首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
THE MESOZOIC QIANGTANG FORELAND BASIN IN QINGHAI—XIZANG PLATEAU,CHINANationalKeyFundamentalResearchProjects(973) (G1990 40 80 15 ) ;NSFCGeneralProjects(4980 2 0 13)  相似文献   

2.
宽台山-黑山断裂位于酒泉盆地的北侧,向西与阿尔金走滑断裂相交,其北部为花海-金塔盆地。对酒泉地区白垩纪沉积盆地的研究和对比发现,虽然当时盆地多为断陷盆地,均受东西向伸展构造控制,但宽台山-黑山断裂两侧的盆地具有不同的基底性质和沉积岩石学特征。酒泉盆地、昌马盆地和北祁连褶皱带内的白垩系具有相同的早古生代褶皱基底,并发育有热水喷流沉积和玄武岩夹层,北祁连北缘断裂在白垩纪时尚未开始活动;花海-金塔盆地为前长城系深变质基底,盆地内不发育热水喷流沉积。宽台山-黑山断裂是青藏高原东北缘重要的岩石圈剪切断裂,控制了其南北两侧白垩纪盆地的沉积-构造演化。  相似文献   

3.
系统地分析了鄂尔多斯盆地白垩系粘土矿物的特征及其沉积、成岩环境意义。研究结果表明:白垩系砂岩、泥质岩的粘土矿物组合以I+C+I/S型、I+C型为主,具有高伊利石含量,较高绿泥石、伊/蒙混层矿物含量的粘土矿物组成特点;其中泥质岩粘土矿物主要为陆源碎屑成因,次为沉积成岩过程中形成的自生粘土矿物,而砂岩粘土矿物兼有陆源碎屑成因和沉积成岩过程自生成因的特征;白垩系沉积时气候总体特征为干旱—半干旱,但局部时段发生干—湿气候波动而处于短暂的湿热气候环境;白垩系沉积物源富含长石等硅酸盐矿物,沉积物质主要自北、南、西向盆地内部搬运沉积;白垩系沉积和埋藏成岩过程中水介质整体上具有盐度较高,偏碱性,富K+、Fe2+、Mg2+的特点,且总体上盆地南部水介质中的这些指标都高于北部。  相似文献   

4.
http://www.sciencedirect.com/science/article/pii/S1674987111001095   总被引:11,自引:2,他引:9  
During the Late Mesozoic Middle Jurassic-Late Cretaceous,basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a r...  相似文献   

5.
西藏岗巴古新世地层及构造作用的影响   总被引:13,自引:1,他引:13       下载免费PDF全文
西藏岗巴地区出露有完整的晚白垩世至古近纪地层,地层中化石丰富,根据化石研究准确地进行了地层时代的划分,本文认为该区白垩系-古代系界线位于宗山组和基堵拉组之间,以底栖有大孔虫Orbitoides-Omphalocyclus动物群的消亡和Rotalia-Smoutina-Lockhartia动物群的始现为标志。界线上下岩层为假整合接触,期间有一短暂的暴露面。古新世的砂砾岩直接覆于晚白晋世的陆棚碳酸盐岩沉积之上,沉积的重大转变代表一次构造运动,印度大陆北缘与冈底斯南缘直至白垩纪末均具有明显的浅海生物地理分区现象,期间被深海盆地地所阻隔。古新世开始浅海相动物群在该地显示同一生物地理区系特征,说明两大陆间深水盆地的阻隔已消失,南北生物地理区同归于一残留海盆,沉积类型转变和地层古生物特征为印度-亚洲板块的起始碰撞时间研究提供了基础资料,据此推测大陆早期碰撞发生在白晋系-古近系的界线时期(约65Ma),古新世中一晚期碳酸盐台地遭受不断的挤压与变形,进一步说明大陆的碰撞在古新世之初就已发生。沉积地层的破碎变形和滑塌堆积是持续碰撞与挤压的结果。  相似文献   

6.
《International Geology Review》2012,54(13):1602-1629
Widespread Cretaceous volcanic basins are common in eastern South China and are crucial to understanding how the Circum-Pacific and Tethyan plate boundaries evolved and interacted with one another in controlling the tectonic evolution of South China. Lithostratigraphic units in these basins are grouped, in ascending order, into the Early Cretaceous volcanic suite (K1V), the Yongkang Group (K1-2), and the Jinqu Group (K2). SHRIMP U-Pb zircon geochronological results indicate that (1) the Early Cretaceous volcanic suite (K1V) erupted at 136–129 Ma, (2) the Yongkang Group (K1-2) was deposited from 129 Ma to 91 Ma, and (3) the deposition of the Jinqu Group (K2) post-dated 91 Ma. Structural analyses of fault-slip data from these rock units delineate a four-stage tectonic evolution of the basins during Cretaceous to Palaeogene time. The first stage (Early to middle Cretaceous time, 136–91 Ma) was dominated by NW–SE extension, as manifested by voluminous volcanism, initial opening of NE-trending basins, and deposition of the Yongkang Group. This extension was followed during Late Cretaceous time by NW–SE compression that inverted previous rift basins. During the third stage in Late Cretaceous time, possibly since 78.5 Ma, the tectonic stress changed to N–S extension, which led to basin opening and deposition of the Jinqu Group along E-trending faults. This extension probably lasted until early Palaeogene time and was terminated by the latest NE–SW compressional deformation that caused basin inversion again. Geodynamically, the NW–SE-oriented stress fields were associated with plate kinematics along the Circum-Pacific plate boundary, and the extension–compression alternation is interpreted as resulting from variations of the subducted slab dynamics. A drastic change in the tectonic stress field from NW–SE to N–S implies that the Pacific subduction-dominated back-arc extension and shortening were completed in the Late Cretaceous, and simultaneously, that Neo-Tethyan subduction became dominant and exerted a new force on South China. The ongoing Neo-Tethyan subduction might provide plausible geodynamic interpretations for the Late Cretaceous N–S extension-dominated basin rifting, and the subsequent Cenozoic India–Asia collision might explain the early Palaeogene NE–SW compression-dominated basin inversion.  相似文献   

7.
陆相断陷盆地的构造层序地层分析   总被引:10,自引:3,他引:7  
陆相盆地层序地层构型是构造运动、古气候、古湖平面变化与沉积物补给等动力学要素对沉积基准面控制的综合效应。其中,构造运动对盆地层序界面形成与层序内部充填起至关重要的作用。因此,陆相盆地层序地层研究须以构造层序地层为主线,即通过构造对层序形成与演化的控制分析解释层序地层构型,预测其内部充填特征。经研究,断陷盆地构造运动对层序地层的控制主要表现在:(1)断裂活动通过控制基底升降运动直接制约着盆地沉积物堆积的可容纳空间的变化及至层序地层构型;(2)构造转换带或调节带控制盆地主体物源补给方向和沉积体系分布;(3)断裂活动及其塑造的古地貌控制着沉积体系与砂体分布特征。  相似文献   

8.
王建华 《沉积学报》1990,8(2):87-96
本文根据岩相分布、化石组合、粒度、砂矿物、粘土矿物、指相元素以及岩石镜下特征等方面的分析,探讨了盆地布阶各相的沉积环境、物质来源等问题,确认它们为一套局限水体的三角洲-滨岸-滨外沉积,其陆源物质分别来自阿尔卑期变质岩系和区域内中生代沉积盖层;同时,恢复了盆地古地理概貌。  相似文献   

9.
In comparison to other regions round the North Atlantic, good exposures in the Moroccan coastal basins offer an excellent opportunity to study the Mesozoic development of a passive continental margin including the relationship between oceanic and coastal sediments and datum levels of the pelagic fossils. From south to north, the Cretaceous sediments of the coastal basins of Tarfaya, Agadir, Essaouira and at the margin of the Meseta are described and compared with each other regarding macro- and microfauna, sedimentology, and paleoenvironment. For the mainly marine 2500 m resp. 1700 thick Cretaceous sequences of Agadir and Essaouira, a correlation of ammonite and foraminiferal zones is proposed. Probably both sections were formed in one basin, but certain facies differences were caused by different water depths since Middle Cretaceous times. Most of the early Cretaceous sediments of the Tarfaya region in the south and of the Meseta in the north are of continental origin. Late Cretaecous sediments of these regions reveal, however, principal differences, especially in view of the macrofauna. On the Meseta, the macrofauna is typical of the Mediterranean faunal province, whereas the Tarfaya fauna is characterized by north-boreal elements. This is explained by the influence of upwelling in connection with the initiation of an oceanic deep-sea circulation, which also can be traced into the Agadir section. As a result, already during Turonian times, here bituminous marls with chert layers are deposited. These are missing farther to the north, but later nannomarls, chalk, chert layers and, in addition, locally phosphates are formed there, too. Generally, during the Cretaceous period, a tendency towards decreasing sedimentation rates and a relative increase of the percentage of pelagic components such as planktonic foraminifera in the local sediment can be observed, indicating a sharp decrease of the terrigeneous influx and a landward transgression of the oceanic water mass. If the global eustatic curve for the Cretaceous oceans is compared to the local bathymetric curves of the Moroccan coastal basins, one can distinguish between local phenomena and global events (Turonian and Campanian transgressions). In comparing the Cretaceous sections of DSDP sites 370 and 137 with the Agadir sequence on the continent, an attempt is made to reveal the development of the marginal North Atlantic, related to an increase of the paleodepth and the influence of the CCD. At Cape Bojador, in a transect across the continental margin from inland wells to the upper rise (DSDP site 397), the subsidence history of the uniformly subsiding ?marginal basin“ is derived. In the Jurassic, the rates of subsidence as well as those of sedimentation reach the order of magnitude of about 100 m/million years. The early Cretaceous subsidence increases up to 140 m/million years. As a result, sedimentation soon cannot keep pace, the water depth at the outer margin increases, and the shelf edge and continental slope are formed. In the last 100 million years, the subsidence decreases more or less exponentially. For the well subdivided Cretaceous sequences of the coastal basins described above, the interrelationship between subsidence, paleowaterdepth, and sedimentation rate has been worked out in more detail.  相似文献   

10.
Sequence developments in rift basins are considered to be influenced largely by tectonics and to a lesser extent by eustatic sea‐level and climate. Studies indicate that in passive margin basins, climate can mask the effects of tectonics and eustasy by modulating the sediment supply. It is, however, less understood how the sedimentary sequence in rift basins might respond to strong climatic fluctuations where tectonic pulses generate rapid accommodation space. Here a case study has been provided to assess the effect of climate vis à vis sea‐level and tectonics on sequence development in the Cambay rift basin, western India, during the Early Palaeogene (Late Palaeocene to Early Eocene) super greenhouse globe. Facies analysis of this shale–lignite sequence suggests deposition in a lagoon/bay, developed over the Deccan Trap basement. Detailed sequence stratigraphic analysis using basin‐wide representative composite sections, marker lignite seam, event bed and high‐resolution carbon isotope (δ13C) chemostratigraphy suggest an overall transgressive motif. Among the three prominent Early Eocene eustatic highstands, only the one at ca 53·7 Ma is expressed by the thickest coal accumulation throughout the basin. Expression of the other sequence stratigraphic surfaces is subdued and can be due to the overall finer grain size of the sediment or local variation in the subsidence rate at different fault‐controlled mini‐basins. Enigmatic presence of a maximum flooding surface coinciding with the 53·7 Ma climate event (Eocene Thermal Maximum 2), manifested by negative carbon isotope excursion, indicates possible influence of climate over and above tectonics in developing the rift sequence. Qualitative rainfall variation assessed using the magnitude of the carbon isotope excursion and pollen abundance show that a relatively dry/low precipitation climatic phase during the Eocene Thermal Maximum 2 hindered the siliclastic supply to the basin. Thus, it has been inferred that climate‐induced high siliciclastic supply possibly enhanced the autocyclic reorganization and hindered the development of the key sequence stratigraphic surfaces across the basin during climate extremes.  相似文献   

11.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   

12.
板块演化控制了盆地的形成与演化,盆地的性质和地质特征由其所处的板块构造单元决定.本文从大地构造背景角度出发,沿北纬60°±5°绘制了欧亚大陆东西向跨洲剖面,西起北海内伊湖—阿兰盆地,东至北鄂霍茨克盆地,全长为11000km.剖面将构造单元划分为不同级别(超大陆与构造域—板块与造山带—陆块与构造带—盆地与拱起),进而将构...  相似文献   

13.
四川盆地白垩系粘土矿物特征及古气候探讨   总被引:3,自引:0,他引:3  
曹珂  李祥辉  王成善 《地质学报》2008,82(1):115-123
四川盆地是中国白垩纪最具代表性的陆相沉积盆地之一,主要发育一套广布的红色碎屑岩沉积,且膏盐、沙漠相沉积发育。本文在前人地层古生物学研究的基础上,借助粘土矿物气候指标、结合沉积物碎屑成分,着重讨论了中侏罗世—古近纪早期四川盆地及周边地区的气候状况及演变过程。碎屑组份统计分析认为盆地北部边缘早白垩世早期构造因子起主导作用,而盆地南部白垩纪气候因子起主导作用,说明构造活动对沉积物影响不大。粘土矿物组份主要以蒙脱石和伊利石为主。多数样品蒙脱石和伊利石同时出现,指示沉积物源区为干冷与暖湿交替的气候环境;局部层段只有伊利石,指示干冷气候。同时,所有样品伊利石化学指数值均大于0.5,说明粘土矿物经历了强烈的化学风化作用,盆地内部为暖湿气候。  相似文献   

14.
Mesozoic-Cenozoic Basin Features and Evolution of Southeast China   总被引:1,自引:0,他引:1  
The Late Triassic to Paleogene(T_3-E) basin occupies an area of 143100 km~2,being the sixth area of the whole of SE China;the total area of synchronous granitoid is about 127300 km~2;it provides a key for understanding the tectonic evolution of South China.From a new 1:1500000 geological map of the Mesozoic-Cenozoic basins of SE China,combined with analysis of geometrical and petrological features,some new insights of basin tectonics are obtained.Advances include petrotectonic assemblages, basin classification of geodynamics,geometric features,relations of basin and range.According to basin-forming geodynamicai mechanisms,the Mesozoic-Cenozoic basin of SE China can be divided into three types,namely:1) para-foreland basin formed from Late Triassic to Early Jurassic(T_3-J_1) under compressional conditions;2) rift basins formed during the Middle Jurassic(J_2) under a strongly extensional setting;and 3) a faulted depression formed during Early Cretaceous to Paleogene (K_1-E) under back-arc extension action.From the rock assemblages of the basin,the faulted depression can be subdivided into a volcanic-sedimentary type formed mainly during the Early Cretaceous(K_1) and a red -bed type formed from Late Cretaceous to Paleogene(K_2-E).Statistical data suggest that the area of all para-foreland basins(T_3-J_1) is 15120 km~2,one of rift basins(J_2) occupies 4640 km~2,and all faulted depressions equal to 124330 km~2 including the K_2-E red-bed basins of 37850 km~2.The Early Mesozoic (T_3-J_1) basin and granite were mostly co-generated under a post-collision compression background, while the basins from Middle Jurassic to Paleogene(J_2-E) were mainly constrained by regional extensional tectonics.Three geological and geographical zones were surveyed,namely:1)the Wuyishan separating zone of paleogeography and climate from Middle Jurassic to Tertiary;2)the Middle Jurassic rift zone;and 3)the Ganjiang separating zone of Late Mesozoic volcanism.Three types of basin-granite relationships have been identified,including compressional(a few),strike-slip(a few), and extensional(common).A three-stage geodynamical evolution of the SE-China basin is mooted:an Early Mesozoic basin-granite framework;a transitional Middle Jurassic tectonic regime; intracontinental extension and red-bed faulted depressions since the Late Cretaceous.  相似文献   

15.
我国含油气盆地的类型、构造演化和油气分布   总被引:3,自引:0,他引:3  
本文以板块构造学说为基础详细讨论了我国主要含油气盆地的类型、构造演化、改造作用形成的构造和油气分布。论文指出我国含油气盆地多属板内断陷(或坳陷)叠合式盆地;油气分布主要受盆地类型、构造演化和改造作用形成的构造样式等多种因素的控制。  相似文献   

16.
沉积物的矿物和地球化学特征与盆地构造、古气候背景   总被引:7,自引:4,他引:3  
构造和气候的变化是盆地充填和演化的两个主要控制因素,对沉积物而言,其主要是对沉积物类型和分布的控制。从沉积物的矿物学和地球化学的角度,提取了与盆地构造和气候演变有关的主要参数,包括碳酸盐岩矿物中的δ13C、δ18O、石英/长石、高岭石/粘土、伊利石/粘土的比值,反演地质历史中盆地在构造和气候上的变化。对松辽盆地白垩系的研究表明,泉三段、泉四段中石英/长石低值代表了在盆地坳陷期存在着具有一定强度的构造运动。伊利石/粘土和高岭石/粘土的分析反映出松辽盆地白垩世的气候经历了由泉三段沉积期气候干旱到青山口组沉积期气候湿润、姚家组沉积期气候快速转向干旱、嫩一段沉积期湿润的气候和嫩三、四段沉积期湿热气候的演变。碳酸盐岩中碳、氧同位素分析显示松辽盆地在83.3 Ma左右发生了海侵事件,在82.8 Ma左右发生了海退事件。  相似文献   

17.
Interpretation of bulk‐sediment geochemistry is one of several approaches for determining sediment provenance. This study investigates the value added by bulk‐sediment geochemical analysis in interpreting provenance in a passive margin clastic basin, the Upper Jurassic–Lower Cretaceous deltaic sediments of the Scotian Basin. Provenance studies in this basin are challenging because source tectonic terranes are parallel to the basin margin and polycyclic sediment sources are abundant. More than 400 samples of mudstone and sandstone representing the geographical and stratigraphic range of interest were analysed for 57 elements. Diagenetic processes added calcium to many samples and removed potassium in rocks buried below 3 km, thus impacting principal component analysis and published weathering indices. However, multiple geochemical approaches to assessing the degree of weathering showed climatically controlled changes in weathering in the Tithonian and Barremian, and changes in supply from major tectonic events, such as the top‐Aptian uplift in the Labrador rift. Covariance of elements in heavy minerals demonstrates the varying magnitude of polycyclic supply and stratigraphic changes in sources. Geochemical analyses revealed a previously unsuspected Tithonian alkali volcanic sediment source, characterized by high niobium and tantalum. The lack of highly contrasting sources means that geochemistry alone is inadequate to determine sediment provenance. Published discrimination diagrams are of limited value. Statistical analysis of geochemical data is strongly influenced by diagenetic processes, episodic volcanic inputs and polycyclic concentration of resistant heavy minerals in sandstones. Single indicator elements for particular sources are generally lacking. Nevertheless, careful consideration of geochemical variability on a case by case basis, integrated with detrital mineral studies, provides new insights into palaeoclimate, sediment provenance and, hence, regional tectonics. Although there is no simple template for such analysis, this study demonstrates an approach that can be used for other basins.  相似文献   

18.
《Tectonophysics》1987,135(4):307-327
The Kutch-Saurashtra, Cambay and Narmada basins are pericontinental rift basins in the western margin of the Indian craton. These basins were formed by rifting along Precambrian tectonic trends. Interplay of three major Precambrian tectonic trends of western India, Dharwar (NNW-SSE), Aravalli-Delhi (NE-SW) and Satpura (ENE-WSW), controlled the tectonic style of the basins. The geological history of the basins indicates that these basins were formed by sequential reactivation of primordial faults. The Kutch basin opened up first in the Early Jurassic (rifting was initiated in Late Triassic) along the Delhi trend followed by the Cambay basin in the Early Cretaceous along the Dharwar trend and the Narmada basin in Late Cretaceous time along the Satpura trend. The evolution of the basins took place in four stages. These stages are synchronous with the important events in the evolution of the Indian sub-continent—its breakup from Gondwanaland in the Late Triassic-Early Jurassic, its northward drifting during the Jurassic-Cretaceous and collision with the Asian continent in the Early Tertiary. The most important tectonic events occurred in Late Cretaceous time. The present style of the continental margins of India evolved during Early Tertiary time.The Saurashtra arch, the extension of the Aravalli Range across the western continental shelf, subsided along the eastern margin fault of the Cambay basin during the Early Cretaceous. It formed an extensive depositional platform continuous with the Kutch shelf, for the accumulation of thick deltaic sediments. A part of the Saurashtra arch was uplifted as a horst during the main tectonic phase in the Late Cretaceous.The present high thermal regime of the Cambay-Bombay High region is suggestive of a renewed rifting phase.  相似文献   

19.
The Lower Cretaceous (Albian) upper Blairmore Group is part of a thick clastic wedge that formed adjacent to the rising Cordillera in south-western Alberta. Regional transgressive intervals are superimposed on the overall regressive succession. Alluvial conglomerates, sandstones and mudstones were deposited in east-north-eastward draining fluvial systems, orientated transverse to the basin axis. Five facies associations have been identified: igneous pebble conglomerate, thick sandstone, interbedded lenticular sandstone and mudstone, thick mudstone with thin sandstone interlayers, and fossiliferous sandstone and mudstone. The facies associations are interpreted as gravelly fluvial channels, sandy fluvial channels, sand-dominated floodplains, mud-dominated floodplains, and marine shoreline deposits, respectively. Five types of palaeosols are recognized in the upper Blairmore Group based on lithology, the presence of pedogenic features (clay coatings, root traces, ferruginous nodules, slickensides, carbonate nodules) and degree of horizonization. The regional distribution of the various types of palaeosols enables a refinement of the palaeoenvironmental reconstruction permitting an assessment of the controls on floodplain evolution. In source-proximal areas, palaeosol development was inhibited by high rates of sedimentation. In source-distal locations, poor drainage resulting from high watertables, low topography and lower rates of sedimentation also inhibited palaeosol development. The best-developed palaeosols (containing Bt horizons) occur in intermediate alluvial plain positions (tectonic hinge zone) where the floodplains were most stable due to a balance between sedimentation, erosion and subsidence rates. Extrapolating from the upper Blairmore Group suggests that the tectonic hinge zone of continental foreland basins can be established by palaeosol analysis. At the hinge zone, soil development is controlled primarily by climate and tectonics and their effect on sediment supply, whereas closer to the palaeoshoreline, relative sea level fluctuations, resulting in poor drainage, may have a more significant influence.  相似文献   

20.
中生代羌塘前陆盆地充填序列及演化过程   总被引:40,自引:1,他引:40  
李勇  王成善  伊海生 《地层学杂志》2002,26(1):62-67,79
中生代羌塘前陆盆地位于青藏高原巨型造山带内 ,夹于金沙江缝合带与班公湖—怒江缝合带之间 ,是一个与两侧缝合带逆冲作用相关的沉积盆地 ,由羌北盆地 (对应于金沙江缝合带 )、羌南盆地 (对应于班公湖—怒江缝合带 )和中央隆起带构成 ,其中中央隆起是北部前陆盆地和南部前陆盆地共有的前陆隆起 ,显示为对称型复合前陆盆地 ;该盆地形成于晚三叠世 ,并持续发育至早白垩世 ,盆地中充填了巨厚的同构造期的复理石和磨拉石 ,具有总体向上变粗变浅的充填序列 ,以不整合面可将其划分为 5个由顶底不整合面限制的构造层序 ,其中晚三叠世诺利期构造层序对应于金沙江缝合带主碰撞期 ,晚三叠世瑞替期构造层序对应于金沙江缝合带碰撞闭合后冲断抬升 ,早侏罗世构造层序对应于班公湖—怒江缝合带初始逆冲推覆 ,中侏罗世—早白垩世构造层序对应于班公湖—怒江缝合带主碰撞期 ,中白垩世构造层序为班公湖—怒江缝合带碰撞闭合后冲断抬升与金沙江缝合带冲断抬升的产物 ,为中生代羌塘盆地关闭后的磨拉石建造  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号