (v) equilibrium isotopic fractionation of the coexisting sulphides reflecting in a higher concentration of H2S (>10?5m) in relation to the total metal content in the hydrothermal fluid $\left( {m_{H_2 S} \geqslant mS_{_{metals} } } \right)$ . Accordingly the concentration of sulphide-sulphate in the hydrothermal solution responsible for the mineralization in Agucha exceeds that of total metals. The sulphides of Bethumni-Rajpura-Dariba belt hosted in low to medium grade siliceous carbonates has a marginally positive (mean of +1.5‰) δ13C values. At Sindeswar, broad and widely scattered δ34S values indicate a polymodal sedimentary source of sulphur that recrystallised at rather low temperature of < 50°C possibly during the processes of low temperature bacterial reduction. The C and O-isotopic studies on mineralized and non-mineralized carbonates reveal (i) normal marine depositional signatures for non-mineralized carbonates with possible minor influence of biogenic carbon during deposition and (ii) ore zone carbonates exhibit depleted δ13C values presumably due either to the deeper mantle-like source of carbonates or due to post-depositional equilibration with isotopically light meteoric waters. In Zawar belt, sulphides hosted in dolomitic carbonate indicated (i) near identical δ34S values of disseminated galena and pyrite veinlets and depleted values of ?4.6 ‰ for late veins of massive galena of Zawar Mala (ii) pyritepyrrhotite veinlet having enhanced δ34S values when compared to the PbS-ZnS veinlet in Morchia-Magra, Balaria and Baroi mines. The carbon isotopic values for carbonates of Zawar Mala mine area are mostly depleted and those from Balaria and Baroi mines exhibit values of 13C close to zero. The generally depleted δ 18O clustering around ?15 ‰ tally well with the reported Paleoproterozoic carbonates and is attributed to the post-depositional equilibration reactions with isotopically light meteoric waters. It is summarized that the host carbonates for Zn-Pb deposits occurring in different tectono-stratigraphic units in Rajasthan have largely similar but bimodal distribution of δ 18O and δ13C isotopic ratios that suggest normal marine values and much depleted values. Whereas the former seems to be in general agreement with the nature of distribution in the Palaeoproterozoic carbonates the latter is attributed to (i) depositional conditions of the basins that includes absence or presence of biogenic activity (ii) isotopic re-equilibration under different metamorphic recrystallization events and/or (iii) interaction with isotopically lighter meteoric waters. In contrast to the uniformity in the C and O distribution pattern, the S-isotopic distribution in the deposits of Rampura-Agucha, Bethumni-Rajpura-Darbia and Zawar mine areas show marked variations reflecting complex deposit-specific ore-forming processes in the said deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号