首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
The Archean tectonic realm of the North China Craton (NCC) is considered in recent models as a collage of several microblocks which were amalgamated along zones of ocean closure during late Neoarchean. Here we report the finding of a dismembered ophiolite suite from the southern margin of the Jiaoliao microblock in the interior of the unified Eastern Block of the NCC. The suite is composed of lherzolite, pyroxenite, noritic and hornblende gabbro, and hornblendite intruded by veins and sheets of leuco granite. Together with transposed layers and bands of metavolcanics and amphibolites, banded iron formation (BIF), and diabase dykes in the adjacent locations, the Yishui complex corresponds well with a dismembered suprasubduction zone ophiolite suite. Clinopyroxene in the pyroxenite and gabbroic rocks is Mg rich and range in composition from augite to diopside. Among orthopyroxenes, those in lherzolite show the highest XMg of 0.84–0.85. Plagioclase in hornblende gabbro shows high anorthite content (An50–64). Calcic amphiboles in the gabbroic rocks range in composition from ferropargasite to ferro-edenite, edenite and pargasite. Spinel inclusions in lherzolite are Cr-rich magnesiospinel. Geochemically, the mafic rocks from Yishui complex show subalkaline basaltic source, whereas the granitoids show volcanic arc affinity. The hornblende gabbro and gabbro, lherzolite and hornblendite show compositional similarity to E-MORB and N-MORB respectively. The lherzolite and hornblendite possess arc-related ultramafic cumulate nature, with overall features straddling the fields of IAT and IAT-MORB. The geochemical features are consistent with evolution in a suprasubduction regime with no significant crustal contamination. The majority of zircon grains in the Yishui suite exhibit magmatic texture and high Th/U ratios. Zircon grains from hornblendite define 207Pb/206Pb upper intercept age of 2538 ± 30 Ma. Zircons from the granite show ages of 2538 ± 16 Ma and 2503 ± 21 Ma, and those from the gabbros yield ages of 2503 ± 16 Ma and 2495 ± 10 Ma. The well defined major age peak at 2500 Ma is broadly coeval with Neoarchean ages reported from the microblocks in the North China Craton. The zircon Lu–Hf data from the Yishui suite display εHf(t) values between − 2.5 and 5.0, with corresponding model ages suggesting magma derivation from Neoarchean juvenile sources together with limited reworked Paleo-Mesoarchean crustal components.Our study is the first report of Neoarchean suprasubduction-type ophiolites from a locality far from the margins of the major crustal blocks and suture zones in the NCC and strengthens the concept that the craton is a mosaic of several microblocks with intervening oceans that closed along multiple subduction zones. We envisage that the amalgamation between the Xuhuai and the Jiaoliao microblocks resulted in the accretion of the Yishui suprasubduction zone ophiolitic assemblages onto the southern margin of the Jiaoliao microblock. The Neoarchean microblock amalgamation in the North China Craton provides new insights into continental growth in the early Earth and confirms that modern style plate tectonics might have been initiated early in the history of our planet.  相似文献   

2.
Continents on the early earth are considered to have been built through the accretion of microterranes, oceanic arcs and plateaus. The North China Craton (NCC), envisaged in recent models as a collage of several microblocks which were amalgamated along multiple zones of ocean closure during the late Neoarchean, provide a typical case to investigate the origin and amalgamation of microcontinents through convergent margin processes. Here we report a suite of magmatic rocks developed at the periphery of one of these microblocks, the Jiaoliao Block, that forms part of the composite Eastern Block of the NCC. We integrate our new data with those from various parts of this microblock to elucidate the mechanism of continent building in the Archean. We present petrological, geochemical and zircon U–Pb geochronological and Lu-Hf isotopic data from the magmatic suite that belongs to the Yishui Complex. Geochemically, the felsic units of the suite straddle from monzonite through granodiorite to granite with dominantly metaluminous affinity, magnesian composition and arc-related features. The metagranites, TTG gneisses and charnockites are characterized by negative Nb-Ta anomalies and positive K and Pb anomalies. The diorites and gabbros display negative anomalies of Th-U, Nb-Ta and Zr-Hf and positive anomalies at Ba, Pb and Sm with negative Eu anomalies and minor positive Ce anomalies, attesting to arc-related features. In the tectonic discrimination diagrams, the rocks plot in the volcanic arc field, indicating arc-related origin in subduction setting.Zircon grains from all the rocks display core–rim texture with the cores showing magmatic crystallization and the narrow structureless rims corresponding to metamorphic overgrowth. The magmatic zircons from the metagranites show upper intercept ages or 207Pb/206Pb weighted mean ages of 2505 ± 29 Ma and 2569 ± 20 Ma to 2513 ± 27 Ma, those from the TTG gneisses show 2535 ± 17 Ma to 2546 ± 39 Ma, from charnockites display 2543 ± 20 Ma–2555 ± 15 Ma, and diorite and gabbro show 2587 ± 15 Ma and 2516 ± 13 Ma respectively. The zircon rim ages of 2472 ± 23 Ma, 2457 ± 35 Ma, 2545 ± 30 Ma and 2511 ± 35 Ma suggest the timing of metamorphism (ca. 2.55–2.45 Ga). Magmatic zircons with slightly older ages of ca. 2.73 Ga, 2.64 Ga also occur suggesting multiple magmatic pulses. The Lu-Hf isotopic data show positive εHf(t) values ranging from 0.2 to 5.7 for metagranites, with Hf model ages of 2602–2815 Ma (TDM) and 2658–3002 Ma (TDMC), whereas for TTG gneisses, the positive εHf(t) values are up to 6.5 and display dominant Mesoarchean Hf model ages with limited early Neoarchean Hf model ages. Charnockite samples show positive εHf(t) values 2.3–5.7 and display the Hf model ages ranging from 2601 Ma to 2772 Ma (TDM) and 2658 Ma to 2904 Ma (TDMC). Diorite and gabbro also show positive εHf(t) (2.3–6.9) and yield Hf model ages of 2625–2788 Ma (TDM) and 2647 Ma to 2903 Ma (TDMC). The Hf isotopic data indicate that the magmas were derived from Neoarchean-Mesoarchean juvenile sources.Integrating our data with those from the entire Jiaoliao microblock reveals vestiges of Hadean crust involved in building the Eoarchean nucleus of this microblock. Vigorous convergent margin processes ranging from Mesoarchean to late Neoarchean with multiple pules of arc magmatism associated with subduction tectonics led to further growth of continental crust, culminating in paired high temperature and high pressure metamorphism during late Neoarchean – early Paleoproterozoic transition.  相似文献   

3.
The Archean lithospheric root of the North China Craton (NCC) has been considerably eroded and modified by Phanerozoic magmatic processes. Here we investigate the decratonization of the NCC through U–Pb and Hf isotopic analyses of zircons from Cenozoic basalts in the Liaodong Peninsula using ion-probe and MC-ICPMS techniques. The U–Pb zircon geochronology identifies three zircon populations: Precambrian, Paleozoic and Mesozoic. The Precambrian zircons yield 207Pb/206Pb ages of 2275–2567 Ma with a peak at around 2.5 Ga. They define a U–Pb discordia with upper intercept ages of 2447 ± 50 Ma to 2556 ± 50 Ma and a wide range of Hf TDM ages with a mode at 2.7–2.8 Ga. Our results clearly demonstrate the presence of an Archean lower crust in the Liaodong region. The Paleozoic zircons from the Liaodong region lack the clear internal zoning and are subhedral to rounded in shape, and yield a narrow 206Pb/238U concordant ages of 419–487 Ma with a weighted mean age of 462 ± 16 Ma. The Mesozoic zircons predominantly show crystallization in the early Cretaceous and yield a relatively large range in 206Pb/238U ages from 100 to 138 Ma (n = 53) with a peak around 120 Ma. Three samples give indistinguishable weighted mean 206Pb/238U ages of 120 ± 5 Ma, 120 ± 4 Ma and 121 ± 2 Ma. These early Cretaceous zircons have enriched Hf isotope compositions with εHf(t) values from ?26 to ?16. Our results provide important constraints on episodic magmatism during the Phanerozoic in the Liaodong region, which led to substantial reactivation of the Archean basement of the North China Craton.  相似文献   

4.
The Archaean Earth is considered to have been characterized by microcontinents that formed, dominantly, through the accretion of oceanic arcs and plateaus. The North China Craton (NCC) provides a typical case where at least seven ancient microcontinental nuclei with distinct lithological features and independent tectonic histories were amalgamated into the cratonic framework at the end of the Archaean. Here we investigate a suite of magmatic rocks developed at the periphery of one of these microblocks, the Jiaoliao Block that forms part of the composite Eastern Block of the NCC. We present petrological, geochemical and zircon U–Pb geochronological data from the Taipingzhai charnockite suite, and associated amphibolites, metagabbros and orthogneisses from the Qianxi Complex. Geochemically the rocks show a wide range of SiO2 (charnockite suite: 52.57–75.50 wt.%; metagabbro: 43.71 wt.%; amphibolite: 50.24 wt.%; garnet-bearing biotite: 63.73 wt.%), and MgO (charnockite suite: 0.89–5.01 wt.%; metagabbro: 3.99 wt.%; amphibolite: 6.23 wt.%; garnet-bearing biotite: 2.08 wt.%). The composition of the felsic units straddle from diorite through syeno-diorite to granite with both alkalic and subalkalic affinity, with dominantly magnesian composition and arc-related features. Their immobile trace element relationships suggest calc-alkaline affinity. They show positive Pb, Ba, La, Nd, and Gd and negative Nb, Ta, Sr, Th and Ti anomalies with slightly negative anomalies of Ce and Y, attesting to arc-related features. In tectonic classification diagrams, the rocks plot in the VAG + syn-COLG field or the VAG area suggesting subduction-related origin.The dominant population of zircons in all these rocks displays magmatic crystallization features including high Th/U values with core-rims textures indicating subsequent thermal events. The zircon U–Pb data yield upper intercept ages of 2587 ± 10 Ma to 2543 ± 17 Ma and 207Pb/206Pb mean ages of 2578 ± 7.3 Ma to 2536 ± 8 Ma for the charnockite suite, marking the timing of emplacement of the arc magmas. The overgrowth rims as well as discrete neoformed grains are interpreted as dating subsequent metamorphism and yield 207Pb/206Pb ages between 2533 Ma to 2490 Ma. Zircons in the metagabbro preserve upper intercept ages of 2556 ± 20 Ma representing the crystallization age of this rock. The younger ages of 2449 ± 58 Ma (upper intercept age) and 1845 ± 25 Ma (207Pb/206Pb spot age) are interpreted to represent subsequent multiple thermal events in this area. Zircons in the amphibolite preserve the 207Pb/206Pb mean age of 2539 ± 9 Ma, representing the crystallization age of this rock. The garnet-bearing biotite gneiss shows an upper intercept age of 2562 ± 10 Ma (MSWD = 0.66; N = 36) and the 207Pb/206Pb mean age of 2561 ± 9 Ma (MSWD = 0.63; N = 33) which is taken to represent the crystallization age of this rock. Some inherited zircons are also identified with 207Pb/206Pb ages of 2664 ± 26 Ma and 2628 ± 26 Ma. Zircon Lu–Hf data show dominantly positive εHf(t) values and combined with crustal residence ages, the results suggest Mesoarchean to Neoarchean juvenile crust formation in the NCC. We interpret the data presented here to represent a phase of major late Neoarchaean arc magmatism along the western margin of the Jiaoliao Block related to the birth of microcontinental nuclei within the NCC. Our data suggest that the Western and Eastern Blocks might not have existed as discrete crustal blocks, and that the construction of the NCC is a result of the assembly of several microblocks or terranes at the end of Archaean. Similar Archean cratonic nuclei in other regions of the world might have formed part of a primitive supercontinent in the early Earth.  相似文献   

5.
We synthesize more than 2600 Hf isotope data on the Archean-Paleoproterozoic zircons from the North China Craton (NCC). Recalculation of the data based on single stage and two-stage Hf model ages of the Eastern Block of the NCC shows peak ages of 3902 ± 13 Ma and 3978 ± 18 Ma, respectively, and also small peaks at 3.5–4.0 Ga. The majority of zircon εHf(t) values are positive, suggesting the possibility of the crust and the mantle differentiation at ca. 3.9–4.0 Ga in the Eastern Block of the NCC. Most magmatic zircons from the whole of NCC have their Hf model age range of 2.4–2.9 Ga, and the single stage model ages is cluster at 2698 ± 4 Ma, whereas the two-stage model ages concentrate at 2714 ± 5 Ma, implying that the protoliths were juvenile crustal rocks. The most prominent peak at 2.7 Ga indicates that this period marks the most important stage of the crust-mantle differentiation and crust formation of the NCC. The widespread 2.5 Ga rocks in the NCC and the absence of the 2.5 Ga peaks in Hf model ages are consistent with the partial melting and reworking of the juvenile rocks at 2.5 Ga. Furthermore, the 2.5–1.7 Ga zircon Hf isotope features are also related to the reworking of the crustal rocks. Our results from the integration of a large database suggest that the Eastern Block and the Trans-North China Orogen have undergone similar crust-mantle differentiation and magmatism, leading to the conclusion that the essential cratonization of the North China took place at the end of Neoarchean.  相似文献   

6.
We have identified late Early Cambrian metaigneous rocks very poorly exposed at the Estancia El Carancho, in central La Pampa province, Argentina. They comprise calc–alkaline metadiorite and metagranite, and tholeiitic metapyroxenite and metagabbro. They are jointly referred to as the El Carancho Igneous Complex, and regarded to pertain to the Pampean magmatic arc and backarc, respectively. Titanite U–Pb SHRIMP dating of the metapyroxenite yielded 528 ± 5 Ma, and zircon U–Pb SHRIMP dating of the metadiorite yielded 520 ± 1.4 Ma. Hafnium isotope determinations on the dated zircons show 176Hf/177Hf ratios corresponding to positive εHf values from + 7.18 to + 9.37; Hf model ages of the Cambrian zircons yielded 884 Ma. It is interpreted that the metadiorites of the Complex crystallized from an Early Neoproterozoic (Tonian) juvenile source. We argue that the inferred occurrence of juvenile Tonian magmatic rocks in the (otherwise, mostly Paleo-Mesoproterozoic) substratum of the southern Pampia terrane could indicate a zone of thinned basement possibly associated with the early stage of Rodinia's breakup. In addition, the studied segment of the Pampean magmatic arc is contaminated by also juvenile, Late Mesoproterozoic crust, as evidenced by the presence of xenocrystic cores of 1140–1194 Ma – TDM-Hf 1720 Ma and εHf values of + 3.24 to + 4.85 – in the Cambrian zircons, hence suggesting that the studied segment of the Pampean magmatic arc was intruded into juvenile Late Mesoproterozoic magmatic arc rocks. The El Carancho Igneous Complex would be located at the tectonic boundary between the Pampia terrane and the Río de la Plata craton. This boundary stands out in the aeromagnetic data as a change in the structural orientation about a roughly N-S line located approximately at 65° W and representing the suture zone between the Pampia terrane and the Río de la Plata craton. Our geotectonic model envisages westward dipping subduction of oceanic crust beneath the Pampia terrane; the El Carancho Igneous Complex would, therefore, have been originated on the Pampia side (upper plate) of the suture. Slivers of the arc- and backarc-type rocks would have been tectonically imbricated in the suture zone during the Pampean orogeny.  相似文献   

7.
The NW–SE trending Longshoushan is in the southwestern margin of the Alxa Block, which was traditionally considered the westernmost part of the North China Craton (NCC). Precambrian crystalline basement exposed in the Longshoushan area was termed the “Longshoushan Complex”. This complex's formation and metamorphism are significant to understand the geotectonics and early Precambrian crustal evolution of the western NCC. In this study, field geology, petrology, and zircon U–Pb and Lu–Hf isotopes of representative orthogneisses and paragneisses in the Longshoushan Complex were investigated. U–Pb datings reveal three Paleoproterozoic magmatic episodes (ca. 2.33, ca. 2.17 and ca. 2.04 Ga) and two subsequent regional metamorphic events (ca. 1.95–1.90 Ga and ca. 1.85 Ga) for metamorphic granitic rocks in the Longshoushan Complex. U–Pb dating of the detrital magmatic zircons from two paragneisses yields concordant 207Pb/206Pb ages between 2.2 Ga and 2.0 Ga, and a small number of metamorphic zircon rims provide a ca. 1.95 Ga metamorphic age, suggesting that the depositional time of the protolith was between 2.0 and 1.95 Ga and that the sedimentary detritus was most likely derived from the granitic rocks in the Longshoushan Complex itself. Zircon Lu–Hf isotopic analyses indicate that nearly all magmatic zircons from ca. 2.0 Ga to ca. 2.17 Ga orthogneisses have positive εHf(t) values with two-stage Hf model ages (TDMC) ranging from 2.45 to 2.65 Ga (peak at ca. 2.5 Ga), indicating that these Paleoproterozoic granitic rocks were derived from the reworking of the latest Neoarchean–early Paleoproterozoic juvenile crust. Detrital magmatic zircons from two paragneisses yield scattered 176Hf/177Hf ratios, εHf(t) and TDMC values, further indicating that the sedimentary detritus was not only derived from these plutonic rocks but also from other unreported or denuded Paleoproterozoic igneous rocks. The ca. 2.15 Ga detrital magmatic zircons from one paragneiss have negative εHf(t) values with TDMC ranging from 2.76 to 3.04 Ga, indicating another important crustal growth period in the Longshoushan region. These data indicate that the Longshoushan Complex experienced Neoarchean–Early Paleoproterozoic crustal growth, approximately ca. 2.3–2.0 Ga experienced multiphase magmatic events, and approximately ca. 1.95–1.90 Ga and ca. 1.85 Ga experienced high-grade metamorphic events. The sequence of tectonothermal events is notably similar to that of the main NCC. Together with the datasets from an adjacent area, we suggest that the western Alxa Block was most likely an integrated component of the NCC from the Neoarchean to the Paleoproterozoic.  相似文献   

8.
The North China Craton (NCC) represents one of only a few cratonic nuclei on the globe with a geological history extending back to the Eoarchean. However, extensive ca. 2.5 Ga crustal reworking has destroyed a considerable portion of the pre-existing crustal record, hindering the investigation of tectonothermal evolution prior to 2.5 Ga. The Huoqiu Complex (HQC), located at the southeastern margin of the NCC, preserves the vestiges of crustal components that survived the ca. 2.5 Ga tectonothermal events, which provide the opportunity to investigate the Meso- to Neoarchean episodic crustal evolution of the NCC. Here we present results from in-situ detrital zircon U–Pb dating and Hf isotope analyses on zircons from three paragneisses in three drill cores that cut through the basement of the HQC. In combination with published data, the concordant age spectra of the detrital zircons in the paragneisses yield 207Pb/206Pb ages of 2343–3997 Ma that cluster into two principal age populations with peaks at 3015 and 2755 Ma. One zircon grain dated at 3997 ± 8 Ma with 98% concordance provides new evidence for 4.0 Ga components in the NCC. The εHf(t) values of all zircons range from − 5.2 to + 6.5, with most of the spots (n = 31 of 47) showing positive values, indicating at least two episodes of juvenile continental crustal growth at 3.01 Ga and 2.75 Ga. The older episode is recorded only in few ancient cratons, suggesting limited crustal accretion occurred globally at a time of subdued mantle-derived magmatism. In contrast, the younger episode is coincident with a global rise in magmatic activity in the early Neoarchean. The geochemical and geochronological data suggest that the 3.01 Ga juvenile crust was likely generated in an island-arc subduction system, whereas the 2.75 Ga crustal rocks were probably formed during magmatic underplating and subsequent partial melting of lower crustal mafic rocks. Consequently, a tectonic transition is suggested from a compressive to an extensional setting along the southeastern margin of the NCC between 3.01 and 2.75 Ga. This sequence of events heralds a shift, from a mixture of net crustal growth and crustal reworking during multiple short-lived magmatic pulses, to fragmentation and dispersal of the early continental nucleus within 260 Ma.  相似文献   

9.
We report the petrological characteristics and preliminary zircon geochronology based on laser ablation ICP mass spectrometry of the various units in an accretionary belt within the Palghat-Cauvery Shear/Suture Zone in southern India, a trace of the Cambrian Gondwana suture. Zircons extracted from a plagiogranite in association with an ophiolite suite within this suture possess internal structure that suggests magmatic crystallization, and yield mid Neoproterozoic 206Pb/238U age of 817 ± 16 Ma (error: 1σ) constraining the approximate timing of birth of the Mozambique Ocean floor. Compiled age data on zircons separated from a quartzite and metamorphosed banded iron formation within the accretionary belt yields a younger intercept age of 759 ± 41 Ma (error: 1σ) which we relate to a mid Neoproteozoic magmatic arc. Detrital zircons extracted from the quartzite yield 207Pb/206Pb age peaks of about 1.9–2.6 Ga suggesting that they were sourced from multiple protolithis of Neoarchean and Paleoproterozoic. Metamorphic overgrowths on some zircon grains record ca. 500–550 Ma ages which are in good harmony with the known ages for the timing of high-grade metamorphism in this zone during the final stage of continent collision associated with the birth of the Gondwana supercontinent in the latest Neoproterozoic-Cambrian. The preliminary geochronological results documented in our study correlate with the subduction–accretion–collision history associated with the closure of the Mozambique Ocean and the final amalgamation of the Gondwana supercontinent.  相似文献   

10.
The Mercara Shear Zone is sandwiched between the Western Dharwar Craton and the Coorg Block in the Southern Granulite Terrain of India, and is marked by steep gravity gradients interpreted to suggest the presence of underplated high-density material in the lower crust. Here we present geological, petrological and geochemical data, together with zircon U–Pb ages and Lu–Hf isotopes from a suite of metaigneous (TTG-related gneisses, charnockite, metagabbro, mafic granulite) and metasedimentary (quartz mica schist, khondalite, garnet biotite gneiss, kyanite–sillimanite bearing metapelite) rocks from this zone. Geochemical data on the magmatic suite suggests formation through subduction-related arc magmatism, whereas the metasediments represent volcano-sedimentary trench sequences. Phase equilibrium modeling of mafic granulites from the Mercara Shear Zone suggests P–T range of 10–12 kbar at 700 °C to 900 °C. The zircon data yield weighted mean 207Pb/206Pb ages of 3229 ± 80 Ma for metagabbro, 3168 ± 25 Ma for the charnockite, and 3181 ± 20 Ma for the mafic granulite. Ages ranging from 3248 ± 28 Ma to 3506 ± 26 Ma were obtained from zircons in the kyanite/sillimanite bearing metapelite, 3335 ± 44 Ma from khondalite, 3135 ± 14 Ma from garnet biotite gneiss, 3145 ± 17 Ma to 3292 ± 57 Ma from quartz mica schist and 3153 ± 15 Ma to 3252 ± 36 from TTG gneiss. The tightly defined ages of 3.1 to 3.2 Ga from igneous zircons in the magmatic suite suggest prominent Mesoarchean convergent margin magmatism. The timing of high grade metamorphism as constrained from metamorphic overgrowths in zircons is ca. 3.0 Ga which might mark the collisional event between the Western Dharwar Craton and the Coorg Block. Hf isotope features suggest magma derivation mostly from juvenile sources and the Lu–Hf model ages indicate that the crust building might have also involved partial recycling of basement rocks as old as ca. 3.8 Ga. Our study defines the Mercara Shear Zone as a terrane boundary, and possible Mesoarchean suture along which the Coorg Block was accreted to the Western Dharwar Craton. The accretion of these continental fragments might have coincided with the birth of the oldest supercontinent “Ur”.  相似文献   

11.
The Eastern Qinling Orogen (EQO) is a major composite collisional zone located between the North China and the Yangtze cratons. This contribution combines geological and Hf–isotopic data from magmatic rocks associated with mineralization to gain insights into links between the crust architecture and metallogeny, and to focus exploration in the orogen.The new zircon U–Pb dates reported in this study are 434 ± 2 Ma for diorite, 433 ± 2 and 436 ± 2 Ma for monzogranite, and 454 ± 2 Ma for granodiorite in the Nanzhao area; 225 ± 2 Ma for syenite and 160 ± 1 Ma for monzogranite at Songxian; and 108 ± 1 and 102 ± 1 Ma for syenogranite in eastern Fangcheng. Combining our data with those from the entire EQO reveals seven major magmatic events since the Cambrian. These magmatic events took place during the Cambrian–Silurian associated with subduction, Early Devonian magmatism related to a collisional event, Early Permian to Late Triassic magmatism related to subduction, Late Triassic collisional magmatism, Late Triassic to Early Jurassic post–collision magmatism, and Jurassic–Cretaceous magmatism during intra–continental subduction.Lu-Hf isotopic data collected from granitic rocks for this study give εHf(t) values of: − 1.4 to 10.9 for diorite and monzogranite at Nanzhao; − 27.1 to − 15.6 for syenite and − 27.5 to − 25.1 for monzogranite at Songxian; and − 12.9 to − 3.4 for syenogranite in the eastern Fangcheng. Combining Hf isotopic data for the EQO from previous studies, we have evaluated the spatio–temporal distribution of Hf isotopic compositions. The resultant Hf isotopic maps highlight the location of the Kuanping Suture as an important tectonic boundary between the North China and the Yangtze cratons, which separates the EQO into a north part with an old and reworked lower crust and a southern part representing a juvenile lower crust.The Hf isotopic mapping of the EQO also provides information on the distribution of mineral deposits. Porphyry and porphyry–skarn Mo(–W) deposits are associated with magmatic rocks were emplaced in zones with low–εHf and high TDMc values representing old and reworked crustal components. In contrast, porphyry and porphyry–skarn Cu(–Mo) deposits are associated with magmatic rocks emplaced in domains with variable εHf and TDMc values characterized by dominantly reworked old crustal components with minor juvenile material. The magmatic source for the intrusions is characterized by low–εHf and high TDMc values, which are granite–related Mo or Pb–Zn–Ag mineralization.  相似文献   

12.
The Madurai Block in southern India is a composite collage of at least three sub-blocks, with Neoarchean–Paleoproterozoic segments in the north and central domains, and a Neoproterozoic segment in the south. Here we investigate a suite of rocks with magmatic protoliths that constitute the basement in the southern margin of the Madurai Block including alkali granites, charnockites, enderbites and gabbros. The alkali granites are dominantly composed of perthitic K-feldspar, minor plagioclase and quartz, with hornblende as the main mafic mineral suggesting a calc-alkaline nature. The enderbites and charnockites have a broadly similar mineralogical constitution except for the variation in the modal content of plagioclase, K-feldspar and quartz, as well as the additional presence of clinopyroxene in some of the enderbites. The high modal content of hornblende in the gabbros suggests crystallization from hydrous basaltic melts. The geochemical features of this suite are identical to those of arc magmatic rocks, with distinct Nb, Ta, and Ti depletion suggesting magmatism in a subduction-related environment. We envisage that the underplating of basaltic magmas within a convergent margin setting provided the heat input for lower crustal melting generating the charnockitic suite of rocks. The intrusion of the underplated mafic melts as gabbroic dykes and sills into the crystallizing felsic magmas resulted in magma mixing and mingling generating the widespread enclaves of gabbroic rocks. The alkali granites were derived from the differentiation of lower crustal melts. Zircon U–Pb data from the alkali granites yield weighted mean 206Pb/238U ages of 786 ± 10 to 772 ± 11 Ma for the oldest and the most dominant group of magmatic grains, with a 662 ± 20 Ma subordinate group. The oldest group of magmatic zircons in the charnockite samples shows ages of 938 ± 27 Ma, 896 ± 12 Ma, and 786 ± 9 Ma, suggesting multiple magmatic pulses during early and mid-Neoproterozoic. A subordinate population of magmatic zircons with ages of 661 ± 9 Ma and 632 ± 7 Ma is also present. In the enderbites, the magmatic zircon population yields weighted mean ages of 926 ± 22 Ma, 923 ± 36 Ma, 889 ± 13 Ma, 803 ± 10 Ma, 787 ± 23 Ma, 786 ± 10 Ma, 748 ± 27 Ma, 742 ± 11 Ma, 717 ± 8 Ma and 692 ± 10 Ma suggesting continuous and multiple pulses of magmas emplaced throughout early to mid-Neoproterozoic. Magmatic zircons from the gabbros show weighted mean 206Pb/238U ages of 903 ± 13 Ma, 777 ± 10 Ma, 729 ± 10 Ma and 639 ± 27 Ma. Metamorphic zircons from all the rock types show latest Neoproterozoic-Cambrian ages in the range of 567 ± 19 Ma to 510 ± 8 Ma suggesting prolonged heating. Zircon Lu–Hf data show that the alkali granite-charnockite-enderbite suite has depleted mantle ages (TDM) in the range of 1164–2172 Ma and crustal residence ages (TDMC) of 1227–3023 Ma. These spots show both negative εHf(t) and positive εHf(t) values (− 22.1 to 10.6), suggesting magma derivation from mixed juvenile mid- to late-Mesoproterozoic components and reworked Mesoarchean to mid-Mesoproterozoic components. Zircon grains from the gabbroic rocks show depleted mantle ages and (TDM) in the range of 1112–2046 Ma, crustal residence ages (TDMC) of 1306–2816 Ma, and both negative and positive εHf(t) values (− 17.8 to 7.9), suggesting that the magmas were dominantly derived from juvenile mid-Mesoproterozoic to Neoproterozoic components as well as reworked Mesoarchean to mid-Mesoproterozoic sources.Our data clearly reveal multiple arc magmatism along the southern Madurai Block during distinct pulses throughout early to late Neoproterozoic, suggesting an active convergent margin along this zone at this time. Crustal thickening occurred through relamination by mafic magmas associated with slab melting. Continental outbuilding and southward growth of the Madurai Block were associated with the lateral accretion of the vast sedimentary belt of Trivandrum Block, culminating in collisional metamorphism during latest Neoproterozoic–Cambrian associated with Gondwana assembly.  相似文献   

13.
The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U–Pb and Lu–Hf data on TTG (tonalite–trondhjemite–granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450–1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from −11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120–130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from −30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.  相似文献   

14.
We performed zircon U–Pb dating and analyses of major and trace elements, and Sr–Nd–Pb isotopes for granitoids in the Bengbu area, central China, with the aim of constraining the magma sources and tectonic evolution of the eastern North China Craton (NCC). The analyzed zircons show typical fine-scale oscillatory zoning, indicating a magmatic origin. Zircon U–Pb dating reveals granitoids of two ages: Late Jurassic and Early Cretaceous (206Pb/238U ages of 160 Ma and 130–110 Ma, respectively). The Late Jurassic rocks (Jingshan intrusion) consist of biotite-syenogranite, whereas the Early Cretaceous rocks (Huaiguang, Xilushan, Nushan, and Caoshan intrusions) are granodiorite, syenogranite, and monzogranite. The Late Jurassic biotite-syenogranites and Early Cretaceous granitoids have the following common geochemical characteristics: SiO2 = 70.35–74.56 wt.%, K2O/Na2O = 0.66–1.27 (mainly < 1.0), and A/CNK = 0.96–1.06, similar to I-type granite. The examined rocks are characterized by enrichment in light rare earth elements, large ion lithophile elements, and U; depletion in heavy rare earth elements, Nb, and Ta; and high initial 87Sr/86Sr ratios (0.7081–0.7110) and low εNd (t) values (? 14.40 to ? 22.77), indicating a crustal origin.The occurrence of Neoproterozoic magmatic zircons (850 Ma) and inherited early Mesozoic (208–228 Ma) metamorphic zircons within the Late Jurassic biotite-syenogranites, together with the occurrence of Neoproterozoic magmatic zircons (657 and 759 Ma) and inherited early Mesozoic (206–231 Ma) metamorphic zircons within the Early Cretaceous Nushan and Xilushan granitoids, suggests that the primary magmas were derived from partial melting of the Yangtze Craton (YC) basement. In contrast, the occurrence of Paleoproterozoic and Paleoarchean inherited zircons within the Huaiguang granitoids indicates that their primary magmas mainly originated from partial melting of the NCC basement. The occurrence of YC basement within the lower continental crust of the eastern NCC indicates that the YC was subducted to the northwest beneath the NCC, along the Tan-Lu fault zone, during the early Mesozoic.  相似文献   

15.
Compared to the extensively documented ultrahigh-pressure metamorphism at North Qaidam, the pre-metamorphic history for both continental crust and oceanic crust is poorly constrained. Trace element compositions, U–Pb ages, O and Lu–Hf isotopes obtained for distinct zircon domains from eclogites metamorphosed from both continental and oceanic mafic rocks are linked to unravel the origin and multi-stage magmatic/metamorphic evolution of eclogites from the North Qaidam ultrahigh-pressure metamorphic (UHPM) belt, northern Tibet.For continental crust-derived eclogite, magmatic zircon cores from two samples with U–Pb ages of 875–856 Ma have both very high δ18O (10.6 ± 0.5‰) and mantle-like δ18O (averaging at 5.2 ± 0.7‰), high Th/U and 176Lu/177Hf ratios, and steep MREE-HREE distribution patterns (chondrite-normalized) with negative Eu anomalies. Combined with positive εHf (t) of 3.9–14.3 and TDM (1.2–0.8 Ga and 1.3–1.0 Ga, respectively), they are interpreted as being crystallized from either subduction-related mantle wedge or recycled material in the mantle. While the metamorphic rims from the eclogites have U–Pb ages of 436–431 Ma, varying (inherited, lower, and elevated) oxygen isotopes compared with cores, low Th/U and 176Lu/177Hf ratios, and flat HREE distribution patterns with no Eu anomalies. These reflect both solid-state recrystallization from the inherited zircon and precipitation from external fluids at metamorphic temperatures of 595–622 °C (TTi-in-zircon).For oceanic crust-derived eclogite, the magmatic cores (510 ± 19 Ma) and metamorphic rims (442.0 ± 3.7 Ma) also show distinction for Th/U and 176Lu/177Hf ratios, and the REE patterns and Eu anomalies. Combined with the mantle-like δ18O signature of 5.1 ± 0.3 ‰ and two groups of model age (younger TDM close to the apparent ages and older > 700 Ma), two possible pools, juvenile and inherited, were involved in mixing of mantle-derived magma with crustal components. The relatively high δ18O of 6.6 ± 0.3‰ for metamorphic zircon rims suggests either the protolith underwent hydrothermal alteration prior to the ~ 440 Ma oceanic crust subduction, or external higher δ18O fluid activities during UHP metamorphism at ~ 440 Ma.Therefore, the North Qaidam UHPM belt witnesses multiple tectonic evolution from Late Mesoproterozoic–Neoproterozoic assembly/breakup of the Rodinia supercontinent with related magmatic emplacement, then Paleozoic oceanic subduction, and finally transition of continental subduction/collision related to UHP metamorphism.  相似文献   

16.
《Precambrian Research》2006,144(1-2):19-38
The magmatic and tectonic history of the Yangtze Block and its possible affinity with other Neoproterozoic arc terranes are important elements in the reconstruction of Neoproterozoic plate tectonics. The Yanbian Terrane in the western margin of the Yangtze Block is a typical arc assemblage composed of a flysch-type sedimentary sequence intruded by gabbroic and granodioritic plutons. The sedimentary sequence consists chiefly of tuffaceous material with interlayered chert, sandstone, and pillow basalts. Laser ablation ICP-MS U–Pb dating of detrital zircons from the sandstones yield ages as young as 840 Ma. The Gaojiacun and Lengshuiqing mafic intrusions are dated at 812 ± 3 Ma and 806 ± 4 Ma, respectively, using the SHRIMP zircon U–Pb technique. Geochemical data show that both the Gaojiacun and Lengshuiqing intrusions have arc signatures, with ɛNd(t) values of +1.5 to +6.0, initial 87Sr/86Sr ratios of 0.705–0.706 and pronounced negative Nb–Ta and Zr–Hf anomalies. Their geochemical variations are best explained by fractional crystallization without major crustal contamination. The Yanbian Terrane represents a typical arc assemblage formed on the western edge of the Yangtze Block during Neoproterozoic time. The sedimentary sequence was deposited in an oceanic setting, probably in a back arc basin environment. The depleted, subduction-modified lithospheric mantle wedge above the subduction zone was the source of melts from which the mafic plutons were crystallized. This scenario suggests subduction of oceanic lithosphere eastward (present-day orientation) underneath the Yangtze Block.  相似文献   

17.
《Precambrian Research》2006,144(3-4):199-212
LA-ICP-MS U–Pb zircon dating and cathodoluminescene (CL) image analysis were carried out to determine the protolith and metamorphic ages of high-grade Al-rich gneisses, named as “khondalites”, from the Jining Complex of the North China Craton (NCC). The analytical results of more than 200 detrital zircon grains from the khondalites show three main age populations: 2060 Ma, 1940 Ma and 1890 Ma. These data indicate that the provenance of the Jining khondalites is Paleoproterozoic in age, but not Archean as previously suggested, and the sediments were derived from a provenance different from the Eastern Block and the Yinshan Terrane of the NCC. The nearly concordant youngest age of 1842 ± 16 Ma (207Pb/206Pb age) for the detrital zircons is interpreted as the maximum depositional age of the khondalites. Overgrowth rims of detrital zircons yield an age of 1811 ± 23 Ma, which we interpret as the metamorphic age. The new age data are consistent with the recent three-fold tectonic subdivision of the NCC and support that the Eastern and Western Blocks collided at ∼1.8 Ga to form the coherent NCC.  相似文献   

18.
The Sittampundi Anorthosite Complex (SAC) in southern India is one of the well exposed Archean layered anorthosite-gabbro-ultramafic rock associations. Here we present high precision geochemical data for the various units of SAC, coupled with zircon U-Pb geochronology and Hf isotopic data for the anorthosite. The zircon ages define two populations, the older yield a concordia age of 2541 ± 13 Ma, which is interpreted as the best estimate of the magmatic crystallization age for the Sittampundi anorthosite. A high-grade metamorphic event at 2461 ± 15 Ma is suggested by the upper intercept age of the younger zircon population. A Neoproterozoic event at 715 ± 180 Ma resulted in Pb loss from some of the metamorphic zircons. The magmatic age of the anorthosite correlates well with the timing of crystallization of the arc-related ~ 2530 Ma magmatic charnockites in the adjacent Salem Block, while the metamorphic age is synchronous with the regional metamorphic event. The geochemical data suggest that the rocks were derived from a depleted mantle source. Sub-arc mantle metasomatism of slab derived fluids and subsequent partial melting produced hydrous, aluminous basalt magma. The magma fractionated at depth to produce a variety of high-alumina basalt compositions, from which the anorthositic complex with its chromite-rich and amphibole-rich layers formed as cumulates within the magma chamber of a supra-subduction zone arc. The coherent initial176Hf/177Hf ratios and positive εHf values (1.7 – 4.5) of the magmatic zircons in the anorthosite are consistent with derivation of a rather homogeneous juvenile parent magma from a depleted mantle source. Our study further confirms that the southern part of the Dharwar Craton was an active convergent margin during the Neoarchean with the generation and emplacement of suprasubduction zone arc magmas which played a significant role in continental growth.  相似文献   

19.
The Bastar Craton of Central India has a thick sequence of volcano–sedimentary rocks preserved in Kotri–Dongargarh belt that developed on a tonalite-trondhjemite-granodiorite (TTG) basement followed upwards by the Amgaon, Bengpal, Bailadila, and Nandgaon Groups of rocks. Here, we report the U-Pb geochronology and Lu-Hf isotope systematics and whole rock geochemistry of volcanic rocks and associated granitoids belonging to the Pitepani basalts, Bijli rhyolites, and Dongargarh granite in the Nandgaon Group of the Kotri belt. The volcanic rocks of the Nandgaon Group are bimodal in nature in which the basalts exhibit intergranular, porphyritic to spherulitic texture composed of pyroxenes, plagioclase, tremolite, actinolite, and chlorite ± Fe oxides. The rhyolites display porphyritic texture consisting of K-feldspar, quartz, and plagioclase as phenocrysts. The associated porphyritic granitoids have K-feldspar, microcline, plagioclase, and biotite phenocrysts within a groundmass of similar composition. The bimodal suite displays LILE, LREE enrichment, and HFSE depletion with significant negative Nb-Ta anomalies combined with slightly fractionated REE patterns in the basalts and highly fractionated patterns and prominent negative Eu anomalies in the rhyolites endorsing their generation in an island-arc/back-arc tectonic setting. The geochemical features of the associated granitoids indicate that these are potassic and classify as within-plate A-type granites. Zircons from the basalts show clear oscillatory zoning in their CL images. They cluster as a coherent group with 207Pb/206Pb spot ages ranging from 2446 to 2522 Ma and weighted mean age of 2471 ± 7 Ma. Zircons from the rhyolite samples are subhedral to euhedral and show simple oscillatory zoning with some heterogeneous fractured domains. The data from two samples define upper intercept ages of 2479 ± 13 Ma and 2463 ± 14 Ma. Zircon grains in the granite show clear oscillatory zoning and their U-Pb data define an upper intercept age of 2506 ± 50 Ma. The Lu-Hf isotopic data on the zircons from the basalts show initial 176Hf/177Hf ratios from 0.280925 to 0.281018. Their εHf(t) values are in the range of − 10.0 to − 6.7. The Hf-depleted model ages (TDM) are between 3038 Ma and 3171 Ma, and Hf crustal model ages (TDMC) vary from 3387–3589 Ma. The zircons from the rhyolites show initial 176Hf/177Hf ratios from 0.280919 to 0.281020 and from 0.281000 to 0.281103, respectively, with εHf(t) values varying from − 10 to − 6.4 and from − 7.5 to − 3.9. Among these, one sample shows TDM between 3038 Ma and 3182 Ma, and TDMC varies from 3377 to 3596 Ma, whereas the other sample shows ages of 2925 Ma and 3072 Ma with TDMC varying from 3208 to 3432 Ma. The initial 176Hf/177Hf ratios of the granites range from 0.280937 to 0.281062 with εHf(t) values of − 8.8 to − 4.3. The TDM shows a range of 2979 Ma and 3170 Ma, and TDMC varies from 3269 to 3541 Ma. The predominant negative εHf(t) values of zircons from these rocks suggest that the source material was evolved from the Paleoarchean crust. The geological, geochemical, and geochronological evidence suggests coeval tectonic and magmatic episodes of volcanic and plutonic activity in an island-arc setting where the arc migrated toward the continental margin and played a significant role in the Neoarchean–Paleoproterozoic crustal growth of the Kotri belt of Central India.  相似文献   

20.
U–Pb ages, trace elements, and Hf isotope compositions of zircons from the Mayuan migmatite complex in NW Fujian province have been determined to provide constraints on the source and genesis of anatexis and tectonothermal evolution related to the Caledonian orogeny in South China. The migmatites investigated consist of various amounts of mesosome, leucosome, and melansome. Zircons extracted from mesosome, leucosome, and granite samples are characterized by oscillatory overgrowths enclosing inherited cores or occur as newly grown grains. The ages of the inherited zircons from the leucosome and granite samples are consistent with those of adjacent basement paragneiss in the study area, suggesting that both leucosome and granite were generated by partial melting of the latter. A comparison of Hf isotopes between the newly-formed zircons and inherited cores indicates that the former resulted from the breakdown of preexisting inherited zircons and/or less Hf-rich minerals other than zircons at the source. One mesosome sample contains typical metamorphic zircons that yielded a weighted mean 206Pb/238U age of 453 ± 3 Ma. They show enrichments in heavy REEs (LuN/LaN up to 22,709), indicating their growth prior to garnet crystallization. The other mesosome sample, in contrast, contains both newly-formed metamorphic rims and grains that gave a weighted mean 206Pb/238U age of 442 ± 8 Ma. They are characterized by relatively low Th/U ratios, depletions in heavy REEs (LuN/LaN = 117–396), and low 176Lu/177Hf ratios, suggesting their growth synchronous with garnet crystallization. The U–Pb ages of the mesosome samples are interpreted as recording the time of early (ca. 453 Ma) to peak (442 Ma) stages of a regional metamorphic event. Two leucosome and two granite samples yield consistent U–Pb ages of 438 ± 5 Ma to 442 ± 4 Ma, which provide constraints on the timing of subsequent anatexis and magmatism. The geochronological data reported here reveal a consecutive sequence of regional metamorphism, anatexis, and magmatism in NW Fujian province, lasting for at least 15 Myr, which was driven by the Caledonian orogeny that have affected a major part of the SCB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号