首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metamorphic basement and its Neoproterozoic to Cambrian cover exposed in the Sierra de Pie de Palo, a basement block of the Sierras Pampeanas in Argentina, lie within the Cuyania terrane. Detrital zircon analysis of the cover sequence which includes, in ascending order, the El Quemado, La Paz, El Desecho, and Angacos Formations of the Caucete Group indicate a Laurentian origin for the Cuyania terrane. The lower section represented by the El Quemado and La Paz Formations is interpreted as having an igneous source related to a rift setting similar to that envisioned for the southern and eastern margins of Laurentia at approximately 550 Ma. The younger strata of the El Desecho Formation are correlative with the Cerro Totora Formation of the Precordillera, and both are products of rift sedimentation. Finally, the Angacos Formation and the correlative La Laja Formation of the Precordillera were deposited on the passive margin developed on the Cuyania terrane. The maximum depositional ages for the Caucete Group include ca. 550 Ma for the El Quemado Formation and ca. 531 Ma for the El Desecho Formation. Four different sediment sources areas were interpreted in the provenance analysis. The main source is crystalline basement dominated by early Mesoproterozoic igneous rocks related to the Granite-Rhyolite province of central and eastern Laurentia. Possible source areas for 1600 Ma metamorphic detrital zircons of the Caucete Group include the Yavapai-Mazatzal province (ca. 1800–1600 Ma) of south-central to southwestern Laurentia. Younger Mesoproterozoic zircon is likely derived from Grenville-age medium- to high-grade metamorphic rocks and subordinate igneous rocks that form the basement of Cuyania as well as the southern Grenville province of Laurentia itself. Finally, Neoproterozoic igneous zircon in the Caucete Group records different magmatic pulses along the southern Laurentian margin during opening of Iapetus and break-up of Rodinia. Northwestern Cuyania terrane includes a small basement component derived from the Granite-Rhyolite province of Laurentia, which was the source for detrital zircons found in the middle Cambrian passive margin sediments of Cuyania.  相似文献   

2.
The evolution of the provenance areas for Late Neoproterozoic, Cambrian and Early Ordovician sedimentary and meta-sedimentary rocks of north central and northwest Argentina is discussed using 123 maximum ages of detrital zircons from 42 samples from this and previously published studies. Most detrital zircon ages fall into two groups: 1,200–900 Ma and 670–545 Ma. These ages are essentially identical for the non- to very low grade metamorphic late Neoproterozoic to Early Cambrian Puncoviscana Formation and the low to high grade metamorphic rocks of Eastern Sierras Pampeanas. Hence, both units are related to similar provenance areas at the same time of sedimentation. The time span from zircon crystallization in the Earth’s crust to exhumation and erosion may be very long. This is important when determining maximum ages of sedimentary rocks. Variation of zircon maxima may also be influenced by concurrent sedimentary cover of proposed provenance areas. For the late Mesoproterozoic to early Neoproterozoic zircon age group, an active mountain range of the southwest Brazilian Sunsás orogen is the most probable provenance area. The younger, late Neoproterozoic zircons are related to the continuously developing mountains of the Brasiliano orogen of southwest and south central Brazil. Young zircons, up to 514 Ma, from fossil-bearing Puncoviscana and Suncho Formation outcrops are related to late Early Cambrian volcanism contemporaneous with sedimentation. This situation continues through the Late Cambrian to the Early Ordovician, but the Sunsás orogen provenance diminishes as possible Río de la Plata craton origins become important.  相似文献   

3.
New U‐Pb and 40Ar/39Ar age data from deformed and undeformed granitoids of the North Patagonian Massif establish the presence of Early Cambrian and widespread Ordovician magmatism in northern Patagonia. These data suggest that the Pampean (Cambrian) and Famatinian (Ordovician) magmatic belts of the Sierras Pampeanas are continuous into Patagonia. SHRIMP U‐Pb age spectra from detrital zircons of Cambro‐Ordovician metasedimentary rocks show patterns very similar to those from equivalent units of the Pampia block, over 500 km farther north. These results suggest that the North Patagonian Massif was likely part of the South American margin of Gondwana in the early Palaeozoic and strongly argue in favour of an authochtonous or para‐autochthonous origin for this block.  相似文献   

4.
The Eastern Sierras Pampeanas were structured by three main events: the Ediacaran to early Cambrian (580?C510?Ma) Pampean, the late Cambrian?COrdovician (500?C440?Ma) Famatinian and the Devonian-Carboniferous (400?C350?Ma) Achalian orogenies. Geochronological and Sm?CNd isotopic evidence combined with petrological and structural features allow to speculate for a major rift event (Ediacaran) dividing into two Mesoproterozoic major crustal blocks (source of the Grenvillian age peaks in the metaclastic rocks).This event would be coeval with the development of arc magmatism along the eastern margin of the eastern block. Closure of this eastern margin led to a Cambrian active margin (Sierra Norte arc) along the western margin of the eastern block in which magmatism reworked the same crustal block. Consumption of a ridge segment (input of OIB signature mafic magmas) which controlled granulite-facies metamorphism led to a final collision (Pampean orogeny) with the western Mesoprotrozoic block. Sm?CNd results for the metamorphic basement suggest that the T DM age interval of 1.8?C1.7?Ga, which is associated with the less radiogenic values of ??Nd(540) (?6 to ?8), can be considered as the mean average crustal composition for the Eastern Sierras Pampeanas. Increasing metamorphic grade in rocks with similar detrital sources and metamorphic ages like in the Sierras de Córdoba is associated with a younger T DM age and a more positive ??Nd(540) value. Pampean pre-540?Ma granitoids form two clusters, one with T DM ages between 2.0 and 1.75?Ga and another between 1.6 and 1.5?Ga. Pampean post-540?Ma granitoids exhibit more homogenous T DM ages ranging from 2.0 to 1.75?Ga. Ordovician re-activation of active margin along the western part of the block that collided in the Cambrian led to arc magmatism (Famatinian orogeny) and related ensialic back-arc basin in which high-grade metamorphism is related to mid-crustal felsic plutonism and mafic magmatism with significant contamination of continental crust. T DM values for the Ordovician Famatinian granitoids define a main interval of 1.8?C1.6, except for the Ordovician TTG suites of the Sierras de Córdoba, which show younger T DM ages ranging from 1.3 to 1.0?Ga. In Devonian times (Achalian orogeny), a new subduction regime installed west of the Eastern Sierras Pampeanas. Devonian magmatism in the Sierras exhibit process of mixing/assimilation of depleted mantle signature melts and continental crust. Achalian magmatism exhibits more radiogenic ??Nd(540) values that range between 0.5 and ?4 and T DM ages younger than 1.3?Ga. In pre-Devonian times, crustal reworking is dominant, whereas processes during Devonian times involved different geochemical and isotopic signatures that reflect a major input of juvenile magmatism.  相似文献   

5.
Crystalline rocks from the Sierra de Comechingones, eastern Sierras Pampeanas, evolved through three distinct orogenic cycles during the Eopalaeozoic: (1) the first tectono-thermal event named Pampean orogeny (550 to 505 Ma), which peaked in the Early Cambrian, was responsible for extensive metamorphism, partial melting, juvenile magmatism, rapid decompression, and persistent tectonic activity. Large part of the crustal section that was residing at middle levels (c. 27 km) was heated above 800 °C during the thermal peak stage of the Pampean orogeny; decompression of the Pampean orogen's core took place at this high temperature. The exhumation mechanism that assisted rapid uplifting combined the effects of ongoing tectonic forces with a buoyant instability created by a large amount of anatectic magmas in the middle to lower crust. (2) Beginning at the Early Ordovician, the Famatinian orogeny produced an overall shortening, causing pervasive textural reworking of the Cambrian metamorphic sequences under a high-strain regime. By being adjacent to the Famatinian magmatic arc, the western border of the Cambrian crystalline package absorbed imposed deformation along a crustal scale ductile shear zone. Within this zone, the high-grade metamorphic rocks were reworked and re-hydrated to lower temperature assemblages (<600°C and 3–6 kbar). Early Ordovician subduction-related igneous activity, even though manifested as small plutons, intruded Cambrian crystalline sequences, and experienced textural reworking during Late Famatinian tectonic exhumation. Late Famatinian convergence resulted in west-vergent ductile shear zones that placed Cambrian onto Ordovician crystalline sequences. (3) During post-Famatinian times (360–400 Ma) enduring crustal perturbation produced intra-crustal-derived granitic magmatism. West- to northwest-directed thrusting was concentrated in belts nucleated along crustal-scale tectonic boundaries formed between older tectono-stratigraphic units. As a result, Devonian anatectic granites were formed and tectonically extruded among Pampean and Famatinian crystalline sequences. The post-Famatinian event is also characterised by the intrusion of batholith-scale monzogranites into Pampean and Famatinian crystalline sequences residing in the upper crust.

Crystalline rocks currently exposed in the Sierra de Comechingones show that they crystallised and were exhumed in a setting where tectono-thermal activity lasted, even though it might have waned, until the Middle Palaeozoic. From the latest Neoproterozoic (c. 550 Ma) until the Late Devonian (c. 360 Ma) tectonic activity was intermittently acting, indicating continuous convergence along the proto-Pacific margin of Gondwana.  相似文献   


6.
The Anakie Metamorphic Group is a complexly deformed, dominantly metasedimentary succession in central Queensland. Metamorphic cooling is constrained to ca 500 Ma by previously published K–Ar ages. Detrital‐zircon SHRIMP U–Pb ages from three samples of greenschist facies quartz‐rich psammites (Bathampton Metamorphics), west of Clermont, are predominantly in the age range 1300–1000 Ma (65–75%). They show that a Grenville‐aged orogenic belt must have existed in northeastern Australia, which is consistent with the discovery of a potential Grenville source farther north. The youngest detrital zircons in these samples are ca 580 Ma, indicating that deposition may have been as old as latest Neoproterozoic. Two samples have been analysed from amphibolite facies pelitic schist from the western part of the inlier (Wynyard Metamorphics). One sample contains detrital monazite with two age components of ca 580–570 Ma and ca 540 Ma. The other sample only has detrital zircons with the youngest component between 510 Ma and 700 Ma (Pacific‐Gondwana component), which is consistent with a Middle Cambrian age for these rocks. These zircons were probably derived from igneous activity associated with rifting events along the Gondwanan passive margin. These constraints confirm correlation of the Anakie Metamorphic Group with latest Neoproterozoic ‐ Cambrian units in the Adelaide Fold Belt of South Australia and the Wonominta Block of western New South Wales.  相似文献   

7.
A‐type orthogneisses of mid Neoproterozoic age (774 ± 6 Ma, U‐Pb SHRIMP zircon age), are reported for the first time from the Grenvillian basement of the Western Sierras Pampeanas in Argentina. These anorogenic meta‐igneous rocks represent the latest event of Rodinia break‐up so far recognized in Grenvillian basement exposures across Andean South America. Moreover, they compare well with A‐type granitoids and volcanic rocks along the Appalachian margin of Laurentia (Blue Ridge), thus adding to former evidence that the Western Sierras Pampeanas Grenvillian basement was left on the conjugate rifted margin of eastern Laurentia during Rodinia break‐up and the consequent opening of the Iapetus ocean.  相似文献   

8.
U–Pb zircon analyses from three meta-igneous and two metasedimentary rocks from the Siviez-Mischabel nappe in the western Swiss Alps are presented, and are used to derive an evolutionary history spanning from Paleoarchean crustal growth to Permian magmatism. The oldest components are preserved in zircons from metasedimentary albitic schists. The oldest zircon core in these schists is 3.4 Ga old. Detrital zircons reveal episodes of crustal growth in the Neoarchean (2.7–2.5 Ga), Paleoproterozoic (2.2–1.9 Ma) and Neoproterozoic (800–550 Ma, Pan-African event). The maximum age of deposition for the metasedimentary rocks is given by the youngest detrital zircons within both metasedimentary samples dated at ~490 Ma (Cambrian-Ordovician boundary). This is in the age range of two granitoid samples dated at 505 ± 4 and 482 ± 7 Ma, and indicates sedimentation and magmatism in an extensional setting preceding an Ordovician orogeny. The third felsic meta-igneous rock gives a Permian age of intrusion, and is part of a long-lasting Variscan to post-Variscan magmatic activity. The zircons record only minor disturbance of the U–Pb system during the Alpine orogeny.  相似文献   

9.
To constrain the tectonic evolution of the eastern segment of the Paleo-Asian Ocean, we conducted zircon U–Pb-Hf dating and whole-rock geochemical analyses for metasedimentary rocks from the Dongnancha Formation in the Huadian area in central Jilin Province, Northeastern (NE) China. Most detrital zircons from the metasedimentary rocks display clear oscillatory zoning and striped absorption in cathodoluminescence (CL) images and have Th/U ratios of 0.1–1.8, thus indicating a magmatic origin. U–Pb isotopic dating using LA-ICP-MS method for zircon samples from the metasedimentary rocks reveals that the depositional age can be constrained to the period between 250 and 222 Ma. Geochemical data reveal low to intermediate degrees of weathering of the source material and compositionally low to intermediate maturity. Detailed analyses of detrital zircon U–Pb-Hf geochronology and geochemistry show that these metasedimentary rocks are derived from a bidirectional provenance. The predominant derivation is from Permian–Early Triassic felsic-intermediate igneous rocks of central Jilin Province and adjacent regions in the northern margin of the North China Craton, although felsic-intermediate igneous rocks and continental material in the eastern segment of the Central Asian Orogenic Belt from the Cambrian–Carboniferous represent additional sources and minor amounts of Paleoproterozoic–Neoproterozoic material have been input from the North China Craton. A number of geochemical indicators and tectonic discrimination diagrams collectively indicate a continental island arc-active continental margin setting for the deposition of the protoliths of the metasedimentary rocks. The results of geochemical and geochronological analyses of the provenance and tectonic setting of the metasedimentary rocks indicate that the Dongnancha Formation was likely deposited in an intermountain basin in a post-orogenic fast uplift setting, suggesting that the final closure of the eastern segment of the Paleo-Asian Ocean in the Huadian area of central Jinlin Province likely occurred between the Early Triassic and Middle Triassic.  相似文献   

10.
《International Geology Review》2012,54(16):1945-1963
The basement of the northeastern periphery of the East-European Craton (ЕЕС) is composed of volcanic-sedimentary sequences, volcanic rocks, granitoids, and rare ophiolite complexes. Geochronological data constrain their age from ca. 750 to 500 Ma, and there is a consensus that these rocks represent relicts of a late Neoproterozoic–Cambrian Pre-Uralides–Timanides orogeny. Combining new integrated isotopic (U-Pb, Lu-Hf) and trace-element data (TerraneChrone® approach) on detrital zircons from sandstones of the lower Cambrian Brusov Formation in the Mezen basin (White Sea region in the northeastern periphery of the EEC) with available studies on detrital zircons from Neoproterozoic–middle Cambrian (meta)sedimentary units of the northeastern periphery of the EEC allow us to conclude that (1) the onset of the Arctida–Baltica collision can now be constrained to the time interval between ca. 540 and 510 Ma and (2) the Ediacaran–early Cambrian Mezen sedimentary basin was a basin on the Timanian passive margin of Baltica up to 540 Ma, but was not a foreland basin of the Pre-Uralides–Timanides orogen.  相似文献   

11.
《International Geology Review》2012,54(14):1754-1768
The Wudaogou Group in eastern Yanbian, Northeast China, plays a key role in constraining the timing and eastward termination of the Solonker–Xra Moron River–Changchun Suture, where the Palaeo-Asian Ocean closed. The Wudaogou Group consists of schist, gneiss, amphibolite, metasedimentary, and metavolcanic rocks, all of which underwent greenschist- to epidote–amphibolite-facies regional metamorphism, with some hornfels resulting from contact metamorphism. To determine the age of deposition, the timing and grade of metamorphism, and the tectonic setting of the Wudaogou Group, we investigated the petrography and geochronology of the metamorphic rocks in this group. Zircons from the metasedimentary rocks of this group can be divided into metamorphic zircons and detrital zircons of magmatic origin. U–Pb ages of metamorphic zircons dated by LA-ICP-MS vary from 249 ± 4 to 266 ± 4 Ma, approximating the age of regional metamorphism in the eastern Yanbian area. Detrital zircons yield U–Pb ages ranging from 253 ± 5 to 818 ± 5 Ma, and indicate that the provenance of the Wudaogou Group experienced four tectonic–thermal events between 818 and 253 Ma: Neoproterozoic (ca. 818–580 Ma), Cambro–Ordovician (ca. 500–489 Ma), Devonian–Carboniferous (ca. 422–300 Ma), and middle–late Permian (ca. 269–253 Ma). The youngest detrital zircon, with a U–Pb age of 253 ± 5 Ma, defines the maximum depositional age of the Wudaogou Group. The presence of the Cambro-Ordovician and Neoproterozoic detrital zircons implies that the source of the Wudaogou Group had an affinity with Northeast China, which leads us to conclude that the Solonker–Xra Moron River–Changchun Suture extends from Wangqing to Hunchun in eastern Yanbian, and that the Palaeo-Asian Ocean may have closed at the end of the Permian or Early Triassic period.  相似文献   

12.
黔南独山县位于江南造山带西南段古生代陆源盆地区,是研究盆地物质来源的良好场所.利用碎屑锆石年代学定量分析下泥盆统丹林组底部碎屑锆石年代学特征,可反映其物质来源;利用锆石较稳定特征定量分析锆石微量元素所代表的地质意义也具有可操作性.结果表明,根据丹林组碎屑锆石年龄分布特征,可将其分为4组:早古生代(427~560 Ma)...  相似文献   

13.
U-Pb (LA-ICPMS) geochronological studies established the minimum age of detrital zircons from metasedimentary rocks of the Uril Formation of the Amur Group of ~240 Ma, which approximately corresponds to the lower age boundary of formation of their protoliths. The upper boundary of accumulation of sedimentary rocks of this formation is governed by the age of superimposed structural-metamorphic transformations (220–210 Ma). It follows that the age of protoliths of metasedimentary rocks of the Uril Formation is Triassic in contrast to the previously suggested Early Precambrian age. At the same time, previous estimations of the Nd model age of metasedimentary rocks of the Tulovchikha Formation of the Amur Group and intruding gabbroic rocks are 1.7 and 0.5 Ga, respectively. In other words, the age of this formation is 1.7–0.5 Ga. All of this indicates a combination of sedimentary and volcanic rocks of different ages in the section of the Amur Group. Judging from the Lu-Hf isotopic-geochemical studies of zircons, the major sources of protoliths for metasedimentary rocks of the Uril Formation are Neoproterozoic igneous rocks and also Early and Late Paleozoic and Early Mesozoic igneous rocks, the formation of which was related to the reworking of the Neo- and Mesoproterozoic continental crust.  相似文献   

14.
The Early Jurassic basin in Zhangshudun of northeastern Jiangxi Province is located in the southeastern part of Jiangnan orogeny, and revealing the basin depositional source is of great importance for understanding and discussing the orogenic events and ancient geography during Early Mesozoic. The research of petrography, detrital zircons U-Pb geochronology, Lu-Hf isotope geochemistry of Early Jurassic clastic rocks was conducted in this paper. The results show that the Early Jurassic Shuibei Formation includes molasse-like deposits and fluviatile-lacustrine facies, and the detrital zircons U-Pb ages are within the wide scope of 2 431~263 Ma, with no existence of synsedimentary or pensynsedimentary detrital zircons. The detrital zircons display a very obvious peak age in Early Paleozoic of 420~380 Ma, with εHf(t) values between -10.7 and -3 and TDMC values between 2.08 and 1.58 Ga. The weak peak ages of 370~355 Ma and 858~663 Ma are displayed in Late Paleozoic and Neoproterozoic,respectively, with εHf(t) values of -18.8 to -6.7 and TDMC values of 2.08 to 1.58 Ga. The detrital zircons also contain a few Early Mesozoic (263 Ma) and Paleo-Meso proterozoic (2 431~1 224 Ma) ages. The detrital zircons ages and Lu-Hf isotope are similar with geological entities in northwestern Wuyi area of Cathaysia Block, while they are obviously different from the ages of the geological body in southeastern Yangtze region. The detrital materials are mainly from Early Cambrian basement and Paleozoic geological body northwestern Wuyi area. While little detrital rocks may come from northwestern Zhejiang with sedimentary characters of passive continental margin. Combined with the comprehensive regional research results of Early Mesozoic basin, the authors conclude that the southeastern Jingdezhen-Huangshan of eastern Jiangnan orogenic belt was not uplifting with erosion in Early and Middle Jurassic, and the Mesozoic structural-magmatic activities in the inland of South China were the tectonic response to the dive and influx of multiplates. The uplift in the southezstern part of South China caused by the subduction of the paleo-pacific plate to the East Asian continent from the Late Triassic to Early Jurassic can provide provenance for the inland basin, and the tectonic constitution at the turn of the Early-Middle Jurassic has been transformed into the subduction of the paleo-pacific plate.  相似文献   

15.
Whole-rock geochemical analyses using major and trace elements in combination with the Sm–Nd and Pb–Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Córdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis, have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm–Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Córdoba when compared to the other units. The TDM model ages from the Sierras de Chepes (~1.82 Ga) and the Sierra Norte (~1.79 Ga) are significantly older than the data from the Sierras de Córdoba (1.67 Ga). The Pb data are homogeneous for the different units. Only the 208Pb/204Pb ratios of some samples from the Sierras de Córdoba are higher. A late Pampean detrital zircon peak around 520 Ma from the Sierras de Chepes is in accordance with the new data from the San Luis Formation. This is similar to the literature data from the Famatina Belt located to the northwest of the Sierras de Chepes and also fits the detrital zircon peaks in the Mesón group. These maximum depositional ages were also reported from some locations in the Puncoviscana Formation but are absent in the Sierras de Córdoba. An improved model for the development of the Eastern Sierras Pampeanas in the area between the Sierras de Córdoba and the Puncoviscana Formation is provided. This gives new insights into the late Pampean development of the Sierra de San Luis and the complex development of the Eastern Sierras Pampeanas. This new model explains the younger detrital ages in the Puncoviscana Formation compared with the older ages of the Sierras de Córdoba. Another model of the Sierra de San Luis explains the younger depositional ages of the Pringles Metamorphic Complex and the San Luis Formation when compared to the Nogolí Metamorphic Complex and the Conlara Metamorphic Complex. Additionally, the rather fast change of the high-grade metamorphic conditions in the Pringles Metamorphic Complex and the low-grade metamorphic conditions in the San Luis Formation is explained by extension, the ascent of (ultra) mafic material and later folding and erosion.  相似文献   

16.
赣东北樟树墩地区早侏罗世盆地处于江南造山带东南缘,揭示盆地沉积物质来源对于认识和探讨周缘早中生代造山事件和古地理格局具有重要意义。对樟树墩早侏罗世盆地开展了岩相学、碎屑锆石U-Pb年代学和Lu-Hf同位素研究。结果表明: 盆地为类磨拉石建造与内陆湖沼含煤建造,碎屑锆石年龄跨度大(2 431~263 Ma),未出现同沉积或准同沉积的碎屑锆石; 碎屑锆石年龄呈现极强的早古生代峰值(420~380 Ma,εHf(t)为-10.7~-3.0, TDMC为2.08~1.58 Ga)、弱的新元古代峰值(858~663 Ma,εHf(t)为-18.8~-6.7, TDMC为2.79~2.09 Ga)和晚古生代峰值(370~355 Ma),另有少量早中生代((263±5) Ma)、中—古元古代(2 431~1 224 Ma)碎屑锆石记录。碎屑锆石年龄和Hf同位素组成与华夏地块西北武夷山地区所出露地质体组成相似,而与扬子东南缘地质体组成存在显著差异,其碎屑物质主要来自陆内西北武夷山地区前寒武纪基底和古生代地质体,少量碎屑物质可能来源于浙西北地区,具有被动型大陆边缘盆地沉积特征。综合区域上早中生代盆地研究成果,认为江南造山带东段景德镇—黄山东南在早—中侏罗世并未整体隆升剥蚀,华南内陆中生代的构造-岩浆活动是其周缘多板块俯冲汇聚的构造响应,晚三叠世—早侏罗世古太平洋板块向东亚大陆的俯冲造成华南东南部隆升,使其开始为内陆盆地提供物源,至早—中侏罗世之交构造体制转换为古太平洋板块的俯冲消减。  相似文献   

17.
In northwest Argentina, weakly metamorphic clastic and calcareous sedimentary rocks of latest Precambrian to Lower Cambrian age (Puncoviscana Formation and related units) contain an abundant ichnofauna of both chronostratigraphic and paleoenvironmental value. In the western and central Sierras Pampeanas, metasedimentary and metavolcanic rocks are considered to form part of the same geotectonic unit. This “Pampean orogenic cycle” includes geosynclinal sedimentation of latest Precambrian to Lower Cambrian age, as well as magmatism, metamorphism and deformation of Middle to Upper Cambrian age, documented by an angular unconformity below the Upper Cambrian to Devonian rocks of the “Famatinian orogenic cycle”. In some of the metamorphic rocks of the Pampean Cycle a pre-Ordovician folding is also distinguished from a later tectonic overprinting. Hence, the concept of a Pampean cycle differs from other concepts of late Precambrian orogenic cycles of South America which are only defined by radiometric ages. The Pampean orogenesis may be compared with the Ross orogenesis of the Transantarctic Mts., the Tyennan orogenesis of Australia and some of the deformation phases of the Damara orogen in Namibia.  相似文献   

18.
Detrital zircons are important proxies for crustal provenance and have been widely used in tracing source characteristics and continental reconstructions. Southern Peninsular India constituted the central segment of the late Neoproterozoic supercontinent Gondwana and is composed of crustal blocks ranging in age from Mesoarchean to late Neoproterozoic–Cambrian. Here we investigate detrital zircon grains from a suite of quartzites accreted along the southern part of the Madurai Block. Our LA-ICPMS U-Pb dating reveals multiple populations of magmatic zircons, among which the oldest group ranges in age from Mesoarchean to Paleoproterozoic (ca. 2980–1670 Ma, with peaks at 2900–2800 Ma, 2700–2600 Ma, 2500–2300 Ma, 2100–2000 Ma). Zircons in two samples show magmatic zircons with dominantly Neoproterozoic (950–550 Ma) ages. The metamorphic zircons from the quartzites define ages in the range of 580–500 Ma, correlating with the timing of metamorphism reported from the adjacent Trivandrum Block as well as from other adjacent crustal fragments within the Gondwana assembly. The zircon trace element data are mostly characterized by LREE depletion and HREE enrichment, positive Ce, Sm anomalies and negative Eu, Pr, Nd anomalies. The Mesoarchean to Neoproterozoic age range and the contrasting petrogenetic features as indicated from zircon chemistry suggest that the detritus were sourced from multiple provenances involving a range of lithologies of varying ages. Since the exposed basement of the southern Madurai Block is largely composed of Neoproterozoic orthogneisses, the data presented in our study indicate derivation of the detritus from distal source regions implying an open ocean environment. Samples carrying exclusive Neoproterozoic detrital zircon population in the absence of older zircons suggest proximal sources in the southern Madurai Block. Our results suggest that a branch of the Mozambique ocean might have separated the southern Madurai Block to the north and the Nagercoil Block to the south, with the metasediments of the khondalite belt in Trivandrum Block marking the zone of ocean closure, part of which were accreted onto the southern Madurai Block during the collisional amalgamation of the Gondwana supercontinent in latest Neoproterozoic–Cambrian.  相似文献   

19.
董昕  张泽明  王金丽  赵国春  刘峰  王伟  于飞 《岩石学报》2009,25(7):1678-1694
本文对位于青藏高原拉萨地体东南部林芝岩群中的变质岩进行了岩石学和年代学研究。研究表明,林芝岩群由角闪岩相的变质沉积岩和正片麻岩组成。变质沉积岩主要为含石榴石白云斜长角闪片岩、含石榴石云母石英片岩、含石榴石黑云钾长片麻岩、大理岩和石英岩等,代表性矿物组合包括石榴石+斜长石+角闪石+石英+黑云母+白云母,或石榴石+斜长石+钾长石+石英+夕线石+黑云母+白云母。花岗质片麻岩(含二云母片麻岩)的矿物组合是石英+斜长石+钾长石+黑云母+白云母。锆石U-Pb年代学分析表明,变质沉积岩中的碎屑锆石主要为岩浆成因,获得了2708~63Ma的206Pb/238U年龄范围,在~1100Ma和~550Ma出现两个年代峰值。碎屑锆石的变质增生边给出了35Ma的变质年龄。正片麻岩获得了496Ma的锆石结晶年龄和1158Ma的继承年龄。基于上述研究结果、区域对比和相邻变质岩石中获得的多期变质年龄,我们认为林芝岩群的原岩很可能形成在早古生代,其沉积物质主要来源于印度陆块,与特提斯喜马拉雅早古生代的岩石一起同为印度大陆北缘的沉积盖层,在环冈瓦纳大陆周缘造山过程中被寒武纪花岗岩侵入。在新特提斯洋向北的俯冲过程中,林芝岩群经历了晚中生代的安第斯型造山作用,在印度与欧亚大陆的俯冲-碰撞过程中,林芝岩群部分地经历了新生代的变质和岩浆作用再造。本研究证明,林芝岩群并不是传统上认为的拉萨地体的前寒武纪变质基底,其角闪岩相至麻粒岩相变质作用发生在中、新生代。  相似文献   

20.
The role played by Paleoproterozoic cratons in southern South America from the Mesoproterozoic to the Early Cambrian is reconsidered here.This period involved protracted continental amalgamation that led to formation of the supercontinent Rodinia.followed by Neoproterozoic continental break-up,with the consequent opening of Clymene and Iapetus oceans,and finally continental re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early Cambrian.The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru.Our interpretation of the paleogeographical and geodynamic evolution invokes a hypothetical Paleoproterozoic block(MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras Pampeanas(Argentina),the Arequipa block(Peru),the Rio Apa block(Brazil),and probably also the Paraguaia block(Bolivia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号