共查询到20条相似文献,搜索用时 12 毫秒
1.
《International Geology Review》2012,54(4):304-328
To examine the tectonic history of the Taiwan segment of the eastern margin of South China, six rock samples from the Tailuko belt, the metamorphic basement of Taiwan, were selected for zircon SHRIMP dating. The aim was to identify evidence shedding light on the timing of the change from passive to active tectonics for this part of the continental margin since South China separated from the supercontinent of Rodinia. The results lead to two age groups, 190–200 and 88–90 Ma. These age groups, augmented by the previously published age data, suggest that they could have resulted from two Mesozoic accretion/subduction events. In addition, this mid‐late Mesozoic Tailuko belt might have also been reactivated and structurally complicated by the late Cenozoic collision/accretion of the Luzon arc with the Eurasian continent. Records of older tectonic events, such as those derived from the Japanese Islands, are absent in this metamorphic basement. An important finding of this study is the existence of the 191±10 Ma Talun metagranite, the oldest granitic intrusion ever reported in the Taiwan region and along the eastern coast area of South China. In spite of a large age uncertainty, the occurrence of this metagranite is not consistent with the apparent younging trend of Jurassic‐Cretaceous igneous activity toward the coastline in South China, and should be taken into consideration by future studies. 相似文献
2.
Xiaoping Long Chao Yuan Min Sun Inna Safonova Wenjiao Xiao Yujing Wang 《Gondwana Research》2012,21(2-3):637-653
The southern Central Asian Orogenic Belt (CAOB) is characterized by multiple and linear accretionary orogenic collages, including Paleozoic arcs, ophiolites, and accretionay wedges. A complex history of subduction–accretion processes makes it difficult to distinguish the origin of these various terranes and reconstruct the tectonic evolution of the southern CAOB. In order to provide constraints on the accretionary history, we analyzed major and trace element compositions of Paleozoic graywackes from the Huangcaopo Group (HG) and Kubusu Group (KG) in East Junggar. The HG graywackes have relatively low Chemical Index of Alteration (CIA) values (50 to 66), suggesting a source that underwent relatively weak chemical weathering. The identical average Index of Compositional Variability (ICV) values (~ 1.1) for both the KG and HG samples point to an immature source for the Paleozoic graywackes in East Junggar, which is consistent with an andesitic–felsic igneous source characterized by low La/Th ratios and relatively high Hf contents. These graywackes are geochemically similar to continental island arc sediments and therefore were probably deposited at an active continental margin. U–Pb dating of detrital zircons from the lower subgroup of the HG yielded a young age peak at ~ 440 Ma, indicating a post-Early Silurian depositional age. However, the youngest populations of detrital zircons from the KG graywackes and the upper subgroup of the HG yielded 206Pb/238U ages of ~ 346 Ma and ~ 355 Ma, respectively, which suggest a post-Early Carboniferous depositional age. Because of similarities of rock assemblages, these two units should be incorporated into the Early Carboniferous Nanmingshui Formation. The detrital zircon age spectrum of the Early Paleozoic HG graywackes resembles that of the Habahe sediments in the Chinese Altai, which suggests that the ocean between East Junggar and the Chinese Altai was closed before the deposition of the sediments and that the Armantai ophiolite was emplaced prior to the Early Devonian. The differences in age spectra for detrital zircons from the post-Early Carboniferous graywackes in East Junggar and the Harlik arc indicate that the emplacement of the Kalamaili ophiolite postdates the Early Carboniferous. Therefore, a long-lasting northward subduction–accretion process is suggested for the formation of East Junggar and the reconstruction of the Early Paleozoic evolution of the southern CAOB. 相似文献
3.
The southwestern margin of the North China Craton (NCC) is located between the Alxa Terrane to the northwest, the North Qilian Orogen to the west and the North Qinling Orogen to the south. However, the paleogeographic and tectonic evolution for the southwestern part of the NCC in the Late Paleozoic is still poorly constrained. In order to constrain the Late Paleozoic tectonic evolution of the southwestern NCC, we carried out detailed field work and detrital zircon U-Pb geochronological research on Middle–Late Permian sedimentary rocks at the southwestern margin of the NCC. The U-Pb age spectra of detrital zircons from six samples are similar, showing four populations of 2.6–2.4 Ga, 2.0–1.7 Ga, 500–360 Ma and 350–250 Ma. Moreover, on the basis of the weighted-mean age of the youngest detrital zircons (257 ± 4 Ma), combined with the published results and volcanic interlayers, we propose that the Shangshihezi Formation formed during the Middle–Late Permian. Our results and published data indicate that the detrital zircons with age groups of 2.6–2.4 Ga and 2.0–1.7 Ga were likely derived from the Khondalite Belt and Yinshan Block in the northwestern NCC. The junction part between the North Qinling and North Qilian Orogen may provide the 500–360 Ma detrital zircons for the study area. The 350–250 Ma detrital zircons were probably derived from the northwestern part of the NCC. The majority of materials from Shangshihezi Formation within the study area were derived from the northwestern part of the NCC, indicating that the northwestern part of the NCC was strongly uplifted possibly resulting from the progressive subduction and closure of the Paleo-Asian Ocean. A small amount of materials were sourced from southwestern part of the NCC, indicating that the North Qinling Orogen experienced a minor uplift resulting from the northward subduction of the South Qinling terrane. 相似文献
4.
As part of the Xiong'er volcanic belt along the southern margin of the North China Craton, volcanic rocks in the Xiaoshan and Waifangshan areas have a compositional range from the basaltic andesite, andesite, dacite to rhyolite, which display consistent variation trends in terms of their major and trace elements and Sr–Nd isotopic compositions. The variable Yb contents with nearly constant La/Yb and Tb/Yb ratios of volcanic rocks in two areas suggest that the fractional crystallization may have played an important role in the differentiation from the basaltic andesite, through andesite and dacite, to rhyolite. The volcanic rocks in these two areas are characterized by the LILE and LREE enrichments and negative HFSE anomalies, implying hydrous melting of a mantle wedge in a subduction zone. Variable Sr/Nd ratios of the basaltic andesite and andesite are interpreted as a result of the fluid addition from a subducting slab. Non-radiogenic Nd isotopic compositions as well as high Zr/Y and Nb/Y ratios suggest that the volcanic rocks in these areas were derived from an enriched mantle source. On the other hand, the volcanic rocks of the basaltic andesite and andesite possess markedly higher Fe–Ti and HFSE concentrations than those of typical intra-oceanic arcs, implying that the mantle source from which the volcanic rocks were derived was metasomatised by siliceous melts during the Archean to Paleoproterozoic subduction/collision in the Trans-North China Orogen. These data suggest that in the Paleo-Mesoproterozoic, the southern margin of the North China Craton was most likely an Andean-type continental arc in which slab dehydration not only induced the melting of a pre-existing metasomatised mantle source, but also released LILE-enriched fluids into the mantle source, masking the inherent HFSE-enriched characteristics of the volcanic rocks along the southern margin of the craton. The results of this study indicate that the North China Craton, like many other continental components (e.g. North America, Greenland, Baltica, Amazonia, Australia, etc.) of the supercontinent Columbia (Nuna), also underwent a subduction-related outgrowth along its southern margin during the Paleo-Mesoproterozoic time. 相似文献
5.
C.S.Sindhuja Arijit Pahari C.Manikyamba M.Santosh Li Tang Jyotisankar Ray K.S.V.Subramanyam Madhuparna Paul I.Gonzalez-Alvarez P.C.Sruthi 《地学前缘(英文版)》2022,13(1):101257
Cratonic stabilization was a critical crustal process during the Hadean to Archean for the formation of cratons.The understanding of how and where this process took place is significant to evaluate the architecture of continents.The Singhbhum Craton of eastern India has well preserved Precambrian volcanosedimentary sequences.The Simlipal volcano-sedimentary complex of Singhbhum Craton consists of circular bands of mafic volcanic rocks interlayered with quartzites/shales/phyllites.In the present study,we report petrographic and geochemical characteristics of quartzites from Simlipal Complex coupled with U–Pb ages of detrital zircons and zircon geochemistry to understand the provenance and depositional conditions and its connection with the crustal stabilization in the Singhbhum Craton.The quartzites are texturally mature with sub-angular to sub-rounded quartz grains followed by feldspars embedded in a silty matrix.Based on modal compositions and major element ratios,these quartzites are categorized as quartz arenite and sub-lithic arenites.Trace element abundances normalized to Archean Upper Continental Crust(AUCC)display positive anomalies at U,Zr,Hf and negative anomalies at Nb.REE patterns are characterized by negative Eu anomalies(Eu/Eu*=0.47–0.97)and flat HREE suggesting felsic provenance.These quartzites show depletion of LILE,enrichment of HFSE and transition metals relative to AUCC.High weathering indices such as CIA,PIA,and ICV are suggestive of moderate to intense chemical weathering.Low trace element ratios such as Th/Cr,Th/Sc,La/Sc,La/Co and Th/Co indicate a predominantly felsic source for these rocks.The overall geochemical signatures indicate passive margin deposition for these quartzites.Detrital zircons from the Simlipal quartzites yield U–Pb ages 3156±31 Ma suggesting Mesoarchean crustal heritage.The trace element geochemistry of detrital zircons suggests that the zircons are magmatic in origin and possibly derived from the 3.1 Ga anorogenic granite/granitoid provenance of Singhbhum Craton.These observations collectively indicate the Mayurbhanj Granite and Singhbhum Granite(SBG-III)provenance for these quartzites,thereby tracking the stabilization of the eastern Indian Shield/Singhbhum Craton back to Mesoarchean. 相似文献
6.
Jin Liu Chen Zhao Chujie Wang Youbo Peng Han Zhang 《International Geology Review》2017,59(12):1575-1589
Geological mapping and zircon U–Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) dating has identified a Mesoarchean (2857 ± 17 Ma) geological unit in the Luanjiajie area of the northern margin of the North China Craton, within the northern part of Liaoning Province, China. This unit is dominated by tonalitic and trondhjemite gneisses that form part of a typical tonalite–trondhjemite–granodiorite (TTG) rock assemblage. These Mesoarchean gneisses are enriched in Na and depleted in K, yield K2O/Na2O ratios of 0.34–0.50, have Rittmann index (σ) values of 1.54–3.04, and are calc-alkaline. They have EuN/EuN* values of 0.77–1.20 (average of 1.03), indicating that these samples have negligible Eu anomalies, and yield high LaN/YbN values (4.92–23.12). These characteristics indicate that these Mesoarchean gneisses have fractionated rare earth element (REE) compositions that are enriched in the light REE (LREE) and depleted in the heavy REE (HREE), with steeply dipping chondrite-normalized REE patterns. These gneisses are also enriched in Rb, Th, K, Zr, and Hf, and are relatively depleted in Ta, Nb, P, and Ti. In summary, the magma that formed these tonalitic and trondhjemite gneisses was most likely derived from the partial melting of lower-crustal basaltic rocks during subduction. The timing of formation (2.85 Ga) of the Luanjiajie tonalite and trondhjemite gneisses probably represents the timing of initiation of plate tectonics within the LongGang Block during a SE-directed subduction event. The presence of inherited zircons with ages of >3.0 Ga within the Luanjiajie gneisses suggests that this area may contain as yet undiscovered rocks that formed before 3.0 Ga. 相似文献
7.
The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U–Pb and Lu–Hf data on TTG (tonalite–trondhjemite–granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450–1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from −11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120–130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from −30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust. 相似文献
8.
二郎坪单元是位于北秦岭构造带中部的一个年轻地体,发育了大量的花岗岩类,是研究北秦岭早古生代大陆地壳增生的理想场所。本文对北秦岭构造带太平镇北英云闪长岩-奥长花岗岩体和蛮子营黑云母二长花岗岩体开展了岩石学、年代学、地球化学及Sr-Nd-Hf同位素研究。LA-ICP-MS锆石U-Pb测年表明,太平镇北奥长花岗岩和蛮子营黑云母二长花岗岩的形成时代分别为468.8±2.8Ma和462.2±1.9Ma。太平镇北岩体为高硅(71.79%-78.66%)、富钠贫钾(K_(2)O/Na_(2)O=0.27-0.77)的低钾拉斑-钙碱性系列岩石;蛮子营岩体为高硅(72.20%-74.90%)、富钾(K_(2)O/Na_(2)O=0.97-1.36)的高钾钙碱性岩石。两者轻重稀土分异均较明显,均具有富集Rb、Ba、Th、U、K等大离子亲石元素,而亏损Nb、Ta、P、Ti等高场强元素的特征。太平镇北岩体和蛮子营岩体具有类似的锆石εHf(t)值(奥长花岗岩8.2-12.7;黑云母二长花岗岩8.9-13.2)、全岩(87Sr/86Sr)i(奥长花岗岩0.704038-0.705221;二长花岗岩0.703876-0.705371)和全岩εNd(t)值(奥长花岗岩1.49-2.03;黑云母二长花岗岩1.68-1.92)。研究表明,太平镇北岩体岩浆源区为玄武质弧下地壳,岩浆结晶分异作用形成英云闪长岩和奥长花岗岩;蛮子营岩体岩浆为早期形成的英云闪长岩部分熔融形成。太平镇北岩体和蛮子营岩体均形成于洋内弧的构造环境,从弧玄武岩到富钠英云闪长岩、奥长花岗岩再到富钾的二长花岗岩,代表了地幔物质经过多阶段岩浆演化形成富硅富钾长英质地壳的过程。综上,认为洋内弧的形成和岩浆演化是北秦岭大陆地壳增生的重要方式之一。 相似文献
9.
The North China Craton (NCC) has been considered to be part of the supercontinent Columbia. The nature of the NCC western boundary, however, remains strongly disputed. A key question in this regard is whether or not the Alxa Block is a part of the NCC. It is located in the vicinity of the inferred boundary, and therefore could potentially resolve the issue of the NCC's relationship to the Columbia supercontinent. Some previous studies based on the Alxa Block's geological evolution and detrital zircon ages suggested that it is likely not a part of the NCC. The lack of evidence from key igneous rock units, however, requires further constraints on the tectonic affinity of the western NCC and Alxa Block and on the timing of their amalgamation.In this study, new zircon U–Pb age and Hf–O isotopes and whole-rock geochemical and Sr–Nd–Pb isotopic data for the Paleozoic granitoids in or near the eastern Alxa Block were used to constrain the petrogenesis of these rocks and the relationship between the Alxa Block and NCC. Secondary ion mass spectrometry (SIMS) U–Pb zircon dating indicates that the Bayanbulage, Hetun, Diebusige and South Diebusige granitoids were formed at ca. 423 Ma, 345 Ma, 345 Ma and 337 Ma, respectively. The Late Silurian (Bayanbulage) quartz diorites have variable SiO2 (58.0–67.9 wt.%), and low Sr/Y (20–24) values, while the Early Carboniferous (Hetun, Diebusige and South Diebusige) monzogranites have high SiO2 (71.5–76.7 wt.%) and Sr/Y (40–94) values. The Late Silurian quartz diorites display relatively homogeneous and high zircon δ18O (8.5–9.1‰) and εHf(t) (− 8.6 to − 5.3) values, high whole-rock εNd(t) values (− 9.2 to − 7.6) and highly radiogenic Pb isotopes (206Pb/204Pb = 18.13–18.25), whereas the Early Carboniferous monzogranites exhibit relatively low and variable zircon δ18O (5.7–7.2‰) and εHf(t) (− 23.1 to − 7.4) values, low whole-rock initial 87Sr/86Sr (0.7043–0.7070) and εNd(t) (− 19.1 to − 13.5) values and variable Pb isotopes (206Pb/204Pb = 16.06–18.22). The differences in whole rock Nd model ages and Pb isotope compositions of the Paleoproterozoic–Permian rocks in either side of the west fault of the Bayanwulashan–Diebusige complexes suggest that the Alxa Block is not a part of the NCC, and that the western boundary of the NCC is probably located on this fault. Furthermore, the linear distribution of the Early Paleozoic–Early Carboniferous granitoids, the high zircon δ18O values of the Late Silurian quartz diorites, the Early Devonian metamorphism and the foreland basin system formed during the collision between the Alxa Block and the NCC indicate that a Paleozoic cryptic suture zone likely existed in this area and records the amalgamation of the Alxa Block and North China Craton. Together with detrital zircon data, the initial collision was considered to have possibly occurred in Late Ordovician. 相似文献
10.
Lecai Xing Taiyi Luo Zhilong Huang Zhikuan Qian Mingzhong Zhou Hongtao He 《中国地球化学学报》2018,37(3):414-421
Global abrupt climate change from Marinoan snowball Earth to greenhouse Earth, recorded as cap carbonate overlain on diamictite, had shed the first light on Cambrian bio-radiation. The most documented cap carbonate sections are typical with comprehensive δ13C negative values and ubiquitous sedimentary structures, such as tepee-like, sheet-crack etc., which are associated with successive glacial eustatic variation caused by isostatic rebound in shallow-water facies. Here we report a deep-water basinal cap carbonate section with strong negative δ13C values in the southern margin of the Qinling Orogen, Heyu, Chengkou County, Chongqing in China, which consists of massive dolostone with abundant carbonaceous laminae. However, it lacks the sedimentary structure as mentioned above and is overlain by thin-bedded silicious shales and cherts. A K-bentonite bed was discovered within the base of cap carbonates, about 0.7 m above the top of the Marinoan diamictite. Magmatic zircons that were separated from the K-bentonite bed yield a SIMS concordia U–Pb age of 634.1 ± 1.9 Ma (1σ, MSWDCE = 0.31, ProbabilityCE = 1.000, n = 20). The age is in good agreement with previously reported TIMS U–Pb ages for the termination of Marinoan glaciation and provides a geochronological constraint for the Ediacaran successions in the Qinling Orogen. 相似文献
11.
We present the first evidence of an early Paleozoic terrane in the southern Yanbian region, NE China. We used LA-ICP-MS zircon U–Pb and Hf isotope techniques to analyze one plagioclase gneiss and two garnet-bearing two-mica quartz schists from the early Paleozoic Jiangyu Group, as well as two tonalites that intruded the Jiangyu Group. The tonalites yield weighted mean 206Pb/238U zircon crystallization ages of 423 and 422 Ma. Zircons from the Jiangyu Group gneiss and two schist samples yield maximum depositional ages of 439 ± 4, 443 ± 2, and 443 ± 5 Ma, respectively. These constraints, together with the age of the tonalite intrusion, indicate that the Jiangyu Group was deposited between 443 and 423 Ma (i.e., Silurian). In addition, detrital zircon age spectra of the three Jiangyu Group samples exhibit prominent age peaks at 442, 473, 513, 565, 600, 635, 671, 740, 1000, and 1162 Ma, as well as secondary peaks between 1344 and 3329 Ma. The occurrence of the prominent Meso- and Neoproterozoic detrital zircon age populations for the Jiangyu Group, combined with the corresponding zircon Hf isotopic data, reveals that the Jiangyu Terrane has a tectonic affinity with northeastern Gondwana. The early Paleozoic magmatism, as suggested by the medium-K calc-alkaline I-type tonalite intrusion and Jiangyu Group detrital zircon age spectra, corresponds to coeval subduction–accretion events along the southern margin of the eastern Central Asian Orogenic Belt (CAOB). Accordingly, we propose that the Jiangyu Group is part of an exotic terrane that rifted from northeastern Gondwana, drifted northward, and ultimately became involved in the early Paleozoic tectonic evolution of the southern margin of the eastern CAOB after the Early Cambrian. 相似文献
12.
Chao Zhang Chang-Qian Ma Qun-An Liao Jin-Yang Zhang Zhen-Bing She 《International Journal of Earth Sciences》2011,100(7):1665-1684
Several major volcanic zones are distributed across the eastern North China Craton, from northwest to southeast: the Greater
Xing’an Range, Jibei-Liaoxi, Xishan, and Songliao Basins, and the Yanji, Huanghua, and Ludong volcanic zones. The Huanghua
depression within the Bohai Bay Basin was filled by middle Late Mesozoic volcanic rocks and abundant Cenozoic alkaline basalts.
Zircon LA-ICP-MS and SHRIMP U–Pb dating show that basic–intermediate volcanic rocks were extruded in the Early Cretaceous of 118.8 ± 1.0 Ma (weighted mean 206Pb/238U age), before Late Cretaceous acid lavas at 71.5 ± 2.6 Ma. An inherited zircon from andesite has a Paleoprotoerozoic core
crystallization age of 2,424 ± 22 Ma (206Pb/207Pb age) indicating that the basement of the Bohai Bay Basin is part of the North China Craton. Early Cretaceous basic and
intermediate lavas are characterized by strong enrichments in LREE and LILE and depletions in HREE and HFSE, indicating a
volcanic arc origin related to oceanic subduction. Depletion in Zr only occurs in basic and intermediate volcanic rocks, while
depletions in Sr and Ti exist only in acid samples, indicating that the acid series is not genetically related to the basic–intermediate
series. Formation ages and geochemical features indicate that the Late Cretaceous acid lavas are products of crustal remelting
in an extensional regime. Combined information from all these volcanic zones shows that subduction-related volcanic rocks
were generated in the Jibei-Liaoxi and Xishan volcanic zones during the Early Jurassic, about 60 Ma earlier than their analogues
extruded in the Huanghua and Ludong volcanic zones during the Early Cretaceous. This younging trend also exists in the youngest
extension-related volcanism in each of these zones: Early Cretaceous asthenosphere-derived alkaline basalts in the northwest
and Late Cretaceous in the southeast. A tectonic model of northwestward subduction and continuous oceanward retreat of the
Paleo-Pacific Plate is proposed to explain the migration pattern of both arc-related and post-subduction extension-related
volcanic rocks. As the subduction zone continuously migrated, active continental margin and backarc regimes successively played
their roles in different parts of North China during the Late Mesozoic (J1–K2). 相似文献
13.
《International Geology Review》2012,54(16):1964-1983
Extensive magmatism occurred in southeast China during Late Jurassic time, forming large-scale granitic and volcanic rocks associated with non-ferrous, rare earth and rare, radioactive metal deposits. The Shuikoushan Pb–Zn–Au orefield is a typical example located in Hunan Province. This study reports LA-ICP-MS zircon U–Pb ages, whole-rock chemistry, and Sr–Nd–Pb isotopic compositions, and in situ Hf isotopic geochemistry of zircons from the Laomengshan rhyodacite in the Shuikoushan Pb–Zn–Au orefield. Zircon U–Pb dating yields a weighted average age of 156.7 ± 1.6 Ma for the intrusion of the rhyodacite. The rhyodacite samples are mainly shoshonitic series, having metaluminous to weakly peraluminous A/CNK values ranging from 0.96 to 1.09, with moderately high magnesium content (Mg# = 42.4–47.5). Samples display high (87Sr/86Sr)i values (0.71165–0.71176), low εNd(T) values (?10.7 to ?10.3), old Nd model ages (TDM = 1.73–1.86 Ga), and relatively homogeneous Pb isotopic compositions [(206Pb/204Pb)i = 18.365–18.412, (207Pb/204Pb)i = 15.663–15.680, and (208Pb/204Pb)i = 38.625–38.666]. The zircons exhibit enriched εHf(T) values (?16.22 to ?9.86) and old two-stage Hf model ages (TDM2 = 1.82–2.22 Ga). All the above data indicate that the Laomengshan rhyodacite originated from melting Palaeoproterozoic basement, perhaps contaminated by subordinate mantle melts. Intense extension and thinning of the continental lithosphere during Late Jurassic time resulted in melting of upwelling asthenosphere, and mafic mantle melts interacted with and melted Palaeoproterozoic lower crust, thus forming the Laomengshan rhyodacite. 相似文献
14.
GONG Xuejing YANG Zhusen MENG Xiangjin PAN Xiaofei WANG Qian ZHANG Lejun 《《地质学报》英文版》2017,91(3):898-946
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda–Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA–ICP–MS U–Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261–230 Ma); the Middle to Late Triassic (c. 229–210 Ma); the Early to Middle Jurassic (c. 206–165 Ma); the Early Cretaceous (c. 138–110 Ma) and the Late Cretaceous (c. 103–75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda–Weixi magmatic belt, showing arc–like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda–Weixi and Yidun magmatic belts, also demonstrating volcanic–arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garzê–Litang suture, showing the properties of syn–collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc–like and syn–collision–like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A–type granite features. These suggest that the co–collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co–collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda–Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within–plate magmatism in Yidun magmatic belt in late Cretaceous. 相似文献
15.
Qiugen Li Shuwen Liu Zongqi Wang Zhuyin Chu Biao Song Yanbin Wang Tao Wang 《International Journal of Earth Sciences》2008,97(3):443-458
Detrital zircon U–Pb ages, whole-rock Nd isotopic, and geochemical data of metasedimentary rocks from the Wutai Complex in
the Central Zone, North China Craton, have been determined. Compositionally, these rocks are characterized by a narrow variation
in SiO2/Al2O3 (2.78–3.96, except sample 2007-1), variable Eu anomalies, spanning a range from significantly negative Eu anomalies to slightly
positive anomalies (Eu/Eu* = 0.58–1.12), and positive ε
Nd (t) values (0.1–1.97). The 18 detrital zircons of one sample yielded age populations of 2.53 Ga, 2.60 Ga, and 2.70–2.85 Ga.
Geochemical data reveal intermediate source weathering, varying degrees of K-metasomatism in the majority of these metasedimentary
rocks, whereas other secondary disturbances seem to be negligible. Detailed analysis in detrital zircon U–Pb geochronology,
whole-rock Nd isotope, and geochemistry shows that these metasedimentary rocks are derived from a mixed provenance. The predominant
derivation is from the late Archean granitoids and metamorphic volcanics in the Wutai Complex, and there is also input of
older continental remnants, except TTG gneisses, from the Hengshan and Fuping Complexes. The sediments were probably deposited
in fore-arc or/and intra-arc basins within an arc system. 相似文献
16.
ABSTRACT This paper presents geochronological, geochemical, and zircon Hf–O isotope data for late Mesozoic intrusive rocks from the northeastern North China Craton (NCC), with the aim of constraining the late Mesozoic tectonic nature of the NE Asian continental margin. U–Pb zircon data indicate that the Late Mesozoic magmatism in the northeastern NCC can be subdivided into two stages: Late Jurassic (161 ? 156 Ma) and Early Cretaceous (125 ? 120 Ma). Late Jurassic magmatism consists mainly of monzogranites. These monzogranites display high Sr/Y ratios and the tetrad effect in their REE, respectively, and have negative εHf(t) values (?22.6 to ?15.8). The former indicates that the primary magma was generated by partial melting of thickened NCC lower crust, the latter suggests that the monzogranites were crystallized from highly fractionated magma, with the primary magma derived from partial melting of lower continental crust. Combined with the spatial distribution and rock associations of the Late Jurassic granitoids, we conclude that the Late Jurassic magmatism in the eastern NCC formed in a compressional environment related to oblique subduction of the Paleo-Pacific Plate beneath the Eurasia. The Early Cretaceous magmatism consists mainly of granitoids and quartz diorites. The quartz diorites formed by mixing of melts derived from the mantle and lower crust. The coeval granitoids are classified as high-K calc-alkaline and metaluminous to weakly peraluminous series. Some of the granitoids are similar to A-type granites. The granitoid εHf(t) values and TDM2 range from ?14.3 to ?1.4 and 2089 to 1274 Ma, respectively. These values indicate that their primary magma was derived from partial melting of lower crustal material of the NCC, but with a contribution of mantle-derived material. We therefore conclude that Early Cretaceous magmatism in the northeastern NCC occurred in an extensional environment related to westward subduction of the Paleo-Pacific Plate beneath Eurasia. 相似文献
17.
18.
《International Geology Review》2012,54(4):404-423
ABSTRACTThe subduction of oceanic lithosphere during the Carboniferous Period contributed to the formation of widely distributed subduction-related volcanic rocks within the Junggar basin. These volcanic rock associations contain significant clues for understanding the subduction of the Keramaili oceanic lithosphere and the filling of the remnant oceanic basin. Here, we report regional gravity and magnetic data, petrology, geochemistry, and U–Pb dating for Carboniferous volcanic rocks from the North Junggar basin (NJB). Using samples from well Y-1, we distinguish upper and lower volcanic sequences on the basis of selected geochemical data. An isochronous stratigraphic framework of Carboniferous volcano-sedimentary sequences is then constructed and the petrogenesis of these volcanic rocks is discussed. Finally, we propose an explanation for the genesis of these diachronous Carboniferous volcano-sedimentary sequences. The results show that various volcanic rocks are distributed in different areas of the NJB, and mainly consist of calc-alkaline basalt–andesite–dacite assemblages and alkaline basalt–basaltic andesite–andesite assemblages. The geochemical data also demonstrate a binary nature of the Carboniferous volcanic rocks. In the eastern NJB, the lower and upper volcanic sequences are formed during the early and late Carboniferous, respectively. However, all of these volcano-related sequences in the western of the NJB are formed during the late Carboniferous. These volcano-sedimentary sequences exhibit a ‘ladder-style’ of temporospatial evolution from east to west. The geochemical results also indicate that the upper volcanic rocks include island arc components formed in an extensional setting, whereas the lower volcanic rocks were derived from deep crustal cycling metasomatism by various mantle components in a continental arc environment. Earlier closure of the Keramaili oceanic basin and slab roll-back of the Junggar oceanic lithosphere in eastern versus western Junggar basin led to the formation of these diachronous volcano-sedimentary sequences. 相似文献
19.
《International Geology Review》2012,54(16):1959-1977
The Wudaogou plutonic complex is located in the eastern Yanbian area of Jilin Province and consists of hornblende gabbros, gabbroic diorites, and quartz diorites that contain abundant dioritic microgranular xenoliths. Zircon U–Pb dating of gabbroic and quartz diorites yielded weighted mean 206Pb/238Pb ages of 263.5 ± 5.1 Ma (N = 12, mean squared weighted deviation (MSWD) = 0.78, probability = 0.66) and 262.0 ± 5.6 Ma (N = 10, MSWD = 0.50, probability = 0.87), respectively. These units are characterized by high Na2O/K2O (0.33–0.77) ratios and Al2O3 (15.05–18.91 wt%) concentrations and are large ion lithophile element (LILE) (light rare earth element (LREE), Rb, Ba, K, etc.) enriched and high field strength element (HFSE) (Nb, Ta, P, Ti) depleted. They also have initial 87Sr/86Sr values of 0.70192–0.70420 and ?Nd(t) values of +1.9 to +4.7 with two-stage model ages (TDM2) of 653–878 Ma. These characteristics indicate that these rocks formed from calc–alkaline magmas derived from partial melting of a mixture of juvenile crust formed attending the Neoproterozoic subduction of the Palaeo-Asian oceanic crust and lower crustal material. The dioritic xenoliths have whole-rock compositions that are similar to their host rocks, but with negative ?Nd(t) values (?1.6 to ?4.3) and older TDM2 ages (1166–1382 Ma), further indicating that this magmatic event involved older crustal material. Combining these data with existing knowledge of the crustal evolution of this area, we conclude that this complex formed in a post-collisional extensional setting during closure of the Palaeo-Asian Ocean. 相似文献
20.
The Trans-North China Orogen (TNCO), a Paleoproterozoic suture that amalgamates the Western and Eastern Blocks of the North China Craton (NCC), witnessed extensive magmatism and metallogeny during Mesozoic, associated with intraplate tectonics and differential destruction of the cratonic lithosphere. Here we investigate a suite of porphyry dykes surrounding the Mapeng batholith in the Fuping Complex within the TNCO in relation to the Mesozoic gold and molybdenum mineralization. The major element chemistry of these dykes show a range of SiO2 (57.92 to 69.47 wt.%), Na2O (3.20 to 4.77 wt.%), K2O (3.12 to 4.60 wt.%) and MgO (0.51 to 3.67 wt.%), together with high concentration of LREE and LILE, and relatively low contents of HREE and HFSE. The rocks display (La/Yb)N = 13.53–48.11, negative Nb, Ta, Th, U and Zr anomalies, and distinctly positive Ba, K and Sm anomalies. The mineralogy and geochemistry of the porphyry dykes indicate the rocks to be high-K calc-alkaline, and I-type, with adakitic features similar to those of the adjacent Mapeng batholith. The source magma for these rocks was derived from a mixture of reworked ancient continent crust and juvenile mantle materials. The zircon U–Pb data from these rocks show ages in the range of 124 to 129 Ma, broadly coinciding with the emplacement age of the Mapeng intrusion. The inherited zircons of ca. 2.5, 2.0 and 1.8 Ga in the dykes represent capture from the basement rocks during melting. The zircon Lu–Hf isotopic compositions show negative εHf(t) values varying from − 27.8 to − 11.3, with Hf depleted model ages (tDM) ranging from 1228 Ma to 1918 Ma and Hf crustal model ages (tDMC) of 1905 Ma to 2938 Ma, suggesting that the Mesozoic magmatism and associated metallogeny involved substantial recycling of ancient basement rocks of the NCC. We present an integrated model to evaluate the genesis of the porphyry systems and their relation to mineralization. We envisage that these dykes probably acted as stoppers (impermeable barriers) that prevented the leakage and run-off of the ore-bearing fluids, and played a key role in concentrating the gold and molybdenum mineralization. 相似文献