首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different continental collision belts show contrasting metamorphic trend along their length, including the distribution of extreme metamorphism; i.e., ultrahigh-pressure (>100 km depth) and ultrahigh-temperature (900–1150 °C) metamorphisms. However, no previous study has succeeded in explaining these trends. The present study investigates the main factors that control the metamorphic trends along collision belts, with reference to the Dabie–Hongseong collision belt between the North and South China blocks and the Himalayan collision belt between the Indian and Asian blocks. In the Dabie–Hongseong collision belt, collision began in the east before 245 Ma and propagated westward until ca. 220 Ma. In the eastern part of the belt, the amount of oceanic slab that subducted before collision was insufficient to pull down the continental crust to the depths of ultrahigh-pressure metamorphism; however, ultrahigh-pressure metamorphism occurred in the western part of the belt. Slab break-off also migrated from east to west, with a westward increase in the depth of break-off (from ca. 10 kbar in the west to ca. 35 kbar in the east). These lateral trends along the belt resulted in a westward change from ultrahigh-temperature (915–1160 °C, 9.0–10.6 kbar) to high-pressure (835–860 °C, 17.0–20.9 kbar) and finally ultrahigh-pressure metamorphism (680–880 °C, 30–40 kbar). In the Himalayan collision belt, collision started from the west at 50 Ma and propagated eastward. The amount of oceanic slab subducted prior to collision was sufficient to pull down the continental crust to the depths of ultrahigh-pressure metamorphism in the west, but not in the east. Slab break-off started in the west at ca. 46 Ma and propagated eastward, with an eastward decrease in the depth of slab break-off from 27–29 to 17–18 kbar. Consequently, the metamorphic trend along the belt changes eastward from ultrahigh-pressure (690–750 °C, 27–29 kbar) to high-pressure and finally high-pressure granulite facies metamorphism (890 °C, 17–18 kbar). The differences in metamorphic trend between the Dabie–Hongseong and Himalayan collision belts reflect the amount of oceanic crust subducted prior to collision and the depth and timing of slab break-off along each belt.  相似文献   

2.
The Sveconorwegian orogeny in SW Baltica comprised a series of geographically and tectonically discrete events between 1140 and 920 Ma. Thrusting and high-grade metamorphism at 1140–1080 Ma in central parts of the orogen were followed by arc magmatism and ultra-high-temperature metamorphism at 1060–920 Ma in the westernmost part of the orogen. In the eastern part of the orogen, crustal thickening and high-pressure metamorphism took place at 1050 in one terrane and at 980 Ma in another. These discrete tectonothermal events are incompatible with an evolution resulting from collision with another major, continental landmass, and better explained as accretion and re-amalgamation of fragmented and attenuated crustal blocks of the SW Baltica margin behind an evolving continental-margin arc. In contrast, the coeval, along-strike Grenvillian orogeny is typically ascribed to long-lived collision with Amazonia. Here we argue that coeval, but tectonically different events in the Sveconorwegian and Grenville orogens may be linked through the behavior of the Amazonia plate. Subduction of Amazonian oceanic crust, and consequent slab pull, beneath the Sveconorwegian may have driven long-lived collision in the Grenville. Conversely, the development of a major orogenic plateau in the Grenville may have slowed convergence, thereby affecting the rate of oceanic subduction and thus orogenic evolution in the Sveconorwegian. Convergence ceased in the Grenville at ca. 980 Ma, in contrast to the Sveconorwegian where convergence continued until ca. 920 Ma, and must have been accommodated elsewhere along the Grenville–Amazonia segment of the margin, for example in the Goiás Magmatic Arc which had been established along the eastern Amazonian margin by 930 Ma. Our model shows how contrasting but coeval orogenic behavior can be linked through geodynamic coupling along and across tectonic plates.  相似文献   

3.
The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U–Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979–711 Ma), Paleozoic (507–400 Ma), and Early (252–185 Ma) and Late (158–100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979–911 Ma, weakly deformed I-type granites at 894–815 Ma, and A-type granites at 759–711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507–470 Ma, 460–422 Ma and ∼415–400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507–470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460–422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ∼415–400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225–200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250–240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction of the Mianlue Ocean between the South Qinling Belt and the South China Block. Voluminous late-stage (225–185 Ma) magmatism evolved from early I-type to later I-A-type granitoids associated with contemporaneous lamprophyres, representative of a transition from syn- to post-collisional setting in response to the collision between the North China and the South China blocks. Late Mesozoic (158–100 Ma) granitoids, located in the southern margin of the North China Block and the eastern part of the North Qinling Belt, are characterized by I-type, I- to A-type, and A-type granitoids that were emplaced in a post-orogenic or intraplate setting. The first three of the four periods of magmatism were associated with three important orogenic processes and the last one with intracontinental process. These suggest that the tectonic evolution of the Qinling Orogen is very complicated.  相似文献   

4.
We report for the first time the evidence for prograde high-pressure (HP) metamorphism preceding a peak ultrahigh-temperature (UHT) event in the northernmost part of the Madurai Block in southern India. Mg–Al-rich Grt–Ged rocks from Komateri in Karur district contain poikiloblastic garnet with numerous multi-phase inclusions. Although most of the inclusion assemblages are composed of gedrite, quartz, and secondary biotite, rare staurolite + sapphirine and spinel + quartz are also present. The XMg (=Mg/[Fe+Mg]) of staurolite (0.45–0.49) is almost consistent with that reported previously from Namakkal district in the Palghat–Cauvery Shear Zone system (XMg = 0.51–0.52), north of the Madurai Block. The HP event was followed by peak UHT metamorphism at T = 880–1040 °C and P = 9.8–12.5 kbar as indicated by thermobarometric computations in the Grt–Ged rock and associated mafic granulite. Symplectic intergrowth of spinel (XMg = 0.50–0.59, ZnO < 1.7 wt.%) and quartz, a diagnostic indicator of UHT metamorphism, probably formed by decompression at UHT conditions. The rocks subsequently underwent retrograde metamorphism at T = 720–760 °C and P = 4.2–5.1 kbar. The PT conditions and clockwise exhumation trajectory of the Komateri rocks, comparable to similar features recorded from the Palghat–Cauvery Shear Zone system, suggest that the Madurai Block and the Palghat–Cauvery Shear Zone system underwent similar HP and UHT metamorphic history probably related to the continent–continent collision during the final stage of amalgamation of Gondwana supercontinent.  相似文献   

5.
《Gondwana Research》2014,25(3-4):969-983
The Ediacaran–Cambrian Petermann Orogeny, central Australia, is an exceptional example of intraplate orogenesis. It involved sub-eclogite facies metamorphism and extreme basin inversion during the exhumation of Musgrave Province basement from beneath the formerly contiguous Centralian Superbasin. Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronology of zircon, titanite and rutile, along with Ti-in-zircon thermometry from meta-igneous samples, have been used to determine the timing and duration of high-pressure metamorphism and subsequent cooling associated with this orogenic event. Peak metamorphic temperatures of 720–760 °C were attained at 544 ± 7 Ma (U–Pb zircon). Subsequent cooling to 600–660 °C by ~ 521 Ma occurred at a rate of ~ 2.6–7.0 °C Myr 1, as recorded by the closure of Pb diffusion in titanite. Further cooling to 585–560 °C by 498–472 Ma occurred at a rate of 0.9–4.8 °C Myr 1, as recorded by Pb closure in rutile. The duration of tectonism was long-lived (> 40 Myr) across the central and western parts of the orogenic system, and deformation occurred in a comparatively warm and weak portion of crust, characterised by regional thermal gradients of 17–26 °C km 1. This proposed duration of tectonism is much longer than that permitted by a shear heating mechanism, which requires an exceptionally short duration of tectonism, and additionally, an overall cold lithosphere characterised by geothermal gradients of ~ 9 °C km 1.  相似文献   

6.
The Tan–Lu fault is a major strike-slip fault in eastern China that appears to offset the high-grade rocks of the Hong’an–Dabie–Sulu orogen left-laterally ∼540 km. We evaluate models for the collision between the South and North China blocks, published radiometric dates recording HP–UHP metamorphism and exhumation in the Hong’an–Dabie and Sulu terranes, and the timing of sinistral motion on the Tan–Lu fault to evaluate whether UHP rocks provide a piercing point for offset on the Tan–Lu fault. UHP metamorphism in Hong’an–Dabie was concurrent with Sulu based on U–Pb dating of coesite-bearing domains of zircon at 244 ± 5–226 ± 2 Ma for Hong’an–Dabie and 243 ± 4–225 ± 2 Ma for Sulu. Retrograde metamorphism began c. 220 Ma for both Hong’an–Dabie and Sulu, but retrograde zircon growth ended c. 214 Ma in Hong’an–Dabie and continued until c. 202 Ma in Sulu based on U–Pb dating of zircon domains external to coesite-bearing domains. Structures in Sulu are rotated 25° counter-clockwise from, but are broadly similar to, Hong’an–Dabie suggesting the two areas have a common Triassic orogenic history that pre-dates motion on the Tan–Lu fault, and that is consistent with paleomagnetic studies. We constructed a pre-Cretaceous restoration of the Hong’an–Dabie–Sulu belt that moves the Sulu terrane south, aligning the suture and the eclogite-facies isograd, and rotates Sulu c. 25° clockwise to re-align structures with Hong’an–Dabie. Our restoration is supported by published data and shows that the Hong’an–Dabie–Sulu orogen is a piercing point for post-collisional offset on the Tan–Lu fault and that these regions shared a common subduction–exhumation history. The Tan–Lu fault did not play a significant role in the Hong’an–Dabie–Sulu collision and likely developed later, in the Early Cretaceous.  相似文献   

7.
《Gondwana Research》2013,24(4):1402-1428
The formation of collisional orogens is a prominent feature in convergent plate margins. It is generally a complex process involving multistage tectonism of compression and extension due to continental subduction and collision. The Paleozoic convergence between the South China Block (SCB) and the North China Block (NCB) is associated with a series of tectonic processes such as oceanic subduction, terrane accretion and continental collision, resulting in the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt. While the arc–continent collision orogeny is significant during the Paleozoic in the Qinling–Tongbai–Hong'an orogens of central China, the continent–continent collision orogeny is prominent during the early Mesozoic in the Dabie–Sulu orogens of east-central China. This article presents an overview of regional geology, geochronology and geochemistry for the composite orogenic belt. The Qinling–Tongbai–Hong'an orogens exhibit the early Paleozoic HP–UHP metamorphism, the Carboniferous HP metamorphism and the Paleozoic arc-type magmatism, but the three tectonothermal events are absent in the Dabie–Sulu orogens. The Triassic UHP metamorphism is prominent in the Dabie–Sulu orogens, but it is absent in the Qinling–Tongbai orogens. The Hong'an orogen records both the HP and UHP metamorphism of Triassic age, and collided continental margins contain both the juvenile and ancient crustal rocks. So do in the Qinling and Tongbai orogens. In contrast, only ancient crustal rocks were involved in the UHP metamorphism in the Dabie–Sulu orogenic belt, without involvement of the juvenile arc crust. On the other hand, the deformed and low-grade metamorphosed accretionary wedge was developed on the passive continental margin during subduction in the late Permian to early Triassic along the northern margin of the Dabie–Sulu orogenic belt, and it was developed on the passive oceanic margin during subduction in the early Paleozoic along the northern margin of the Qinling orogen.Three episodes of arc–continent collision are suggested to occur during the Paleozoic continental convergence between the SCB and NCB. The first episode of arc–continent collision is caused by northward subduction of the North Qinling unit beneath the Erlangping unit, resulting in UHP metamorphism at ca. 480–490 Ma and the accretion of the North Qinling unit to the NCB. The second episode of arc–continent collision is caused by northward subduction of the Prototethyan oceanic crust beneath an Andes-type continental arc, leading to granulite-facies metamorphism at ca. 420–430 Ma and the accretion of the Shangdan arc terrane to the NCB and reworking of the North Qinling, Erlangping and Kuanping units. The third episode of arc–continent collision is caused by northward subduction of the Paleotethyan oceanic crust, resulting in the HP eclogite-facies metamorphism at ca. 310 Ma in the Hong'an orogen and low-P metamorphism in the Qinling–Tongbai orogens as well as crustal accretion to the NCB. The closure of backarc basins is also associated with the arc–continent collision processes, with the possible cause for granulite-facies metamorphism. The massive continental subduction of the SCB beneath the NCB took place in the Triassic with the final continent–continent collision and UHP metamorphism at ca. 225–240 Ma. Therefore, the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt records the development of plate tectonics from oceanic subduction and arc-type magmatism to arc–continent and continent–continent collision.  相似文献   

8.
The Eastern Cordillera of Peru represents one of the longest (> 1200 km) Paleozoic metamorphic and magmatic belts exposed along the western Andean margin of South America. In this study, we examine the tectonothermal evolution of a key segment of the metasedimentary basement of the Eastern Cordillera of Peru (the Huaytapallana Complex) and demonstrate that it has experienced a hitherto undocumented high-grade orogenic event at 260 Ma (latest Middle Permian) based on U–Pb and Th–Pb monazite age data from paragneisses and U–Pb dating of zircon rims from leucosomes. These ages are interpreted as recording crystallization and are consistent with 255 Ma rutile growth in lower-grade units. U–Pb apatite data (c. 260–230 Ma) in all units are consistent with slow cooling from this 260 Ma metamorphic peak. U–Pb zircon geochronology of pre-tectonic plutons yield ages ranging from c. 302 Ma to c. 260 Ma. These geochronological data are augmented by new U–Pb apatite age data from other segments along the Eastern Cordillera of Peru. A regional synthesis of existing geochronological constraints from the Eastern Cordillera of Peru demonstrates that the margin has experienced a polycyclic orogenic history. Deformation and magmatism occurred at c. 480 Ma and c. 435 Ma during the Famatinian orogenic cycle, was followed by a Late Silurian to Early Carboniferous (c. 420–350 Ma) magmatic and metamorphic gap, and terminated with Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma. These Famatinian and Gondwanide orogenic phases can be correlated into the Proto-Andean margin of Argentina and Chile and are thus of regional extent. The evolution of the Proto-Andean margin is thus best explained by changes in tectonic plate reorganization in a long-lived Paleozoic accretionary orogen which was undergoing phases of advance and retreat, resulting in magmatic pulses and orogenic phases which can be correlated along the length of the plate boundary.  相似文献   

9.
《Gondwana Research》2014,25(2):649-667
The Palaeoproterozoic lower crust, forming several belts and domains, is a major component of the crystalline basement within the large region to the southeast of the Baltic Sea in Belarus, Lithuania and Poland. Four stages of high grade metamorphism have been determined in the Western Lithuanian Granulite domain (WLG) and Belarus–Podlasie Granulite belt (BPG), the western East European Craton (EEC). We have carried out P–T studies, secondary ion mass-spectrometry (SIMS) zircon- and electron probe (EPMA) — monazite dating of peak metamorphism. The first stage occurred at 1.81–1.79 Ga under 800–900 °C and 8–10 kbar and was related to both accretionary and postcollisional tectonics in the South Baltic region, whereas the stages at 1.73–1.68 Ga (700–800 °C, 6–7 kbar), 1.62–1.58 Ga (700 °C, 4–5 kbar), and 1.52–1.50 Ga (900 °C, c. 10 kbar) can be attributed to extensional intracratonic regimes. The 1.81–1.79 Ga stage was connected both to the major Sarmatia–Fennoscandia collision and the eastward accretion, which led to the formation of Baltica (East-European Craton) during the assembly of the Columbia (Nuna) supercontinent. The later high grade events associated with intracratonic extensions and magmatism may be distal manifestations of accretionary processes along the long-lived common Laurentia–Baltica margin. The 1.52–1.50 Ga metamorphism was associated with extensive anorthosite–mangerite–charnockite–granite magmatism in already consolidated crust.  相似文献   

10.
The enigmatic Arequipa Massif of southwestern Peru is an outcrop of Andean basement that underwent Grenville-age metamorphism, and as such it is important for the better constraint of Laurentia–Amazonia ties in Rodinia reconstruction models. U–Pb SHRIMP zircon dating has yielded new evidence on the evolution of the Massif between Middle Paleoproterozoic and Early Paleozoic. The oldest rock-forming events occurred in major orogenic events between ca. 1.79 and 2.1 Ga (Orosirian to Rhyacian), involving early magmatism (1.89–2.1 Ga, presumably emplaced through partly Archaean continental crust), sedimentation of a thick sequence of terrigenous sediments, UHT metamorphism at ca. 1.87 Ga, and late felsic magmatism at ca. 1.79 Ga. The Atico sedimentary basin developed in the Late-Mesoproterozoic and detrital zircons were fed from a source area similar to the high-grade Paleoproterozoic basement, but also from an unknown source that provided Mesoproterozoic zircons of 1200–1600 Ma. The Grenville-age metamorphism was of low-P type; it both reworked the Paleoproterozoic rocks and also affected the Atico sedimentary rocks. Metamorphism was diachronous: ca. 1040 Ma in the Quilca and Camaná areas and in the San Juán Marcona domain, 940 ± 6 Ma in the Mollendo area, and between 1000 and 850 Ma in the Atico domain. These metamorphic domains are probably tectonically juxtaposed. Comparison with coeval Grenvillian processes in Laurentia and in southern Amazonia raises the possibility that Grenvillian metamorphism in the Arequipa Massif resulted from extension and not from collision. The Arequipa Massif experienced Ordovician–Silurian magmatism at ca. 465 Ma, including anorthosites formerly considered to be Grenvillian, and high-T metamorphism deep within the magmatic arc. Focused retrogression along shear zones or unconformities took place between 430 and 440 Ma.  相似文献   

11.
Zircon is the best mineral to record the complex evolution history of ultrahigh-pressure (UHP) metamorphic rocks as mineralogical and geochemical tracers of UHP metamorphism are almost obliterated in matrix assemblages resulted from subsequent retrogression during exhumation. Zircons from Dabie–Sulu UHP rocks, including outcrop and core samples from drill holes ranging from 432 to 5158 m in depth contain abundant mineral inclusions of protolith, prograde, peak (UHP) and retrograde minerals in different domains; these minute inclusions were identified by laser Raman spectroscopy and/or electronic microprobe analysis. Systematic studies on inclusions in zircons from previous and present studies indicate that the Dabie–Sulu UHP terrane extends for >2000 km, is about 50 km wide, and has at least 10 km thick, probably the largest UHP terrane recognized in the world thus far. The internal structure of zircon revealed by cathodoluminescence (CL) imaging displays a distinct zonation, which comprises an inherited (magmatic or detrital) core, prograde, peak (UHP), and outmost retrograde domains, each with distinctive mineral inclusion assemblages. Low-pressure, igneous mineral inclusions are common in the inherited (magmatic or detrital) zircon cores. In contrast, quartz eclogite-facies inclusion assemblages occur in prograde domains, coesite eclogite-facies inclusion assemblages are preserved in UHP domains, and amphibolite-facies inclusion assemblages are enclosed in outmost retrograde rims. Parageneses and compositions of inclusion minerals preserved in distinct zircon domains were used to constrain the metamorphic PT path of many Dabie–Sulu UHP rocks. The results indicate that Neoproterozoic supracrustal rocks together with minor mafic-ultramafic rocks were subjected to a prograde subduction-zone metamorphism at 570–690 °C and 1.7–2.1 GPa, and UHP metamorphism at 750–850 °C and 3.4–4.0 GPa, following by rapid decompression to amphibolite-facies retrograde metamorphism at 550–650 °C and 0.7–1.05 GPa. Sensitive high-resolution ion microprobe (SHRIMP) U–Pb spot analyses of the zoned zircons show four discrete and meaningful ages of the Dabie–Sulu metamorphic evolution: (1) Neoproterozoic protolith ages (800–750 Ma); (2) 246–244 Ma for early-stage quartz eclogite-facies prograde metamorphism; (3) 235–225 Ma for UHP metamorphism; and (4) 215–208 Ma for late-stage amphibolite-facies retrogression. This indicates that Neoproterozoic voluminous igneous protoliths of orthogneiss in response to the breakup of Rodinia supercontinent, together with various sedimentary rocks, and minor mafic-ultramafic intrusive and extrusive rocks, were subjected to coeval Triassic subduction to mantle depths and exhumation during the collision between the South China Block and North China Block. The estimated subduction and exhumation rates for the Dabie–Sulu UHP terrane would be up to 4.7–9.3 km Myr?1 and 5.0–11.3 km Myr?1, respectively. The zonal distribution of mineral inclusions and the preservation of index UHP minerals such as coesite imply that zircon is the best mineral container for each metamorphic stage, particular for supracrustal rocks as their metamorphic evolution and UHP evidence have been almost or completely obliterated. Similar conclusions have been documented elsewhere for other UHP terranes.  相似文献   

12.
《Gondwana Research》2013,24(4):1261-1272
A combined study of Lu–Hf isotopes and U–Pb ages for detrital zircons from sedimentary rocks can provide information on the crustal evolution of sedimentary provenances, and comparisons with potential source regions can constrain interpretations of paleogeographic settings. Detailed isotopic data on detrital zircons from Neoproterozoic sedimentary rocks in the northern part of the Yangtze Block suggest that these rocks have the maximum depositional ages of ~ 750 Ma, and share a similar provenance. In their source area, units of late Archean (2.45 to 2.55 Ga) to Paleoproterozoic (1.9 to 2.0 Ga) U–Pb ages made up the basement, and were overlain or intruded by magmatic rocks of Neoproterozoic U–Pb ages (740 to 900 Ma). Hf isotopic signatures of the detrital zircons indicate that a little juvenile crust formed in the Neoarchean; reworking of old crust dominates the magmatic activity during the Archean to Paleoproterozoic, while the most significant juvenile addition to the crust occurred in the Neoproterozoic. Only the Neoproterozoic zircon U–Pb ages can be matched with known magmatism in the northern Yangtze Block, while other age peaks cannot be correlated with known provenance areas. Similar zircon U–Pb ages have been obtained previously from sediments along the southeastern and western margins of the Yangtze Block. Thus, it is suggested that an unexposed old basement is widespread beneath the Yangtze Block and was the major contributor to the Neoproterozoic sediments. This basement had a magmatic activity at ~ 2.5 Ga, similar to that in North China; but zircon Hf isotopes suggest significant differences in the overall evolutionary histories between the Yangtze and North China.  相似文献   

13.
New U–Pb SHRIMP zircon ages combined with geochemical and isotope investigation in the Sierra de Maz and Sierra de Pie de Palo and a xenolith of the Precordillera basement (Ullún), provides insight into the identification of major Grenville-age tectonomagmatic events and their timing in the Western Sierras Pampeanas. The study reveals two contrasting scenarios that evolved separately during the 300 Ma long history: Sierra de Maz, which was always part of a continental crust, and the juvenile oceanic arc and back-arc sector of Sierra de Pie de Palo and Ullún. The oldest rocks are the Andino-type granitic orthogneisses of Sierra de Maz (1330–1260 Ma) and associated subalkaline basic rocks, that were part of an active continental margin developed in a Paleoproterozoic crust. Amphibolite facies metamorphism affected the orthogneisses at ca. 1175 Ma, while granulite facies was attained in neighbouring meta-sediments and basic granulites. Interruption of continental-edge magmatism and high-grade metamorphism is interpreted as related to an arc–continental collision dated by zircon overgrowths at 1170–1230 Ma. The next event consisted of massif-type anorthosites and related meta-jotunites, meta-mangerites (1092 ± 6 Ma) and meta-granites (1086 ± 10 Ma) that define an AMCG complex in Sierra de Maz. The emplacement of these mantle-derived magmas during an extensional episode produced a widespread thermal overprint at ca. 1095 Ma in neighbouring country rocks. In constrast, juvenile oceanic arc and back-arc complexes dominated the Sierra de Pie de Palo–Ullún sector, that was fully developed ca. 1200 Ma (1196 ± 8 Ma metagabbro). A new episode of oceanic arc magmatism at ~1165 Ma was roughly coeval with the amphibolite high-grade metamorphism of Sierra de Maz, indicating that these two sectors underwent independent geodynamic scenarios at this age. Two more episodes of arc subduction are registered in the Pie de Palo–Ullún sector: (i) 1110 ± 10 Ma orthogneisses and basic amphibolites with geochemical fingerprints of emplacement in a more mature crust, and (ii) a 1027 ± 17 Ma TTG juvenile suite, which is the youngest Grenville-age magmatic event registered in the Western Sierras Pampeanas. The geodynamic history in both study areas reveals a complex orogenic evolution, dominated by convergent tectonics and accretion of juvenile oceanic arcs to the continent.  相似文献   

14.
The Qinling orogenic belt experienced multiple phases of orogenesis during the Palaeozoic. Unraveling the timing and PT conditions of these events is the key to understanding the convergence processes between the South China and the North China Blocks. The Songshugou Complex, located in the southern part of the North Qinling orogenic belt, has registered multistage metamorphism in Palaeozoic, and thus potentially provides insights into the tectonic evolution of the Qinling orogenic belt. In this study, three metabasic rocks (a garnet pyroxenite, a garnet amphibolite and a gneissic amphibolite) from the Songshugou Complex were selected for petrological study and zircon and titanite U–Pb dating. Our results show that the metabasic rocks experienced three metamorphic events during the Palaeozoic. The first metamorphic event (M1) is characterized by high pressure conditions. Two zircon grains in equilibrium with garnet and in absence of plagioclase were recognized from the garnet pyroxenite sample. They yielded Ti-in-zircon temperatures of 660–851 °C at ∼12.0 kbar and a weighted mean age of 498 ± 15 Ma, providing the constraints on the temperature and timing of prograde or peak metamorphism (M1-1). Zircons that are inequilibrium with garnet from the garnet pyroxenite and the garnet amphibolite gave U–Pb ages of 494 ± 9 Ma and 484 ± 4 Ma, and Ti-in-zircon temperatures of 793 ± 33 °C and 738 ± 18 °C, respectively. Thus, these zircons were formed on the retrograde amphibolite-facies conditions at ∼8.0 kbar (M1-2). Titanite inclusions were found in actinolite cores of zoned amphibole from the garnet amphibolite. They yielded a U–Pb age of ∼470 Ma and Zr-in-titanite temperature of 676 ± 23 °C at pressure of ∼7.0 kbar, suggesting that the amphibolite-facies retrogression perhaps persisted to ∼470 Ma.Weakly zoned zircons from the garnet amphibolite and inclusion-free titanites from the garnet pyroxenite gave consistent U–Pb ages of 418 ± 5 Ma and 423 ± 10 Ma, and Ti-in-zircon temperature of 742 ± 26 °C and Zr-in-titanite temperature of 764 ± 18 °C at ∼7.0 kbar, respectively. It is suggested that a heating event (M2) is registered by a subsequent phase of amphibolite-facies metamorphism. The ilmenite-bearing titanite crystals from the garnet pyroxenite yielded a U–Pb age of 352 ± 4 Ma, recording a late thermal event (M3).On the basis of combined petrological and geochronological results, we propose a revised tectonic model for the North Qinling orogeny in Palaeozoic. The high pressure granulites were formed by the northward subduction of the Shangdan oceanic slab and the arc-continent collision at ca. 500 Ma. Their exhumation happened at ca. 494–484 Ma as a result of slab breakoff. Subsequent amphibolite-facies metamorphism dated at ca. 440–420 Ma are coeval with the widespread magmatism in the North Qinling Terrane, which are likely caused by the reinitiation northward-subducted of Shangdan oceanic slab. At ca. 350 Ma, the North Qinling Terrane was likely affected by another thermal overprinting event.  相似文献   

15.
To better constrain the Early Paleozoic tectonic evolution of the western part of the Erguna–Xing’an Block, detrital zircon U–Pb dating was applied on the Ordovician to Devonian sedimentary strata along the southeast part of the China–Mongolia border. Most of the zircons from five sedimentary samples display fine-scale oscillatory growth zoning and Th/U ratios higher than 0.1, indicating a magmatic origin. All five Ordovician–Devonian samples display the similar age distribution patterns with age groups at ∼440 Ma, ∼510 Ma, ∼800 Ma, ∼950 Ma, and few Meso- to Paleo-Proterozoic and Neoarchean grains. This age distribution pattern is similar to those from adjacent blocks in the southeastern Central Asian Orogenic Belt. Considering previous tectonic studies, we propose bidirectional provenances from the Erguna–Xing’an Block and Baolidao Arc.Consequently, a new model was proposed to highlight the Early Paleozoic tectonic evolution of the western Erguna–Xing’an Block, which constrains two main Early Paleozoic tectonic events of the Xing-Meng Orogenic Belt: (a) pre-Late Cambrian collision between Erguna–Kerulen Block and Arigin Sum-Xilinhot-Xing’an Block; (b) the Early Paleozoic subduction of Paleo-Asian Ocean and pre-Late Devonian collision between Erguna–Xing’an Block and Songliao-Hunshandake Block.  相似文献   

16.
The Higher Himalayan Crystalline Sequence (HHCS) provides an excellent natural laboratory to study continental subduction, crustal melting and tectonic evolution of orogenic belt generated through the collision of India with Eurasia. Our petrological study and phase equilibrium modeling reveal that the pelitic migmatites in the HHCS of Yadong region, east-central Himalaya, preserve an early mineral assemblage garnet, kyanite, biotite, quartz, plagioclase, K-feldspar, rutile and ilmenite, and a late sillimanite- and/or cordierite-bearing assemblage, and underwent the high pressure (HP) and high temperature (HT) granulite-facies metamorphism and associated partial melting under PT conditions of ca. 12 kbar and 825–845 °C, followed by nearly isothermal decompression and isobaric cooling. The anatexis of the migmatites occurred dominantly through dehydration-melting of both muscovite and biotite during the prograde metamorphism. The melt produced in the peak metamorphic conditions is about 20 to 30 vol.% of the rocks, and a significant amount of melt has been extracted from the source leading to the formation of Himalayan leucogranites. The zircon U–Pb dating data shows that the migmatites probably witnessed a prolonged melting episode that began at ca. 30 Ma and lasted to ca. 20 Ma. These results show that the thickening lower crust of the Himalayan orogen experienced long-lived and continued HP and HT metamorphism and pervasive anatexis, supporting the models on channel flow.  相似文献   

17.
The large, newly discovered Sharang porphyry Mo deposit and nearby Yaguila skarn Pb–Zn–Ag (–Mo) deposit reside in the central Lhasa terrane, northern Gangdese metallogenic belt, Tibet. Multiple mineral chronometers (zircon U–Pb, sericite 40Ar–39Ar, and zircon and apatite (U–Th)/He) reveal that ore-forming porphyritic intrusions experienced rapid cooling (> 100 °C/Ma) during a monotonic magmatic–hydrothermal evolution. The magmatic–hydrothermal ore-forming event at Sharang lasted ~ 6.0 Myr (~ 1.8 Myr for cooling from > 900 to 350 °C and ~ 4.0 Myr for cooling from 350 to 200 °C) whereas cooling was more prolonged during ore formation at Yaguila (~ 1.8 Myr from > 900 to 500 °C and a maximum of ~ 16 Myr from > 900 to 350 °C). All porphyritic intrusions in the ore district experienced exhumation at a rate of 0.07–0.09 mm/yr (apatite He ages between ~ 37 and 30 Ma). Combined with previous studies, this work implies that uplift of the eastern section of the Lhasa terrane expanded from central Lhasa (37–30 Ma) to southern Lhasa (15–12 Ma) at an increasing exhumation rate. All available geochronologic data reveal that magmatic–hydrothermal–exhumation activities in the Sharang–Yaguila ore district occurred within four periods of magmatism with related mineralization. Significant porphyry-type Mo mineralization was associated with Late Cretaceous–Eocene felsic porphyritic intrusions in the central Lhasa terrane, resulting from Neotethyan oceanic subduction and India–Asia continental collision.  相似文献   

18.
The crystalline basement of the Tatra Mountains in the Central Western Carpathians, forms part of the European Variscides and contains fragments of Gondwanan provenance. Metabasite rocks of MORB affinity in the Tatra Mountains are represented by two suites of amphibolites present in two metamorphic units (the Ornak and Goryczkowa Units) intercalated with metapelitic rocks. They are interpreted as relics of ocean crust, with zircon δ18OVSMOW values of 4.97–6.96‰. Zircon REE patterns suggest oxidizing to strongly oxidizing conditions in the parent mantle-derived basaltic magma. LA-MC-ICP-MS U-Pb dating of magmatic zircon cores yields a crystallization age of c. 560 Ma, with inherited components at c. 600 Ma, corresponding to the Pannotia break-up event and to the formation of the Eastern Tornquist–Paleoasian Ocean.However, the zircon rims of both suites yield evidence for two different geological histories. Zircon rims from the Ornak amphibolites record two overgrowth phases. The older rims, dated at 387 ± 8 Ma are interpreted as the result of an early stage of Variscan uplift while the younger rims dated at 342 ± 9 Ma are attributed to late Variscan collisional processes. They are characterized by high δ18OVSMOW values of 7.34–9.54‰ and are associated with migmatization related to the closure of the Rheic Ocean.Zircon rims from the Goryczkowa amphibolites yield evidence of metamorphism at 512 ± 5 Ma, subsequent Caledonian metamorphism at 447 ± 14 Ma, followed by two stages of Variscan metamorphism at 372 ± 12 Ma and 339 ± 7 Ma, the latter marking the final closure of the Rheic Ocean during late-Variscan collision.The presented data are the first direct dating of ocean crust formation in the eastern prolongation of the Tornquist Ocean, which formed a probable link to the Paleoasian Ocean.  相似文献   

19.
Rare remnants of a Mesozoic subduction high pressure (HP) accretionary complex are exposed on Diego de Almagro Island in Chilean Patagonia. We herein focus on the Lazaro unit, a coherent slice of oceanic crust exposed on this island that has been first affected by high temperature (HT) metamorphism followed by a lower temperature deformation event (LT). Its Pressure-Temperature-time (P-T-t) evolution is reconstructed using field and petrographic observations, phase relations, thermobarometry and geochronology. Remnants of a primary amphibolite to HP granulite-facies event in mafic rocks comprising garnet (with ilmenite exsolutions), diopside, trondhjemitic melt, pargasite, plagioclase ± epidote are reported for the first time in neosomes, indicating peak P-T conditions of 1.1–1.3 GPa and c. 750 °C. This peak T paragenesis has been thoroughly overprinted by a phengite-chlorite-actinolite assemblage during isobaric cooling down to c. 450 °C. U-Pb dating of zircon metamorphic rims from a metasedimentary rock yielded a homogeneous age population of 162 ± 2 Ma for the HT event. Sm-Nd dating of two peritectic garnet-bearing samples yield ages of 163 ± 2 Ma and 163 ± 18 Ma for the HT event. Multi-mineral Rb-Sr dating of a metasedimentary rock overprinted by LT deformation suggests retrograde shearing between 120 and 80 Ma. Our results show that the HT event in the Lazaro unit took place at around 160–165 Ma, shortly before the onset of Patagonian Batholith emplacement. Partial melting of subducted oceanic crust reported in the Lazaro unit is related to the early stages of hot subduction along the Gondwana western margin. The Lazaro unit remained at c. 40 km depth along the subduction interface for > 80 Ma, recording the deformation and long-term cooling of the subduction channel environment until the upper Cretaceous.  相似文献   

20.
The Qilian–Qaidam orogenic belt at the northern edge of the Tibetan Plateau has received increasing attention as it recorded a complete history from continental breakup to opening and closure of ocean basin, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. Determining a geochronological framework of the initiation and termination of the fossil Qilian Ocean subduction in the North Qilian orogenic belt plays an essential role in understanding the whole tectonic process. Dating the high-pressure metamorphic rocks in the North Qilian orogenic belt, such as blueschist and eclogite, is the key in this respect. A blueschist from the southern North Qilian orogenic belt was investigated with a combined metamorphic PT and U–Pb, Lu–Hf, and Sm–Nd multichronometric approaches. Pseudosection modeling indicates that the blueschist was metamorphosed under peak PT conditions of 1.4–1.6 GPa and 530–550 °C. Zircon U–Pb ages show no constraints on the metamorphism due to the lack of metamorphic growth of zircon. Lu–Hf and Sm–Nd ages of 466.3 ± 2.0 Ma and 462.2 ± 5.6 Ma were obtained for the blueschist, which is generally consistent with the U–Pb zircon ages of 467–489 Ma for adjacent eclogites. Lutetium and Sm zoning profiles in garnet indicate that the Lu–Hf and Sm–Nd ages are biased toward the formation of the garnet inner rim. The ages are thus interpreted to reflect the time of blueschist-facies metamorphism. Previous 40Ar/39Ar ages of phengitic muscovite from blueschist/eclogite in this area likely represent a cooling age due to the higher peak metamorphic temperature than the argon retention temperature. The differences of peak metamorphic conditions and metamorphic ages between the eclogites and adjacent blueschists indicate that this region likely comprises different tectonic slices, which had distinct PT histories and underwent high-pressure metamorphism at different times. The initial opening of the Qilian Ocean could trace back to the early Paleozoic, and the ultimate closure of the Qilian Ocean was no earlier than c. 466 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号