首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We discuss the potential geodynamic connections between Paleozoic arc development along the flanks of the interior (e.g. the Iapetus and Rheic) oceans and the exterior Paleopacific Ocean. Paleozoic arcs in the Iapetus and Rheic oceanic realms are preserved in the Appalachian–Caledonide and Variscan orogens, and in the Paleopacific Ocean realm they are preserved in the Terra Australis Orogen. Potential geodynamic connections are suggested by paleocontinental reconstructions showing Cambrian–Early Ordovician contraction of the exterior ocean as the interior oceans expanded, and subsequent Paleozoic expansion of the exterior oceans while the interior oceans contracted. Subduction initiated in the eastern segment of Iapetus at ca. 515 Ma and Early to Middle Ordovician orogenesis along the flanks of this ocean is highlighted by arc–continent collisions and ophiolite obductions. Over a similar time interval, subduction and orogenesis took place in the exterior ocean and included formation of the Macquarie arc in the Tasmanides of Eastern Australia and the Famatina arc and correlatives in the periphery of the proto-Andean margin of Gondwana. Major changes in the style of subduction (from retreating to advancing) in interior oceans occurred during the Silurian, following accretion of the peri-Gondwanan terranes and Baltica, and closure of the northeastern segment of Iapetus. During the same time interval, subduction in the Paleopacific Ocean was predominantly in a retreating mode, although intermittent episodes of contraction closed major marginal basins. In addition, however, there were major disturbances in the Earth tectonic systems during the Ordovician, including an unprecedented rise in marine life diversity, as well as significant fluctuations in sea level, atmospheric CO2, and 87Sr/86Sr and 13C in marine strata carbonates. Stable and radiogenic isotopic data provide evidence for the addition of abundant mantle-derived magma, fluids and large mineral deposits that have a significant mantle-derived component. When considered together, the coeval, profound changes in the style of tectonic activity and the disturbances recorded in Earth Systems are consistent with the emergence of a superplume during the Ordovician. We speculate that the emergence of a superplume triggered by slab avalanche events within the Iapetus and Paleopacific oceans was associated with the establishment of a new geoid high within the Paleopacific regime, the closure of the interior Rheic Ocean and the amalgamation of Laurussia and Gondwana, which was a key event in the Late Carboniferous amalgamation of Pangea.  相似文献   

2.
笔者根据国内外研究进展和区域地质对比,将特提斯中西段的古生代构造域划分为Iapetus-Tornquist洋加里东造山带、Rheic洋华力西期造山带、乌拉尔-天山中亚造山带和古特提斯Pontides-高加索-Mashhad造山带,并提出4个初步认识:(1)Rodinia超大陆在新元古代裂解形成的原特提斯大洋在欧洲以Ia...  相似文献   

3.
Subduction of both the Iapetus and Rheic oceans began relatively soon after their opening. Vestiges of both the Iapetan and Rheic oceanic lithospheres are preserved as supra-subduction ophiolites and related mafic complexes in the Appalachian–Caledonian and Variscan orogens. However, available Sm–Nd isotopic data indicate that the mantle source of these complexes was highly depleted as a result of an earlier history of magmatism that occurred prior to initiation of the Iapetus and Rheic oceans. We propose two alternative models for this feature: either the highly depleted mantle was preserved in a long-lived oceanic plateau within the Paleopacific realm or the source for the basalt crust was been recycled from a previously depleted mantle and was brought to an ocean spreading centre during return flow, without significant re-enrichment en-route. Data from present-day oceans suggest that such return flow was more likely to have occurred in the Paleopacific than in new mid-ocean ridges produced in the opening of the Iapetus and Rheic oceans. Variation in crustal density produced by Fe partitioning rendered the lithosphere derived from previously depleted mantle more buoyant than the surrounding asthenosphere, facilitating its preservation. The buoyant oceanic lithosphere was captured from the adjacent Paleopacific, in a manner analogous to the Mesozoic–Cenozoic “capture” in the Atlantic realm of the Caribbean plate. This mechanism of “plate capture” may explain the premature closing of the oceans, and the distribution of collisional events and peri-Gondwanan terranes in the Appalachian–Caledonian and Variscan orogens.  相似文献   

4.
http://www.sciencedirect.com/science/article/pii/S1674987111001113   总被引:1,自引:0,他引:1  
The Rheic Ocean was one of the most important oceans of the Paleozoic Era.It lay between Laurentia and Gondwana from the Early Ordovician and closed to produce the vast Ouachita-Alleghanian -Variscan orogen during the assembly of Pangea.Rifting began in the Cambrian as a continuation of Neoproterozoic orogenic activity and the ocean opened in the Early Ordovician with the separation of several Neoproterozoic arc terranes from the continental margin of northern Gondwana along the line of a former suture.The rapid rate of ocean opening suggests it was driven by slab pull in the outboard lapetus Ocean.The ocean reached its greatest width with the closure of lapetus and the accretion of the periGondwanan arc terranes to Laurentia in the Silurian.Ocean closure began in the Devonian and continued through the Mississippian as Gondwana sutured to Laurussia to form Pangea.The ocean consequently plays a dominant role in the Appalachian-Ouachita orogeny of North America,in the basement geology of southern Europe,and in the Paleozoic sedimentary,structural and tectonothermal record from Middle America to the Middle East.Its closure brought the Paleozoic Era to an end.  相似文献   

5.
6.
针对古生代中国中西部华北、华南和塔里木三大陆块在全球洋-陆格局中的古地理位置还存在的争议问题,本论文以国际最新的古地理位置重建研究方法和思路,在对中国三大陆块盆地(鄂尔多斯、四川和塔里木盆地)古生界钻井岩心的古地磁实测研究、全球古生代古地磁数据收集与有效性筛选处理、全球主要地质事件约束等多参数融合分析的基础上,采用最新的 GPlates 板块重建方法,对中国华北、华南和塔里木三大陆块在全球洋-陆格局中的古地理位置进行了重建和定位。研究结果表明:古生代三大陆块主要在全球 ±30° 之间的南北中低纬度之间迁移;三大陆块在古生代至少发生了 3 次不同的顺时针旋转和方位角转换;三大陆块运移速率至少经历了 3 次以上不同高、低速度间的转换与变化过程;响应于古生代全球洋-陆形成与演化,中国三大陆块古构造格局总体上经历了洋盆扩张下的“多岛洋”离散、俯冲碰撞下的离散-汇聚并存、俯冲消减下的差异汇聚隆升、新旧洋盆转换下的差异汇聚-离散、拼合与地幔柱控制下的差异汇聚-离散内部拉张的差异性演变过程。古生代中国三大陆块在全球洋-陆格局中的位置与差异性演变,奠定了中国三大陆块古生代不同性质盆地的形成与演化、不同层系油气烃源、储集原始物质差异性发育的基础。  相似文献   

7.
Unravelling the geology of Pembrokeshire (southwest Wales) has been a rite of passage for British undergraduate students for generations. A favourite destination for an Easter fieldtrip, this complex region contains diverse geology of late Precambrian to Carboniferous age. In the course of a five‐day excursion, a student can uncover evidence for two plate tectonic cycles: the birth of the early Palaeozoic Iapetus Ocean and its death in the Caledonian Orogen, and the reworking of the late Palaeozoic Rheic back‐arc basins on the northern margins of the Variscides. In doing so, there is an opportunity to examine highly variable palaeoenvironments including the deposits of alluvial fans, flood plains, deltas, estuaries, carbonate shelves and deeper marine settings, as well as developing fundamental field skills in geological mapping, structural analysis and sedimentary logging. In this article, I introduce the fascinating story of the geological evolution of Pembrokeshire and describe some of the classic localities useful for basic geological training.  相似文献   

8.
Contrasting modes of supercontinent formation and the conundrum of Pangea   总被引:3,自引:3,他引:0  
Repeated cycles of supercontinent amalgamation and dispersal have occurred since the Late Archean and have had a profound influence on the evolution of the Earth's crust, atmosphere, hydrosphere, and life. When a supercontinent breaks up, two geodynamically distinct tracts of oceanic lithosphere exist: relatively young interior ocean floor that develops between the dispersing continents, and relatively old exterior ocean floor, which surrounded the supercontinent before breakup. The geologic and Sm/Nd isotopic record suggests that supercontinents may form by two end-member mechanisms: introversion (e.g. Pangea), in which interior ocean floor is preferentially subducted, and extroversion (e.g. Pannotia), in which exterior ocean floor is preferentially subducted.The mechanisms responsible remain elusive. Top–down geodynamic models predict that supercontinents form by extroversion, explaining the formation of Pannotia in the latest Neoproterozoic, but not the formation of Pangea. Preliminary analysis indicates that the onset of subduction in the interior (Rheic) ocean in the early Paleozoic, which culminated in the amalgamation of Pangea, was coeval with a major change in the tectonic regime in the exterior (paleo-Pacific) ocean, suggesting a geodynamic linkage between these events. Sea level fall from the Late Ordovician to the Carboniferous suggests that the average elevation of the oceanic crust decreased in this time interval, implying that the average age of the oceanic lithosphere increased as the Rheic Ocean was contracting, and that subduction of relatively new Rheic Ocean lithosphere was favoured over the subduction of relatively old, paleo-Pacific lithosphere. A coeval increase in the rate of sea floor spreading is suggested by the relatively low initial 87Sr/86Sr in late Paleozoic ocean waters. We speculate that superplumes, perhaps driven by slab avalanche events, can occasionally overwhelm top–down geodynamics, imposing a geoid high over a pre-existing geoid low and causing the dispersing continents to reverse their directions to produce an introverted supercontinent.  相似文献   

9.
作为深时数字地球项目的底层框架,全球古地理重建模型包括地质历史时期板块的位置和运动轨迹以及地表特征两方面的内容。过去数十年里,基于不同方法、不同资料的全球古地理重建模型不断涌现。综合古地磁学、古生物学、沉积学、地球物理、地球化学以及地球动力学领域的知识与资料解释古地理,并建立起数字化、可修改、随时间演变的模型是当前常见的方法。文章介绍了国内外全球古地理重建模型的构建方法,并比较了六种主流的重建模型(PaleoMap、PLATES、UNIL、GOLONKA、GMAP和EarthByte),旨在为国内相关领域研究提供参考。文章还介绍了数字化全球重建古地理模型在古气候、板块构造驱动力以及盆地演化方面的应用及知识发现。通过对现存模型的介绍,提出展望,希望在深时数字地球计划的框架下整合国内外优秀科学家,重新设计并建立真正统一的四维古地理重建模型。  相似文献   

10.
秦岭造山带基本组成与结构及其构造演化   总被引:51,自引:7,他引:51  
秦岭造山带主要由三大套构造岩石地层单元组成,经历了三个主要演化阶段:1.前寒武纪古老基底形成演化阶段,2.主造山期(Pt3—T2)板块构造演化阶段,3.中新生代陆内构造演化阶段。在早中元古代以扩张构造体制占主导,形成裂谷与小洋盆兼杂并存的基本构造格局,经10—8亿年晋宁期从扩张垂向加积增生构造体制为主向以侧向增生为主的板块构造体制的过渡,于晚元古代中晚期开始进入板块构造演化阶段。在晚古生代早期由于东古特提斯洋的形成,扬子板块北缘沿秦岭南部扩张打开,形成华北板块、扬子板块及其间的秦岭微板块,沿商丹和勉略二缝合带自南向北俯冲消减碰撞,于中三叠世最后全面陆陆碰撞造山,而后又发生了强烈陆内造山作用,终成今日之秦岭山脉面貌。现今的秦岭造山带岩石圈结构是一正在调整演化中的具流变学分层的“立交桥式”三维结构,上部地壳呈多层逆冲推覆迭置的不对称扇形几何学模式,岩石圈中部则是成水平状流变层,而深部地幔则是最新调整的近南北向的地球物理异常状态与结构,形成从下到上构造方向近乎正交的圈层非耦合关系。  相似文献   

11.
Ophiolites of different Paleozoic ages occur in North-West (NW) Iberia in a rootless suture representing the remnants of the Rheic Ocean. Associated allochthonous terranes in the hanging- and foot-walls of the suture derive from the former margins, whereas the relative autochthon corresponds to the Paleozoic passive margin of northern Gondwana. The Paleozoic tectonic evolution of this part of the circum-Atlantic region is deduced from the stratigraphical, petrological, structural and metamorphic evolution of the different units and their ages. The tectonic reconstruction covers from Cambro-Ordovician continental rifting and the opening of the Rheic Ocean to its Middle to Upper Devonian closure. Then, the Variscan Laurussia–Gondwana convergence and collision is briefly described, from its onset to the late stages of collapse associated with the demise of the orogenic roots.  相似文献   

12.
Asia is key to a richer understanding of many important lithospheric processes such as crustal growth,continental evolution and orogenesis. But to properly decipher the secrets Asia holds, a first-order tectonic context is needed. This presents a challenge, however, because a great variety of alternative and often contradictory tectonic models of Asia have flourished. This plethora of models has in part arisen from efforts to explain limited observations(in space, time or discipline) without regard for the broader assemblage of established constraints. The way forward, then, is to endeavor to construct paleogeographic models that fully incorporate the diverse constraints available, namely from quantitative paleomagnetic data, the plentiful record of geologic and paleobiologic observations, and the principles of plate tectonics. This paper presents a preliminary attempt at such a synthesis concerning the early Paleozoic tectonic history of Asia. A review of salient geologic observations and paleomagnetic data from the various continental blocks and terranes of Asia is followed by the presentation of a new, full-plate tectonic model of the region from middle Cambrian to end-Silurian time(500-420 Ma). Although this work may serve as a reference point, the model itself can only be considred provisional and ideally it will evolve with time. Accordingly, all the model details are released so that they may be used to test and improve the framework as new discoveries unfold.  相似文献   

13.
万天丰  朱鸿 《现代地质》2007,21(1):1-13
在尊重比较可靠的、测试精度较高的地块古地磁数据,重视生物古地理与地质构造演化史的相似性和协调性等原则的基础上,笔者编制了中国大陆及邻区各陆块古生代和三叠纪的古地磁数据表,并采用类似的比例尺,将中国各陆块放到相应的全球古大陆复原图上去。由此可以清晰地看出,在古生代早期全球各大陆的主要部分都位于赤道附近及南半球,大致表现为沿纬度、呈东西向排列的特征,中国及邻区的小陆块群在古生代始终都处在劳伦大陆、西伯利亚与冈瓦纳大陆之间;随着西伯利亚大陆的快速北移,在劳伦大陆与冈瓦纳大陆的西部地区发生南北向拼合,亚皮特斯洋和里克洋的消亡,到古生代晚期形成统一的泛大陆;而冈瓦纳大陆的东部(澳大利亚和印度等)则逐渐向南移动、离散,地壳张开,构成古特提斯洋;中国及邻区的小陆块群则一直处在古特提斯洋中,保持离散状态,总体上缓慢地向北运移,并逐渐转为近南北向的排列方式,石炭纪到三叠纪才在天山-兴安岭、昆仑山、秦岭-大别、金沙江和绍兴-十万大山等地段发生一系列局部性的陆陆碰撞,使中国大陆地块的大部分逐渐并入欧亚大陆。  相似文献   

14.
Franz and Lucassen (2000) rise several important points, which are primarily related to the Puncoviscana belt role in northwestern Argentina. Their discussion consisted of three major overviews: (a) the Puncoviscana belt evolution related to the Proterozoic Rodinia fragmentation; (b) the geochemical data associated with volcanic rock interlayered in the Puncoviscana formation and (c) the central Andes residual gravity field interpretations. It will be shown in this reply that their claim against our interpretation is the consequence of an equivocal handling of the geological times, the tectonic episodes and the associated lithologies in the wide context of the Puncoviscana belt type paleogeographic connections. Some present geochronological data oldest that 1.1 to 0.9 Ga. are consistent with an autochthonous basement integrated by very ancient protoliths adjoins to the typical Grenville belt rocks before the Rodinia fragmentation. The autochthonous condition must be interpreted only as the Rodinia supercontinental reality, that after remains into the new Laurentia-Cabalonia-Pannotia continental units. In this context, the Theia, Candelaria, Iapetus and other proto-oceanic rifts begins an allochthonous reality for lot of the drifting crustal slivers during the Pannotian Cycle (Late Proterozoic - Early Paleozoic) in the break-up geotectonic times of the post-Rodinian supercontinent. The Puncoviscana geochemical interpretation presented in this reply shows an very clear plate tectonic evolution in various steps: (1) the proto-rift lineaments from the extensional regimen of the Candelaria triple point (tDM ~0.70 to 0.78 Ga.); (2) the passive continental margin sequences (700 to 600 Ma); and (3) the magmatic arc in the compressive regimen belonging to the Pampean orogeny (580 to 534 Ma).  相似文献   

15.
中国存在多个时代、多种类型的造山带,发育了多种多样的俯冲增生杂岩带,经历了复杂多变的洋陆转换过程,如何揭示包括洋内演化和洋陆转换等的造山过程一直是一个难题。为此,中国区域地质志项目组提出了洋板块地质研究,试图通过对造山系俯冲增生杂岩带、蛇绿岩带等洋岩石圈地质建造、结构构造进行系统研究,再造洋岩石圈从洋中脊形成到海沟俯冲消亡、转换成陆的地质作用全过程。本文介绍了洋板块地质提出到现今主要的研究进展,包括四个方面。一是,初步建立了洋板块地质格架,洋板块地质的研究包括俯冲增生杂岩的物质组成、蛇绿岩类型及其形成的构造环境、洋板块沉积组合和洋板块地层、岛弧火成岩组合、洋陆转换的过程和机制、洋-陆转换过程与成矿作用等重要内容。二是,识别出北山牛圈子—马鬃山、嘉荫—依兰、陈蔡、东昆仑布青山—阿尼玛卿、鹰扬关、大洪山、甘孜—理塘、新余神山—新干神政桥等中国陆域62条主要的俯冲增生杂岩带/增生杂岩带。俯冲增生杂岩带是认识、理解造山系时空结构、组成和演化的关键。三是,在祁连地区识别出较为完整的洋内弧岩石组合。洋盆演化形成大陆过程中的洋内俯冲带是大陆的诞生地,洋内俯冲作用形成的洋内弧是洋盆演化形成大陆的初始弧。洋内弧火成岩组合序列的发现为研究洋陆转换过程提供了岩石学依据。祁连造山带是洋板块地质研究的经典地区之一。研究显示,当金山出露完整的洋内弧岩石组合,这些岩石记录了洋内弧从初始俯冲到发育成熟的全过程,为探讨祁连造山带原特提斯洋构造演化提供了新的依据。四是,制定了洋板块地质构造图编图方案,编图内容主要包括俯冲增生杂岩带、岩浆弧、高压-超高压带、俯冲期和碰撞期构造形变要素和构造演化等。编图单元分为三级:一级为俯冲增生杂岩带;二级为岩片;三级包括基质和岩块。编图过程中需要明确岩浆弧的性质和归属,明确图面上某一岩浆弧与哪个蛇绿混杂岩或大洋配套。图面上对于构造要素的表达重点是区分俯冲和碰撞阶段。通过构造变形的时态、相态、位态研究,识别俯冲期和碰撞期的构造变形形迹。这是洋板块地质初步的研究成果,以俯冲增生杂岩带的研究为基础,探讨特提斯洋等大洋的演化、中国东部古太平洋/太平洋转换与中新生代成矿关系等重大基础地质问题是洋板块地质研究下一步的工作方向。目前,洋板块地质的研究还处于试点阶段,洋板块地质与成矿的成因联系等重大地质问题尚需今后更深入地研究。  相似文献   

16.
       古地磁学是进行古板块运动演化过程和古地理重建研究最有效的定量方法之一。在统计全球古地磁数据库(GPMDB) 和前人发表数据的基础上,根据国际上通用的古地磁数据可靠性判别标准--Van der Voo (1990)判据,本文对波罗的板 块(Baltica)和西伯利亚板块(Siberia)古生代古地磁数据进行了重新分析和筛选,利用GMAP 软件重建了两个板块古生代 视极移曲线和古地理方位,对它们的构造演化和运动学特征进行对比分析,获得了几点新认识,即两板块在古生代期间发 生的三次汇聚(晚奥陶世、早石炭世和晚二叠世)过程符合牛顿运动学原则(板块之下是具有很大粘度的地幔软流圈,非 理想条件下不可能完全遵守牛顿运动学原则),且具有三种不同类型的运动学现象:晚奥陶世(~450 Ma),波罗的和西伯利 亚板块同向北漂移并汇聚,纬向速度较快的板块波罗的将动能传给了纬向速度较慢的西伯利亚板块;早石炭世(~360 Ma), 波罗的和西伯利亚板块相向漂移并汇聚,西伯利亚板块向南的板块纬向速度转为向北,波罗的板块向北的纬向速度逐渐减 小并转为向南;晚二叠世(~255 Ma),波罗的和西伯利亚板块再次相向漂移并汇聚,动能抵消,纬向漂移速率都变为零。  相似文献   

17.
Accurately mapping plate boundary types and locations through time is essential for understanding the evolution of the plate-mantle system and the exchange of material between the solid Earth and surface environments.However,the complexity of the Earth system and the cryptic nature of the geological record make it difficult to discriminate tectonic environments through deep time.Here we present a new method for identifying tectonic paleo-environments on Earth through a data mining approach using global geochemical data.We first fingerprint a variety of present-day tectonic environments utilising up to 136 geochemical data attributes in any available combination.A total of 38301 geochemical analyses from basalts aged from 5-0 Ma together with a well-established plate reconstruction model are used to construct a suite of discriminatory models for the first order tectonic environments of subduction and mid-ocean ridge as distinct from intraplate hotspot oceanic environments,identifying 41,35,and 39 key discriminatory geochemical attributes,respectively.After training and validation,our model is applied to a global geochemical database of 1547 basalt samples of unknown tectonic origin aged between 1000-410 Ma,a relatively ill-constrained period of Earth’s evolution following the breakup of the Rodinia supercontinent,producing 56 unique global tectonic environment predictions throughout the Neoproterozoic and Early Paleozoic.Predictions are used to discriminate between three alternative published Rodinia configuration models,identifying the model demonstrating the closest spatio-temporal consistency with the basalt record,and emphasizing the importance of integrating geochemical data into plate reconstructions.Our approach offers an extensible framework for constructing full-plate,deeptime reconstructions capable of assimilating a broad range of geochemical and geological observations,enabling next generation Earth system models.  相似文献   

18.
《International Geology Review》2012,54(11):1058-1066
The plate-tectonic evolution of the Tarim basin and nearby western Tianshan region during Paleozoic time is reconstructed in an effort to further constrain the tectonic evolution of Central Asia, providing insights into the formation and distribution of oil and gas resources. The Tarim plate developed from continental rifting that progressed during early Paleozoic time into a passive continental margin. The Yili terrane (central Tianshan) broke away from the present eastern part of Tarim and became a microcontinent located somewhere between the Junggar ocean and the southern Tianshan ocean. The southern Tianshan ocean, between the Tarim craton and the Yili terrane, was subducting beneath the Yili terrane from Silurian to Devonian time. During the Late Devonian-Early Carboniferous, the Tarim plate collided with the Yili terrane by sinistral accretional docking that resulted in a late Paleozoic deformational episode. Intracontinental shortening (A-type subduction) continued through the Permian with the creation of a magmatic belt.  相似文献   

19.
PsammichnitesDictyodora为古生代海相环境典型的弯曲带状遗迹,是由具有虹吸器官的生物所形成的遗迹化石,一般被归入到psammichnitids。通过文献资料调研和样品分析,对古生代PsammichnitesDictyodora的形态功能对比和时空分布特征进行研究。结果表明: (1)Psammichnites通常具有短、浅的凹槽; 随着时间的推移,Dictyodora的壁高却逐渐增大。(2)Psammichnites主要分布于正常浅海环境; Dictyodora大都分布于深海环境,也有个别类型分布于浅海环境。(3)Psammichnites的种级多样性在石炭纪浅海环境呈快速增加,属于晚期辐射类型,但Psammichnites gigas广泛分布于寒武纪早期,具有很好的地层指示意义; Dictyodora的种级多样性在奥陶纪快速增加,属于早期辐射类型。(4)寒武纪—奥陶纪,PsammichnitesDictyodora主要分布于南半球中高纬度的Iapetus和Rheic大洋,其中Laurussia大陆的形成以及Iapetus和Rheic大洋的闭合对其古地理分布具有显著影响; 自石炭纪开始,PsammichnitesDictyodora均向新的空白生态位进行迁移,反映出造迹生物对于新生态位的适应和迁移均受环境变迁的强烈影响; 二叠纪之后,PsammichnitesDictyodora在地层中没有发现,可能暗示它们的造迹生物均在二叠纪末生物大灭绝事件中遭受了毁灭性打击。上述对PsammichnitesDictyodora行为习性演化特征及其生物古地理迁移特征的系统总结和归纳,可为从精细和精深角度深入解读遗迹化石所反映的遗迹类群的演化生态学和生物古地理迁移特征提供新资料和新认识。  相似文献   

20.
《China Geology》2022,5(4):555-578
The eastern Central Asian Orogenic Belt (CAOB) in NE China is a key area for investigating continental growth. However, the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood. NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts. The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities, respectively. In contrast, the Xing ’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes. These blocks and terranes were separated by the Xinlin-Xiguitu, Heilongjiang, Nenjiang, and Solonker oceans from north to south, and these oceans closed during the Cambrian (ca. 500 Ma), Late Silurian (ca. 420 Ma), early Late Carboniferous (ca. 320 Ma), and Late Permian to Middle Triassic (260 –240 Ma), respectively, forming the Xinlin-Xiguitu, Mudanjiang-Yilan, Hegenshan-Heihe, Solonker-Linxi, and Changchun-Yanji suture zones. Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean (PAO), namely, the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans. The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west. The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south. The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner. A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO, which led to “soft collision” of tectonic units on each side, forming huge accretionary orogenic belts in central Asia.©2022 China Geology Editorial Office.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号