共查询到20条相似文献,搜索用时 15 毫秒
1.
The Precambrian terranes of southern Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the southern and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents – Rodinia and Gondwana. These Proterozoic orogens are described as Southern Granulite Terrane (SGT) in the southern tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ∼400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear zone systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P–T paths, development of lithospheric shear zones, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale “flower structures”, transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a subvertical grain conducive to reactivation tectonics. Our synthesis of the spatial distribution, geometry, kinematics and the transpressional strain of the shear zone systems provides insights into the tectono-metamorphic history of the Proterozoic orogens of southern India and their contiguity and complexities. Recent understanding of subduction, accretion and collisional history along these zones together with a long lived transpressional tectonic regime imply that these orogens witnessed identical tectonic regimes at different times in Earth history, although the major and common structural architecture was built during the final assembly of the Gondwana supercontinent. 相似文献
2.
Paleoproterozoic supercontinent: Origin and evolution of accretionary and collisional orogens exemplified in Northern cratons 总被引:1,自引:0,他引:1
M. V. Mints 《Geotectonics》2007,41(4):257-280
The evolution of the North American, East European, and Siberian cratons is considered. The Paleoproterozoic juvenile associations concentrate largely within mobile belts of two types: (1) volcanic-sedimentary and volcanic-plutonic belts composed of low-grade metamorphic rocks of greenschist to low-temperature amphibolite facies and (2) granulite-gneiss belts with a predominance of high-grade metamorphic rocks of high-temperature amphibolite to ultrahigh-temperature granulite facies. The first kind of mobile belt includes paleosutures made up of not only oceanic and island-arc rock associations formed in the process of evolution of relatively short-lived oceans of the Red Sea type but also peripheral accretionary orogens consisting of oceanic, island-arc, and backarc terranes accreted to continental margins. The formation of the second kind of mobile belt was related to the activity of plumes expressed in vigorous heating of the continental crust; intraplate magmatism; formation of rift depressions filled with sediments, juvenile lavas, and deposits of pyroclastic flows; and metamorphism of lower and middle crustal complexes under conditions of granulite and high-temperature amphibolite facies that, in addition, spreads over the fill of rift depressions. The evolution of mobile belts pertaining to both types ended with thrusting in a collisional setting. Five periods are recognized in Paleoproterozoic history: (1) origin and development of a superplume in the mantle that underlay the Neoarchean supercontinent; this process resulted in separation and displacement of the Fennoscandian fragment of the supercontinent (2.51–2.44 Ga); (2) a period of relatively quiet intraplate evolution complicated by locally developed plume-and plate-tectonic processes (2.44–2.0 (2.11) Ga); (3) the origin of a new superplume in the subcontinental mantle (2.0–1.95 Ga); (4) the complex combination of intense global plume-and plate-tectonic processes that led to the partial breakup of the supercontinent, its subsequent renascence and the accompanying formation of collisional orogens in the inner domains of the renewed Paleoproterozoic supercontinent, and the emergence of accretionary orogens along some of its margins (1.95–1.75 (1.71) Ga); and (5) postorogenic and anorogenic magmatism and metamorphism (<1.75 Ga). 相似文献
3.
Numerous lamproite dykes are hosted by the Eastern Dharwar Craton, southern India, particularly towards the northwestern margin of the Cuddapah Basin. We present here a comprehensive mineralogical and geochemical (including Sr and Nd isotopic) study on the lamproites from the Vattikod Field, exposed in the vicinity of the well-studied Ramadugu lamproite field. The Vattikod lamproites trend WNW–ESE to NW–SE and reveal effects of low-temperature post-magmatic alteration. The studied lamproites show porphyritic texture with carbonated and serpentinized olivine, diopside, fluorine-rich phlogopite, amphibole, apatite, chromite, allanite, and calcite. The trace-element geochemistry (elevated Sr and HFSE) reveals their mixed affinity to orogenic as well as anorogenic lamproites. Higher fluorine content of the hydrous phases coupled with higher whole-rock K2O highlights the role of metasomatic phlogopite and apatite in the mantle source regions. Trace-element ratios such as Zr/Hf and Ti/Eu reveal carbonate metasomatism of mantle previously enriched by ancient subduction processes. The initial 87Sr/86Sr-isotopic ratios (calculated for an assumed emplacement age of 1350 Ma) vary from 0.7037 to 0.7087 and ?Nd range from ??10.6 to ??9.3, consistent with data on global lamproites and ultrapotassic rocks. We attribute the mixed orogenic–anorogenic character for the lamproites under study to multi-stage metasomatism. We relate the (1) earlier subduction-related enrichment to the Paleoproterozoic amalgamation of the Columbia supercontinent and the (2) second episode of carbonate metasomatism to the Mesoproterozoic rift-related asthenospheric upwelling associated with the Columbia breakup. This study highlights the association of lamproites with supercontinent amalgamation and fragmentation in the Earth history. 相似文献
4.
The crustal scale Shear Zone that can be traced from Gadag in the north to Mandya in the south in Dharwar Craton of southern India is considered as the boundary between two subcratonic blocks namely the Eastern Dharwar Craton (EDC) and the Western Dharwar Craton (WDC) in published literature. The present study on the Gadag-Mandya Shear Zone (GMSZ) in the Javanahalli-Hagalvadi sector has brought out a detailed account on the disposition, geometry and kinematics of the shear zone, and also the distinctive structural patterns of the two adjacent supracrustal belts, namely the Chitradurga schist belt (CSB) in the west and Javanahalli schist belt (JSB) in the east. The JSB has an overall N-S striking and gentle easterly dipping geometry, the structural features of which are indicative of a predominant noncoaxial deformation and westward transportation of the supracrustal assemblage. In contrast, deformation in the CSB, which is defined mainly by a flattening type of strain, has produced an overall verticality of the structures (dominant foliation, axial planes of regional folds). 相似文献
5.
超高温(≥900℃)变质作用发生在自太古代以来的各个地质历史时期,目前极可能也正发生在青藏高原地壳深部。同时,它也是以冈瓦纳为代表的超大陆在最终拼合时的显著标识,这一关联指示了超高温变质作用与碰撞造山带的密切关系。本文总结了东冈瓦纳内与泛非造山作用有关的典型超高温变质岩的分布、岩石学特征、峰期变质条件、P-T轨迹及形成时代,并简要介绍我们在柴达木地块西段新识别出的泛非期超高温变质作用的基本特征。结合东冈瓦纳超高温变质作用特征和造山带热模拟研究的新进展,本文获得以东冈瓦纳超高温变质作用为代表的碰撞造山带超高温变质作用的几点认识:1)东冈瓦纳麻粒岩地块中的超高温变质岩和普通麻粒岩记录了相似的变质年龄、P-T轨迹以及呈过渡变化的峰期温度,两者可能是同一构造事件的产物,共同组成一个高温-超高温变质岩单元;2)超高温变质作用在东冈瓦纳内部持续了至少超过30Myr,但未见呈大规模的同期或近同期基性岩岩浆出露,指示此处需要的长期热源不是地幔来源岩浆;3)虽然数值模拟能成功呈现加厚地壳被放射元素衰变热加热至超高温条件的情况,且加热及持续时间与东冈瓦纳超高温变质约束的结果相当,但是模拟中需要的高生热值暗示,在自然界中,完全只靠放射性元素衰变生热或许不能让碰撞造山带内达到超高温条件;4)碰撞造山带经历了长期的构造演化,这一过程中,造山带内地壳不太可能同时达到超高温变质条件,这一特征可能反映在P-T-t轨迹的差异上,对这些轨迹的系统研究有助于对超高温变质作用的构造-热过程的理解。 相似文献
6.
7.
Neoproterozoic magmatic rocks in the South Qinling Belt of China provide important clues for understanding the mechanism and timing of the amalgamation and breakup of the Rodinia supercontinent. Here we report new geochemical and high-precision LA-ICP-MS zircon U–Pb–Hf isotopic analyses on magmatic suites from the Liuba and Zhashui areas in the South Qinling Belt. Our data show that the crystallization ages of the granitic intrusions from Tiefodian and Tangjiagou in the Liuba area are 863 ± 22 Ma and 794 ± 11 Ma, respectively, whereas those of the dioritic and gabbroic intrusions at Chishuigou in the Zhashui area are 925 ± 28 Ma and 832.6 ± 4.0 Ma, respectively. The diorites at Chishuigou display arc-related geochemical affinity, characterized by strong depletion in Nb, Ta, P and Ti, and enrichment in large-ion lithophile elements (i.e., Rb, Ba, Th and U), indicating a subduction-related arc setting at ca. 925 Ma. The Tiefodian granitic rocks have high SiO2 (68.46–70.98 wt.%), Na2O (3.87–4.51 wt.%), and low K2O (1.34–2.61 wt.%) contents with TTG affinity. However, their Cr, and Ni contents and Cr/Ni, Nb/Ta ratios are similar to those of continental crust, and together with high negative εHf(t) values (− 4.87 to − 14.84), suggesting a continental margin arc at ca. 863 Ma. The gabbros at Chishuigou have high TiO2 content (2.74–3.14 wt.%), Zr/Y (3.93–4.24), Ta/Yb (0.19–0.25) ratios and low Zr/Nb ratios (11.37–13.17), similar to the features of within-plate basalts, indicating an intra-continental rift setting at ca. 833 Ma. The granitoids at Tangjiagou exhibit enrichment of LREE, K and Pb, and depletion of Nb, Ta, P and Ti, suggesting an extensional tectonic environment at ca. 794 Ma.The results indicate that Neoproterozoic magmatic rocks in the South Qinling Belt formed before ca. 833 Ma and might represent the amalgamation of the Rodinia supercontinent in an arc-related subduction environment, whereas the magmatic events with the peak ages at ~ 740 Ma during ca. 833–680 Ma represent the breakup of Rodinia. Integrating our new data with those from previous works, we propose a new tectonic model for the evolutionary history of the South Qinling Belt in the Neoproterozoic, including four key stages: 1) an ocean that separated the South Qinling Belt and the Yangtze Block in the Early Neoproterozoic (ca.1000–956 Ma); 2) bidirectional subduction of the oceanic lithosphere during ca. 956–870 Ma; 3) subduction and collision between the South Qinling Belt and the Yangtze Block during ca. 870–833 Ma, thus suggesting that the South Qinling Belt was as a part of the Yangtze Block from this period; and 4) intra-continental rifting during ca. 833–680 Ma, although the blocks were not entirely rifted apart. 相似文献
8.
Malay Mukul Sridevi Jade Anjan Kumar Bhattacharyya Kuntala Bhusan 《Journal of the Geological Society of India》2010,75(1):302-312
Deformation in active mountain belts like the Himalaya is manifested over several spatial and temporal scales and collation
of information across these scales is crucial to an integrated understanding of the overall deformation process in mountain
belts. Computation and integration of geological shortening rates from retrodeformable balanced cross-sections and present-day
convergent rates from deforming mountain belts is one way of integrating information across time-scales. The results from
GPS measurements carried out in NE India indicate that about 15–20 mm/yr of convergence is being accommodated there. Balanced-cross
sections from the NE Himalaya indicate about 350–500 km of shortening south of the South Tibet Detachment (STD). Geothermobarometry
suggest that the rocks south of the STD deformed under peak metamorphic conditions at ∼ 22 Ma. This indicates a geological
convergence rate of ∼ 16–22 mm/yr which appears to be fairly consistent with the GPS derived convergence rates. Approximately
1.5 to 3.5 mm/yr (∼ 10–20 %) of the total N-S of the present-day convergence in the NE Himalaya is accommodated in the Shillong
Plateau. In addition, ∼ 8–9 mm/yr of E-W convergence is observed in the eastern and central parts of the Shillong Plateau
relative to the Indo-Burman fold-thrust belt. Balanced cross-sections in the Indo-Burman wedge together with higher resolution
GPS measurements are required in the future to build on the first-order results presented here. 相似文献
9.
Southern India and Sri-Lanka are the places where "incipient charnockites",i.e.the local transformation of amphibolite-facies gneisses into orthopyroxene-bearing,igneous looking charnockites,have been discovered in the early sixties.The fact that some incipient charnockites occur along a network of brittle fractures,together with CO_2 remnants preserved in mineral inclusions,had called for the role of fluids during charnockite alteration.The present work presents new observations on fluid inclusions and microtextures of incipient charnockites from type localities in southern India.In addition to CO_2-rich fluid inclusions in quartz and feldspar,all of the occurrences have disrupted remnants of concentrated aqueous alkali chloride solutions.CO_2 inclusions are more abundant in paragneiss(Kerala)than in orthogneiss(Karnataka/Tamil Nadu).The finding of disrupted brine inclusions in the Kabbal charnockite is a key link between closely associated massive charnockites and Closepet Granite,both of which also share the brine remnants.All of the occurrences studied here have feldspar or feldspar-quartz microvein networks along grain boundaries of recrystallized quartz,feldspar and orthopyroxene.These metasomatic veins again indicate the action of alkali-exchanging fluids(i.e.,saline solutions).Feldspar microveins,which have been found in most "massive" charnockites,along with the CO_2-rich fluid inclusions,suggest a commonality of incipient charnockite and massive charnockite,both types differing in intensity of interaction with metasomatizing pore fluids. 相似文献
10.
《Gondwana Research》2011,19(4):547-564
The Central India Tectonic Zone (CITZ) is a prominent divide and a major suture zone between the North Indian and South Indian crustal blocks. The resistive upper crust as modeled in the magnetotelluric data from CITZ suggests a dominant tonalite–trdondhjemite–granodiorite composition associated with an accretionary complex characterized by mainly felsic rock components. The highly conductive bodies in this zone might represent mafic/ultramafic-layered intrusives derived from a deeper reservoir of underplated basaltic magma related to the formation of the Cretaceous Deccan flood basalts. The uniformly thick mafic lower crust below the cratons on both sides of the suture is interpreted as the accreted remnants of Archaean and Paleoproterozoic subducted slabs. We redefine the nature of deep faults traversing the CITZ, which were described as steep and penetrating the Moho by previous workers, and classify them as listric faults with gentle dips at depth.Seismic reflection data from the eastern side of the suture suggest a northwestward subduction of the Bhandara Craton. Reflection data from the central part of the CITZ show northerly dip in the southern part suggesting northward subduction of the Dharwar Craton. However, an opposite trend is observed in the northern part of the suture with a southward dip of the Bundelkhand craton. Based on these features, and in conjunction with existing magnetotelluric models, we propose a double-sided subduction history along the CITZ. This would be similar to the ongoing subduction–accretion process in the western Pacific region, which possibly led to the development of paired collision-type and Pacific-type orogens. One important feature is the domal structure along the central part of the suture with a thick felsic crust occurring between mafic and intermediate crust. The high resistivity felsic domain suggests underplated sediments/felsic crust that would have caused the doming. Our model also accounts for the extrusion of regional metamorphic belts at the orogenic core, and the occurrence of high pressure–ultrahigh-temperature paired metamorphic belts within the suture. 相似文献
11.
The Central India Tectonic Zone (CITZ) is a prominent divide and a major suture zone between the North Indian and South Indian crustal blocks. The resistive upper crust as modeled in the magnetotelluric data from CITZ suggests a dominant tonalite–trdondhjemite–granodiorite composition associated with an accretionary complex characterized by mainly felsic rock components. The highly conductive bodies in this zone might represent mafic/ultramafic-layered intrusives derived from a deeper reservoir of underplated basaltic magma related to the formation of the Cretaceous Deccan flood basalts. The uniformly thick mafic lower crust below the cratons on both sides of the suture is interpreted as the accreted remnants of Archaean and Paleoproterozoic subducted slabs. We redefine the nature of deep faults traversing the CITZ, which were described as steep and penetrating the Moho by previous workers, and classify them as listric faults with gentle dips at depth.Seismic reflection data from the eastern side of the suture suggest a northwestward subduction of the Bhandara Craton. Reflection data from the central part of the CITZ show northerly dip in the southern part suggesting northward subduction of the Dharwar Craton. However, an opposite trend is observed in the northern part of the suture with a southward dip of the Bundelkhand craton. Based on these features, and in conjunction with existing magnetotelluric models, we propose a double-sided subduction history along the CITZ. This would be similar to the ongoing subduction–accretion process in the western Pacific region, which possibly led to the development of paired collision-type and Pacific-type orogens. One important feature is the domal structure along the central part of the suture with a thick felsic crust occurring between mafic and intermediate crust. The high resistivity felsic domain suggests underplated sediments/felsic crust that would have caused the doming. Our model also accounts for the extrusion of regional metamorphic belts at the orogenic core, and the occurrence of high pressure–ultrahigh-temperature paired metamorphic belts within the suture. 相似文献
12.
《Gondwana Research》2014,25(1):4-29
The recognition that Earth history has been punctuated by supercontinents, the assembly and breakup of which have profoundly influenced the evolution of the geosphere, hydrosphere, atmosphere and biosphere, is arguably the most important development in Earth Science since the advent of plate tectonics. But whereas the widespread recognition of the importance of supercontinents is quite recent, the concept of a supercontinent cycle is not new and advocacy of episodicity in tectonic processes predates plate tectonics. In order to give current deliberations on the supercontinent cycle some historical perspective, we trace the development of ideas concerning long-term episodicity in tectonic processes from early views on episodic orogeny and continental crust formation, such as those embodied in the chelogenic cycle, through the first realization that such episodicity was the manifestation of the cyclic assembly and breakup of supercontinents, to the surge in interest in supercontinent reconstructions. We then chronicle some of the key contributions that led to the cycle's widespread recognition and the rapidly expanding developments of the past ten years. 相似文献
13.
S. C. Patel S. Ravi S. S. Thakur T. K. Rao K. V. Subbarao 《Mineralogy and Petrology》2006,88(1-2):363-380
Summary Mineralogical characteristics of eclogite xenoliths from three kimberlite pipes (KL2, P2 and P10) of the Proterozoic Wajrakarur
kimberlite field of southern India have been studied. In a rare sample of enstatite eclogite from the KL2 pipe garnet contains
microscopic triangular arrays of needles or blebs of omphacite, enstatite and rutile consistent with an origin by exsolution
parallel to the isometric form {111}. Discrete omphacite grains in the sample contain exsolved needles or blebs of enstatite
and garnet. Kyanite eclogites are abundant in the KL2 pipe which occasionally show a secondary ring of pure celsian around
kyanite grains. Omphacite Na2O contents in the eclogites of the KL2 and P2 pipes are typically between 3 and 6 wt%, and garnet has widely variable composition
with end member ranges of Prp22-81Grs0-47Alm10-30Sps0-1Adr0-5Uv0-3. Eclogites of the P10 pipe comprise chromian omphacite
and garnet. Phase relations in the ACF projection exhibit systematic increase of the Ca-Tschermak’s component in omphacite
from enstatite eclogite through biminerallic eclogite to kyanite eclogite. Garnet-clinopyroxene Fe–Mg geothermometry yields
temperatures mostly in the range of 900–1100 °C. A formerly supersilicic nature of garnet in enstatite eclogite as inferred
from exsolution mineralogy indicates minimum peak pressure of 5 GPa. 相似文献
14.
We discuss the question whether the late Mesoproterozoic and early Neoproterozoic rocks of eastern, central and southern Africa, Madagascar, southern India, Sri Lanka and South America have played any role in the formation and dispersal of the supercontinent Rodinia, believed to have existed between about 1000 and 750 Ma ago. First, there is little evidence for the production of significant volumes of ˜1.4–1.0 Ga (Kibaran or Grenvillian age) continental crust in the Mozambique belt (MB) of East Africa, except, perhaps, in parts of northern Mozambique. This is also valid for most terranes related to West Gondwana, which are made up of basement rocks older than Mesoproterozoic, reworked in the Brasiliano/Pan-African orogenic cycle. This crust cannot be conclusively related to either magmatic accretion processes on the active margin of Rodinia or continental collision leading to amalgamation of the supercontinent. So far, no 1.4–1.0 Ga rocks have been identified in Madagascar. Secondly, there is no conclusive evidence for a ˜1.0 Ga high-grade metamorphic event in the MB, although such metamorphism has been recorded in the presumed continuation of the MB in East Antarctica. In South America, even the Sunsas mobile belt, which is correlated with the Grenville belt of North America, does not include high-grade metamorphic rocks. All terranes with Mesoproterozoic ages seem to have evolved within extensional, aulacogen-type structures, and their compressional deformation, where observed, is normally much younger and is related to amalgamation of Gondwana. This is also valid for the Trans-Saharan and West Congo belts of West Africa.Third, there is also no evidence for post-1000 Ma sedimentary sequences that were deposited on the passive margin(s) of Rodinia. In contrast, the MB of East Africa and Madagascar is characterized by extensive structural reworking and metamorphic overprinting of Archaean rocks, particularly in Tanzania and Madagascar, and these rocks either constitute marginal parts of cratonic domains or represent crustal blocks (terranes or microcontinents?) of unknown derivation. This is also the case for most terranes included in the Borborema/Trans-Saharan belt of northeastern Brazil and west-central Africa, as well as those of the Central Goíás Massif in central Brazil and the Mantiqueira province of eastern and southeastern Brazil.Furthermore, there is evidence for extensive granitoid magmatism in the period ˜840 to <600 Ma whose predominant calc-alkaline chemistry suggests subduction-related active margin processes during the assembly of the supercontinent Gondwana. The location of the main Neoproterozoic magmatic arcs suggests that a large oceanic domain separated the core of Rodinia, namely Laurentia plus Amazonia, Baltica and West Africa, from several continental masses and fragments now in the southern hemisphere, such as the São Francisco/Congo, Kalahari and Rio de La Plata cratons, as well as the Borborema/Trans-Saharan, Central Goiás Massif and Paraná blocks. Moreover, many extensional tectonic events detected in the southern hemisphere continental masses, but also many radiometric ages of granitois that are already associated with the process of amalgamation of Gondwana, are comprised within the 800–1000 age interval. This seems incompatible with current views on the time of disintegration of Rodinia, assumed to have occurred at around 750 Ma. 相似文献
15.
A Neoarchean dismembered ophiolite complex from southern India: Geochemical and geochronological constraints on its suprasubduction origin 总被引:1,自引:0,他引:1
T. Yellappa M. SantoshT.R.K. Chetty Sanghoon KwonChansoo Park P. NageshD.P. Mohanty V. Venkatasivappa 《Gondwana Research》2012,21(1):246-265
Ophiolites, the remnants of ancient oceanic lithosphere, have been described from collisional sutures of various ages with only few examples from Archean terranes. Here we report the discovery of a Neoarchean ophiolite suite from the southern margin of the Dharwar Craton in India, tectonically intercalated within a Neoproterozoic suture zone. The metamorphosed and variably dismembered ophiolite suite, exposed around Devanur, comprises altered ultramafic units, websterite, gabbros, mafic dykes, amphibolites, trondhjemites and pegmatites associated with ferruginous metachert. Structural and petrographic studies indicate that the rocks represent a highly sheared and metamorphosed suite emplaced as a thrust sheet. The major and trace element geochemistry of the mafic dykes indicate derivation from basaltic-andesitic magmas with tholeiitic to calc-alkaline characteristics. The rocks display negative Nb anomalies with enrichment of LILE (K, Rb, Ba, Th) and depletion in HFSE (Ti, Nb, Hf, Tb). The tectonic discrimination of these rocks based on various geochemical plots suggests that they were generated in a suprasubduction zone setting. We present new SHRIMP zircon U-Pb data for two trondhjemite samples from this complex, which yield 238U-206Pb ages of 2528 ± 61 and 2545 ± 56 Ma. The Neoarchean age from the trondhjemites obtained in our study is closely comparable to similar ages obtained in recent studies from magmatic zircons in charnockites and orthogneisses in the area. The suprasubduction zone assemblages and arc magmas suggest a Neoarchean ocean closure along the southern margin of the Dharwar Craton. 相似文献
16.
Songbai Peng T.M. Kusky X.F. Jiang L. Wang J.P. Wang H. Deng 《Gondwana Research》2012,21(2-3):577-594
We report the presence of a Grenvillian ophiolite on the northern margin of the Yangtze craton, drastically changing current ideas about South China's role in plate reconstructions of the Rodinia supercontinent. Strongly deformed amphibolites that locally show relict pillow lavas, isotropic and layered metagabbro, diabase dikes, serpentinized dunite and harzburgite with podiform chromite are dated at circa 1100–985 Ma (U–Pb zircon). The ophiolite is structurally dismembered and thrust over the Proterozoic shelf sequence that covers the north margin of the Yangtze craton, and overrode a flysch to conglomerate-wildflysch unit shed from the ophiolite and a magmatic arc terrane and deposited on the older Yangtze carbonate platform. The youngest clasts in the conglomerate are circa 861–813 Ma (U–Pb zircon), giving a maximum age for ophiolite emplacement. Fine-grained layered amphibolites exhibit slightly depleted-flat type REE curves with no obvious Eu anomalies, and are N-MORB type tholeiites. Metagabbro has typical cumulate textures, flat REE distributions and obvious positive Eu anomalies. The REE characteristics of serpentinized dunites show a U-shape of slight loss of middle REE, representing cumulates metasomatized by LREE slightly enriched mantle. All these features indicate that the metamafic–ultramafic rocks from the Proterozoic Miaowan Formation form a structurally dismembered ophiolite resting above an ophiolitic wildflysch, sitting on top of the Proterozoic shelf sequence on the Yangtze craton. The ophiolite is contemporaneous with an arc sequence preserved to the north on the edge of the Yangtze craton, suggesting that the entire ophiolitic forearc–arc was accreted to the Yangtze craton between 1000 and 850 Ma. Xenocrystic zircons in granite clasts in the basal wildflysch unit have ages consistent with Australian affinity, and detrital zircons in the arc sequence also show derivation from Australia, suggesting that the arc formed on the Australian segment of Rodinia before collision with the Yangtze craton. The discovery of the Proterozoic Miaowan ophiolite supplies important evidence for the existence of a Neoproterozoic oceanic basin on the north margin of the Yangtze craton, and demonstrates that the Yangtze craton first collided with Rodinia on its northern margin, with subsequent accretion of the Cathaysian block on the southern margin of the craton. 相似文献
17.
The Neoproterozoic-Early Cambrian evolution of peri-Gondwanan terranes (e.g. Avalonia, Carolinia, Cadomia) along the northern (Amazonia, West Africa) margin of Gondwana provides insights into the amalgamation of West Gondwana. The main phase of tectonothermal activity occurred between ca. 640–540 Ma and produced voluminous arc-related igneous and sedimentary successions related to subduction beneath the northern Gondwana margin. Subduction was not terminated by continental collision so that these terranes continued to face an open ocean into the Cambrian. Prior to the main phase of tectonothermal activity, Sm-Nd isotopic studies suggest that the basement of Avalonia, Carolinia and part of Cadomia was juvenile lithosphere generated between 0.8 and 1.1 Ga within the peri-Rodinian (Mirovoi) ocean. Vestiges of primitive 760–670 Ma arcs developed upon this lithosphere are preserved. Juvenile lithosphere generated between 0.8 and 1.1 Ga also underlies arcs formed in the Brazilide Ocean between the converging Congo/São Francisco and West Africa/Amazonia cratons (e.g. the Tocantins province of Brazil). Together, these juvenile arc assemblages with similar isotopic characteristics may reflect subduction in the Mirovoi and Brazilide oceans as a compensation for the ongoing breakup of Rodinia and the generation of the Paleopacific. Unlike the peri-Gondwanan terranes, however, arc magmatism in the Brazilide Ocean was terminated by continent-continent collisions and the resulting orogens became located within the interior of an amalgamated West Gondwana. Accretion of juvenile peri-Gondwanan terranes to the northern Gondwanan margin occurred in a piecemeal fashion between 650 and 600 Ma, after which subduction stepped outboard to produce the relatively mature and voluminous main arc phase along the periphery of West Gondwana. This accretionary event may be a far-field response to the breakup of Rodinia. The geodynamic relationship between the closure of the Brazilide Ocean, the collision between the Congo/São Francisco and Amazonia/West Africa cratons, and the tectonic evolution of the peri-Gondwanan terranes may be broadly analogous to the Mesozoic-Cenozoic closure of the Tethys Ocean, the collision between India and Asia beginning at ca. 50 Ma, and the tectonic evolution of the western Pacific Ocean. 相似文献
18.
The Delamerian Orogen formed at the final stages of assembly of the Gondwana supercontinent. This system marks the initiation of subduction of the Pacific oceanic lithosphere along a prior rifted and extended passive margin. This paper explores the magmatic consequences following the early Cambrian initiation at the palaeo-Pacific margin in South Australia (SA) and western Victoria. Our data reveal a 50 Ma syn- to post-Delamerian tectono-magmatic history. Sampled from drill core from beneath the eastern Murray Basin cover in eastern SA, boninitic high Mg andesite from drill hole KTH12 and 516.1 ± 2 Ma quartz diorite suggest that first subduction established a volcanic arc within easternmost SA. Pacific-ward trench retreat then resulted in arc migration to reach the Mt Stavely Belt and Stawell Zones in western Victoria by ~510 Ma where boninitic arc magmatism continued until ~490 Ma. In the SA foreland of the Delamerian Orogen, early (522 ± 4 Ma) alkali basalt gave way to intrusion and extrusion of MORB-like tholeiites of back-arc basalt character.Through much of the middle and late Cambrian the SA Delamerian was in the back-arc and under extension but with periodic compression resulting from periodic Pacific-Australian plate coupling beneath the forearc in western Victoria.In SA syn-tectonic I- and S-type granites reflect interaction of MORB-like back-arc magmas and their transported heat with continental-derived sediment of the Kanmantoo Group. The termination of the Delamerian orogeny at ~490 Ma was accompanied by buoyancy-controlled, exhumation and erosion. This was driven by delamination of a mafic, crustal underplate, whose re-melting at 1.5 to 2 GPa and 1050 °C generated the unique 495 ± 1 Ma Kinchina/Monarto adakite. Delamination resulted in lithospheric mantle thinning and local convective overturn allowing upwelling of the asthenosphere to drive the post-kinematic magmatic phase of the Delamerian, yielding voluminous 490 Ma–470 Ma A-type granites. 相似文献
19.
20.
《Gondwana Research》2014,25(1):190-203
Peninsular India forms a keystone in Gondwana, linking the East African and Malagasy orogens with Ediacaran–Cambrian orogenic belts in Sri Lanka and the Lützow Holm Bay region of Antarctica with similar aged belts in Mozambique, Malawi and Zambia. Ediacaran–Cambrian metamorphism and deformation in the Southern Granulite Terrane (SGT) reflect the past tectonic setting of this region as the leading vertex of Neoproterozoic India as it collided with Azania, the Congo–Tanzania–Bangweulu Block and Kalahari on one side and the Australia/Mawson continent on the other. The high-grade terranes of southern India are made up of four main tectonic units; from north to south these are a) the Salem Block, b) the Madurai Block, c) the Trivandrum Block, and d) the Nagercoil Block. The Salem Block is essentially the metamorphosed Dharwar craton and is bound to the south by the Palghat-Cauvery shear system — here interpreted as a terrane boundary and the Mozambique Ocean suture. The Madurai Block is interpreted as a continuation of the Antananarivo Block (and overlying Palaeoproterozoic sedimentary sequence — the Itremo Group) of Madagascar and a part of the Neoproterozoic microcontinent Azania. The boundary between this and the Trivandrum Block is the Achankovil Zone, that here is not interpreted as a terrane boundary, but may represent an Ediacaran rift zone reactivated in latest Ediacaran–Cambrian times. 相似文献