首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Meso to Neoproterozoic succession in the western Chattisgarh basin around Rajnandgaon has been classified into coarse siliciclastic dominated proximal and fine siliciclastic-carbonate dominated distal assemblages. The proximal assemblage, the Chandarpur Group, unconformably overlies the Neoarchean to Paleoproterozoic Dongargarh- Kotri volcanics (c.2.2-2.3 Ga), Bengpal Granite (c.2.5-2.6 Ga) and BIF of the Dalli-Rajhara Group (~2.4 Ga). The Chandarpur Group consists of 15-20 m thick conglomerate and feldspathic sandstone at the basal part of the succession, which is mapped as a lateral equivalent of the Lohardih Formation. The coarse clastics, conglomerate succession gradationally passes up to ~280 m thick succession of supermature sandstone, the Kansapathar Formation. The thick mudstone dominated heterolithic unit, the Gomarda Formation and its lateral equivalent, the Chaporadih Formation is not present in the western part of the Chattisgarh basin. The fine siliciclastic-carbonate assemblage of the Raipur Group conformably overlies the Chandarpur Group. The Raipur Group consists of Charmuria Limestone (~320 m), Gunderdehi Shale (~450 m), Chandi Limestone (~ 550 m) with Deodongar Member (~50 m) and Tarenga Shale. The sediments of Chandarpur Group were deposited in a shallow marine environment with occasional fluvial input in a relatively fluctuating sea level. The palaeoshoreline was NW-SE oriented with an open sea towards north which remained same throughout the deposition of the Chandarpur-Raipur sequence. It has also been inferred that the Lohardih Formation and the Kansapathar Formation represents a rifting phase followed by a stable subsidence stage when the basin evolved into a large epicontinental sea. The sequences further display signatures of passive margin sedimentation with multiple events of carbonate-shale rhythmite deposition.  相似文献   

2.
The Neoproterozoic Purana succession in the eastern part of Chattisgarh basin around Sarangarh has been classified into a conglomerate-sandstone-shale dominated proximal assemblage, and a lithographic limestone-shale dominated distal assemblage. The proximal assemblage constitutes the Chandarpur Group, and unconformably overlies the Archean crystalline basement complex. The Chandarpur succession has been classified into three formations that were deposited in fan-fan delta, deep water prodelta and storm- tide dominated prograding shelf environments. The distal assemblage, the Raipur Group, conformably overlies the Chandarpur Group, and may be subdivided into two shale-dominated formations separated by a limestone-dominated formation. The limestone sequence, the Sarangarh Limestone, comprises a lower member of mixed carbonate-siliciclastic succession deposited in a storm dominated shallow water platform, and an upper member of pelagic limestone that grades upward into a deep water shale, the Gunderdehi Shale. The rapid transition from shallow water platformal succession to deep-water pelagic limestone and shale points to abrupt deepening of the basin and drowning of the craton. The peak of transgression is represented by a persistent horizon of black limestone, a product of basin wide anoxia. Disposition of facies belts in proximal and distal assemblages and palaeocurrent directions measured from different facies belts point to a north-northwesterly palaeoslope of the basin. Signatures of intense storm and tidal currents in different litho-units collectively point to an open marine circulation condition. It has been inferred that the basin was connected to a major seaway that skirted the northern and north-western margin of the craton. Development of thick fan-delta sequence at the base of the succession, occurrence of felsic welded tuff within the Gunderdehi Shale, thick sandstone-mudstone cyclothems in the Chandarpur Group, and abrupt drowning of the carbonate platform leading to pelagic sedimentation collectively point to major tectonic control on basin evolution. The basin developed as a cratonic rift and evolved into a deeply subsiding one, without any major stratigraphic hiatus, through episodic tectonic pulses.  相似文献   

3.
前寒武纪碳酸盐岩多以叠层石碳酸盐岩序列为特征。燕山地区中元古界高于庄组,其中的第三段(张家裕亚组)则为一个以灰岩为主、贫乏叠层石的碳酸盐岩沉积序列,该序列被定义为前寒武纪非叠层石碳酸盐岩序列。该非叠层石碳酸盐岩沉积序列,尤其以燕山西部的延庆千沟剖面最为典型。根据沉积相序列及其所反映的旋回性,可以将该剖面的高于庄组第三段划分为3个三级层序。在这些三级层序的海侵体系域和早期高水位体系域中,中薄层隐晶质泥晶灰岩(均一石灰岩)和灰黑色薄层泥灰岩组成若干潮下型米级旋回;而在隐晶质泥晶灰岩层面上,普遍发育各种奇形怪状的沉积构造。这些沉积构造包括穹窿状构造、规则网状和杂乱的帐篷脊、变余波痕等,构成一个潮下相灰岩层面上的特别的微生物形成的沉积构造(Microbial Induced Sedimentary Structure,MISS)组合。因此,延庆千沟剖面的高于庄组第三段,特别的岩石类型和沉积构造成为前寒武纪碳酸盐岩沉积中非叠层石碳酸盐岩沉积序列的典型代表,尤其是那些奇形怪状的MISS所代表的沉积学特点表明:在前寒武纪,即使在叠层石生长的黄金时段,也发育非叠层石碳酸盐岩沉积序列。因此,这些现象将特别有助于对前寒武纪非叠层石生态系所造成的另一类席底生境的深入理解,也有助于复杂多变的碳酸盐岩世界。  相似文献   

4.
S.M. Lev  J.K. Filer  P. Tomascak 《Earth》2008,86(1-4):1-14
Black shales from the southern Appalachian Basin and the southwest Welsh Basin have anomalous U–Pb and Nd model ages suggesting syn- and post-depositional resetting of the Sm–Nd and U–Pb isotopic systems. This alteration to the primary detrital signature of these two shale sequences is indicative of black shale diagenetic/depositional processes that obscure paleo-environmental and provenance information recorded prior to and during deposition. The trace element and isotopic signatures of these two shale sequences reveal a syn-/post-depositional history that is de-coupled from the coeval orogenic history of the region making it difficult to reconstruct the tectonic and oceanographic conditions present at the time of deposition.Both the Ordovivian Welsh Basin and the Devonian Appalachian Basin sequences host REE- and U-bearing diagenetic phosphate minerals that play a critical role in the whole rock REE and U budgets. In the Welsh Basin shales, early diagenetic apatite and a later monazite phase dominate the REE budget and cause the redistribution of REE early in the basin's history (ca. 460 Ma). This redistribution is recorded by the Sm–Nd system (450 ± 90 Ma) and the Nd model ages that are anomalously old by as much as 20% (TDM > 2.0 Ga). This early history is complicated by a Permo-Triassic fluid event affecting the whole rock U-budget and resetting the U–Pb isotopic system at 193 ± 45 Ma. The Appalachian Basin sequence appears to have a much less complicated history yet still records a significant disturbance in both the Sm–Nd isotopic system (392 ± 76 Ma) and the Pb isotopic system (340 ± 50 Ma) at about the time of deposition (ca. 365 Ma).These two sequences suggest a pattern of diagenetic disturbance common to black shales. These processes are unique to black shales and must be considered when interpreting provenance and paleo-environmental information from the black shale sequences. Although these rocks are susceptible to alteration, the alteration may provide extensive information on the post-depositional history of the basin while still retaining some primary depositional information. If black shale processes are considered during the interpretation of isotopic and trace element signatures from organic-rich shales, it may be possible to recover an extensive basin history.  相似文献   

5.
The early Mesoproterozoic Rohtas Limestone in the Son valley area of central India represents an overall shallowing-upward carbonate succession. Detailed facies analysis of the limestone reveals outer- to inner-shelf deposition in an open marine setting. Wave-ripples, hummocky cross stratifications and edgewise conglomerates argue against a deep marine depositional model for the Rohtas Limestone proposed earlier. Stable isotope analysis of the limestone shows that δ13C and δ18O values are compatible with the early Mesoproterozoic open seawater composition. The ribbon limestone facies in the Rohtas Limestone is characterized by micritic beds, each decoupled in a lower band enriched and an upper band depleted in dissolution seams. Band-wise isotopic analysis reveals systematic short-term variations. Comparative enrichment of the heavier isotopes in the upper bands is attributed to early cementation from sea water and water derived from the lower band undergoing dissolution because of lowering of pH at depth. The short-term positive shifts in isotopic compositions in almost every upward gradational transition from a seamed band to a non-seamed band support the contention that dissolution seams here are of early diagenetic origin, although their formation was accentuated under overburden pressure.  相似文献   

6.
The Mesoproterozoic Srisailam Formation, exposed along the northern part of the Cuddapah basin, India, comprises mainly medium- to fine-grained siliciclastics, and is devoid of any carbonate sediment. Preliminary sedimentological studies helped in recognizing fifteen distinct facies (five facies associations) in Chitrial outlier of the Srisailam Formation deposited in continental half-graben basin(s). Black shales (sensu lato) are minor components of the Srisailam Formation, and inferred to have deposited in deep lacustrine and prodelta facies of the half-graben(s). The black shales show restricted thickness (up to 29.0 m), and are characterized by overall high ‘black shale' to ‘total shale' ratio (>0.51). Their geochemical characteristics were studied to constrain provenance, palaeoclimate, and tectonic setting of deposition of the Srisailam Formation. Further, an attempt has been made to use the Srisailam black shales as proxy for constraining the timing of breakup of the supercontinent Columbia.The Srisailam black shales are geochemically quite distinct. At similar SiO2 contents they are considerably different from PAAS. They are characterized by considerably lower ΣREE (Av. 136.0 ± 50.4 ppm) but a more conspicuous negative Eu-anomaly (Av. 0.34 ± 0.09) than PAAS. Al2O3/TiO2 and TiO2/Zr ratios coupled with Eu/Eu*, GdCN/YbCN, La/Sc, Th/Sc, and Th/Cr ratios suggest their derivation from granite and granodiorite. The CIA values (65–90, Av. 72 ± 9) as a whole indicate moderate chemical weathering under semiarid climate. Discriminating geochemical parameters indicate passive margin depositional setting. The combined sedimentological and geochemical characteristics reveal deposition of the Srisailam sediments in continental rift basin(s).Thick succession of black shales (with high CIA values) that deposited with shelf carbonates proxy for mantle superplume and supercontinent breakup events. The sedimentological characteristics and geochemical data of the Srisailam black shales plausibly exclude any large-scale breakup of Columbia during the interval (1400–1327 Ma) of deposition of the Srisailam Formation.  相似文献   

7.
《Cretaceous Research》2008,29(1):100-114
Late Cretaceous platform carbonates from the Salento peninsula (south Italy) were studied by strontium-isotope stratigraphy to improve their chronostratigraphy. Forty-three samples from nine localities were collected and the numerical ages were derived from fifteen geochemically well-preserved samples of rudist shells that were analyzed for 87Sr/86Sr values. Strontium isotope stratigraphy yielded new ages for the base of the Ciolo Limestone. The oldest successions studied in Salento are 85.9 Ma (+/− 0.6) and assigned to the Melissano Limestone. The youngest Cretaceous limestones observed at the Ciolo Limestone type locality (Ciolo cove) are 66.4 Ma (+/− 1.5), and the base of this formation is older than 72.8 Ma (+/− 0.4). Karstic cavities observed at the Cava Cocumola in the mid-Campanian S. Cesarea Limestone are tentatively interpreted to be linked to an intra-Campanian event which is related to a sea-level lowstand inferred also on the island of Brač (Adriatic coast of Croatia) and in the Boreal realm at 75–77 Ma. A new large recumbent rudist similar to Sabinia and Pseudosabinia is observed in the Ciolo and S. Cesarea Limestone and appears to be characteristic of the Apulian platform carbonates. Rudist associations from the S. Cesarea Limestone and the overlying Ciolo Limestone are remarkably similar, although they range over a time interval of more than 12 Ma.  相似文献   

8.
《Sedimentary Geology》2006,183(1-2):51-69
The Chicxulub Sedimentary Basin of the northwestern Yucatan Peninsula, Mexico, which was formed because of the largest identified Phanerozoic bolide impact on Earth, became a site of deposition of dominantly marine carbonate sediments during most of the Cenozoic Era. This is a study of the filling and diagenetic history of this basin and surrounding areas. The study makes use of lithologic, biostratigraphic, petrographic, and geochemical data obtained on core samples from boreholes drilled throughout the northwestern Yucatan Peninsula.The core sample data indicate that: 1) The Chicxulub Sedimentary Basin concentrated the deposition of pelagic and outer-platform sediments during the Paleocene and Eocene, and, in places, during the Early Oligocene, as well, and filled during the Middle Miocene, 2) deeper-water limestone also is present within the Paleocene and Lower Eocene of the proposed Santa Elena Depression, which is located immediately south of the Basin, 3) shallow-water deposits are relatively more abundant outside the Basin and Depression than inside, 4) the autigenic and allogenic silicates from the Paleogene formations are the most abundant inside the Depression, 5) sediment deposition and diagenesis within the Basin also were controlled by impact crater topography, 6) the abundance of the possible features of subaerial exposure increases upward and outward from the center of the Basin, and 7) the formation of replacive low-magnesium calcite and dolomite, dedolomitization, dissolution, and precipitation of vug-filling calcite and dolomite cement have been more common outside the Basin than inside.δ18O in whole-rock (excluding vug-filling) calcite from core samples ranges from − 7.14‰ to + 0.85‰ PDB. δ13C varies from − 6.92‰ to + 3.30‰ PDB. Both stable isotopes correlate inversely with the abundance of subaerial exposure features indicating that freshwater diagenesis has been extensive especially outside and at the edge of the Chicxulub Sedimentary Basin.δ18O and δ13C in whole-rock (excluding vug-filling) dolomite ranges from − 5.54‰ to + 0.87‰ PDB and − 4.63‰ to + 3.38‰ PDB, respectively. Most dolomite samples have negative δ18O and positive δ13C suggesting that replacive dolomitization involved the presence of a fluid dominated by freshwater and/or an anomalously high geothermal gradient.Most dolomite XRD-determined mole percent CaCO3 varies between 51 and 56. Replacive dolomite is larger, more euhedral, and less stoichiometric inside the Chicxulub Sedimentary Basin than outside.  相似文献   

9.
Hyperfiltration is the ability of a membrane to retard the passage of a solute under a hydraulic head in excess of osmotic pressure. Disaggregated and recompacted shales, mudstones, clays and tuff have been shown to exhibit hyperfiltration-induced membrane effects in past experiments. However, limestone and dolomite have not previously been tested. Therefore, eight hyperfiltration experiments were performed on intact Burlington Limestone and Jefferson City Dolomite to assess the membrane properties of these lithologies. Four experiments were conducted on each lithology using 0.0050 and 0.0100 M Cl solutions at heads of 0.50 and 1.00 m. Reflection coefficients, a measure of osmotic efficiency, ranged from 0.34 to 0.39 for the Burlington Limestone and 0.32 to 0.40 for the Jefferson City Dolomite. At the end of the hyperfiltration experiments, Cl was concentrated within the cell above input concentrations by 85–95% for the Burlington Limestone and 79–105% for the Jefferson City Dolomite. An additional experiment passed 0.0020 M dissolved silica solution through the Burlington Limestone at a head of 0.965 bar (14 psi). The final concentration of silica within the cell was 0.0043 M dissolved silica at steady-state; a concentration 114% higher than the original input solution concentration. The reflection coefficient for this experiment was calculated to be 0.33. The results of these experiments suggest that membrane properties in these lithologies may be worthy of consideration in some geologic scenarios, including: (1) shallow or perched aquifers bounded by thin limestone or dolomite strata, (2) overpressured aquifers bounded by limestone or dolomite, (3) limestone or dolomite bounded aquifers with significant vertical components of flow, and (4) facies changes with significant lateral component of flow bounded by either lithology. Furthermore, the results suggest that silica cementation may be possible even under relatively low head conditions. Cementation due to hyperfiltration, even at shallow depths and low pressures should be further investigated. Similarly, other low permeability lithologies lacking a charged surface could potentially function as geologic membranes.  相似文献   

10.
《Gondwana Research》2011,19(4):632-637
In South China, the Datangpo black shales (663 Ma–654.5 Ma) were deposited during the Cryognian interglacial time between the Sturtian and Marinoan glaciations. Multi-geochemical proxies, including different iron speciation and relevant ratios (FeHR/FeT, FeP/FeHR and FeT/Al ratios) and molybdenum concentrations, were used to reconstruct the paleo-depositional environment of this black shale horizon. The ratios of different iron species (FeHR/FeT > 0.38 and FeP/FeHR < 0.80) suggest an overall anoxic conditions (ferruginous) over the deposition of the black shales, although intermittent euxinic (FeHR/FeT > 0.38 and FeP/FeHR  0.80) and oxic (FeHR/FeT < 0.38) intervals could have occurred. Furthermore, FeT/Al ratios (FeT/Al  0.51) confirm that water column may not be persistent euxinia during the deposition of the Datangpo black shales. Meanwhile, molybdenum concentrations show a decreasing trend towards the top of the black shales, reconciling the gradual oxygenating trend during this period as stated above. Compared to δ34SPy values in the Mesoproterozoic deep ocean, more positive δ34SPy values of this study may result from a small size of sulfate reservoir. The small-size sulfate reservoir and concurrent enrichment of molybdenum indicate that the ocean chemistry in the Cryogenian Period is similar to that in the Archean Eon.  相似文献   

11.
Stromatolitic limestone and calcareous shale belonging to Chattisgarh Supergroup of Proterozoic age dominate the upper part of the Mahanadi river basin. X-ray diffractogram (XRD) of limestone rocks show presence of a significant amount of calcite, dolomite and ankerite. Shales of various colours contain calcite and dolomite. It is observed that congruent dissolution of carbonate minerals in the Charmuria pure limestone has given rise to a typical karst topography. On the other hand, limestones are also seen to support red and black soil profiles. This indicates that the limestone bedrock undergoes a parallel incongruent weathering, which leaves a residue of decomposed rock. The XRD analyses reveal that the limestone soils thus formed contain an assemblage of quartz, clays and Fe-oxides. It is likely that the silicate component trapped during deposition of the stromatolitic limestone weathers incongruently resulting in diverse soil profiles. Carbonate and silicate mineral weathering schemes have been worked out to explain the soil formation, fixation of Al in clay minerals, and Fe in goethite. The water quality parameters such as Ca, Mg and HCO3 in the river water suggest under saturation with respect to calcite and dolomite. The mineral stability diagrams indicate that kaolinite and Ca-smectite are stable in the river water environment, hence they occur in suspended sediments and soils. The dominant influence of carbonate weathering on the water quality is observed even in the downstream part of the river outside the limestone terrain.  相似文献   

12.
The Jurassic–Lower Cretaceous aged carbonate sequence is widely exposed in the southern zone of Eastern Pontides. Aptian black bituminous limestone is found in the upper part of this sequence in the Kale area (Gümüşhane). This limestone contains faunal remains (e.g., gastropod, ostracod, characean stems and miliolid type benthic foraminifera) that indicate a freshwater, lacustrine depositional environment.The total organic carbon (TOC) values of the bituminous limestone samples range from 0.11–1.30% with an average TOC value of 0.54%. The hydrogen index (HI) varies from 119–448 mg HC/g TOC (average HI 298 mg HC/g TOC) indicating that the limestone contains gas prone as well as oil prone organic matter. Pyrolysis data prove that the organic matter content in the bituminous limestone consists of Type II kerogen. The average Tmax value for bituminous limestone samples is 438 °C (434–448 °C). Bitumen/TOC ratios for bituminous limestone are 0.05 and 0.04. The Tmax values and the ratios indicate that the bituminous limestone samples contain early mature to mature organic matter.Analysis of solvent extracts from the two richest bituminous limestones show a predominance of high carbon number (C26–C30) n-alkanes. The Pr/Ph ratio and CPI value are 1.34 and 0.96, respectively. C29 is the dominant sterane, with C29 > C27 > C28. The bituminous limestone samples have low C22/C21 ratios, high C24/C23 tricyclic terpane ratios and very low C31R/C30 hopane ratios (<0.25). These data are consistent with the bituminous limestones being deposited in a lacustrine environment.  相似文献   

13.
安徽巢北地区栖霞组臭灰岩段富有机质成因探讨   总被引:3,自引:0,他引:3  
陆鹿  李壮福  康鹏  张新 《地质论评》2014,60(1):71-79
以安徽巢北地区二叠纪栖霞组臭灰岩段为研究对象,从岩石学、古生物学及沉积学特征出发,探讨臭灰岩段富有机质与风暴事件沉积之间的关系。臭灰岩段岩性整体为灰黑色中厚层状石灰岩,层间夹数毫米至数厘米厚灰黑色钙质泥岩,整套岩层富含有机质;其中生物化石丰富,整体为热带、亚热带正常盐度浅水生物组合为特征;为正常浅海碳酸盐岩台地沉积,沉积期表现为一个明显的海侵过程,并受风暴作用的频繁扰动。臭灰岩段沉积环境并非“贫氧或缺氧”条件,而是正常富氧环境。富有机质特征一方面得益于沉积期较高的生物产率,同时还与风暴事件沉积作用密切相关,即在风暴作用下,沉积物发生快速堆积,有机质未来得及与富氧水体发生长期接触即被埋藏覆盖,从而导致有机质被良好保存,形成臭灰岩段富有机质特征。风暴作用频发与研究区臭灰岩段沉积期所处的低纬度特征有关。  相似文献   

14.
The North Tianshan orogenic belt in Kyrgyzstan consists predominantly of Neoproterozoic to early Paleozoic assemblages and tectonically interlayered older Precambrian crystalline complexes and formed during early Paleozoic accretionary and collisional events. One of the oldest continental fragments of late Mesoproterozoic (Grenvillian) age occurs within the southern part of the Kyrgyz North Tianshan. Using SHRIMP zircon ages, we document two magmatic events at ~ 1.1 and ~ 1.3 Ga. The younger event is characterized by voluminous granitoid magmatism between 1150 and 1050 Ma and is associated with deformation and metamorphism. The older event is documented by ~ 1.3 Ga felsic volcanism of uncertain tectonic significance and may reflect a rifting episode. Geochemical signatures as well as Nd and Hf isotopes of the Mesoproterozoic granitoids indicate melting of still older continental crust with model ages of ca 1.2 to 2.4 Ga.The Mesoproterozoic assemblages are intruded by Paleozoic diorites and granitoids, and Nd and Hf isotopic systematics suggest that the diorites are derived from melts that are mixtures of the above Mesoproterozoic basement and mantle-derived material; their source is thus distinct from that of the Mesoproterozoic rocks. Emplacement of these plutons into the Precambrian rocks occurred between 461 and 441 Ma. This is much younger than previously assumed and indicates that small plutons and large batholiths in North Tianshan were emplaced virtually synchronously in the late Ordovician to early Silurian.The Mesoproterozoic rocks in the North Tianshan may be remnants of a once larger continental domain, whose fragments are preserved in adjacent blocks of the Central Asian Orogenic Belt. Comparison with broadly coeval terranes in the Kokchetav area of northern Kazakhstan, the Chinese Central Tianshan and the Tarim craton point to some similarities and suggests that these may represent fragments of a single Mesoproterozoic continent characterized by a major orogenic event at ~ 1.1 Ga, known as the Tarimian orogeny.  相似文献   

15.
Abra is a blind, sedimentary rock-hosted polymetallic Fe–Pb–Zn–Ba–Cu ± Au ± Ag ± Bi ± W deposit, discovered in 1981, located within the easterly trending Jillawarra rift sub-basin of the Mesoproterozoic Edmund Basin, Capricorn Orogen, Western Australia. The Edmund Basin contains a 4–10 km thick succession of siltstone, sandstone, dolomitic siltstone, and stromatolitic dolomite. The age of the Edmund Group is between 1.66 and 1.46 Ga. The Abra polymetallic deposit is hosted in siltstone, dolostone, sandstone and conglomerate of the Irregully and Kiangi Creek Formations, but the mineralised zones do not extend above an erosion surface marking the change from fluvial to marine facies in the lower part of the Kiangi Creek Formation. The Abra deposit is characterised by a funnel-shaped brecciated zone, interpreted as a feeder pipe, overlain by stratiform–stratabound mineralisation. The stratiform–stratabound mineralisation includes a Red Zone and an underlying Black Zone. The Red Zone is characterised by banded jaspilite, hematite, galena, pyrite, quartz, barite, and siderite. The jaspilite and hematite cause the predominant red colouration. The Black Zone consists of veins and rhythmically banded sulphides, laminated and/or brecciated hematite, magnetite, Fe-rich carbonate and scheelite. In both zones, laminations and bands of sulphide minerals, Fe oxides, barite and quartz commonly exhibit colloform textures. The feeder pipe (Stringer Zone) merges with Black Zone and consists of a stockwork of Fe-carbonate-quartz, barite, pyrite, magnetite and chalcopyrite, exhibiting fluidised and/or jigsaw textures.The Abra mineral system is characterised by several overprinting phases of hydrothermal activity, from several stages of brecciation and fluidisation, barite and sulphide veining to barren low-temperature chalcedonic (epithermal regime) veining. Hydrothermal alteration minerals include multi-stage quartz, chlorite, prehnite, Fe-rich carbonate and albite. Albite (Na metasomatism) is an early alteration phase, whereas Fe-rich carbonate is a late phase. Fluid inclusion studies indicate that the ore fluids had temperatures ranging from 162 to 250 °C, with salinities ranging from 5.8 to about 20 wt.% NaCl. In the course of our studies, microthermometric and Raman microprobe analyses were performed on fluid inclusions in carbonate, quartz and barite grains. Fluid inclusions in quartz show homogenisation temperatures ranging from 150 to 170 °C with calculated salinities of between 3.7 and 13.8 wt.% NaCl.The sulphur isotopic system shows δ34S values ranging from 19.4 to 26.6‰ for sulphides and from 37.4 to 41.9‰ for barite (Vogt and Stumpfl, 1987, Austen, 2007). Sulphur isotope thermometry between sulphides and sulphide–barite pairs yields values ranging from 219 to 336 °C (Austen, 2007).Galena samples were analysed for Pb isotope ratios, which have been compared with previous Pb isotopic data. The new Pb isotope systematics show model ages of 1650–1628 Ma, consistent with the formation of the host Edmund Basin.Re–Os dating of euhedral pyrite from the Black Zone yielded an age of ~ 1255 Ma. This age corresponds to the 1320–1170 Ma Mutherbukin tectonic event in the Gascoyne Complex. This event is manifested primarily along a WNW-trending structural corridor of amphibolite facies rocks, about 250 km to the northwest of the Abra area. It is possible that the Re–Os age represents a younger re-activation event of an earlier SEDEX style system with a possible age range of 1640–1590 Ma.A genetic model for Abra is proposed based on the above data. The model involves two end-members ore-forming stages: the first is the formation of the SEDEX style mineral systems, followed by a second multi-phase stage during which there was repeated re-working of the mineral system, guided by seismic activity along major regional faults.  相似文献   

16.
Sedimentological and geochronological analyses were performed on Carboniferous strata from central Inner Mongolia (China) to determine the tectonic setting of the southeastern Central Asian Orogenic Belt (CAOB). Sedimentological analyses indicate that the widespread Late Carboniferous strata in central Inner Mongolia were dominated by shallow marine clastic-carbonate deposition with basal conglomerate above the Precambrian basement and Early Paleozoic orogenic belts. Based on lithological comparison and fossil similarity, five sedimentary stages were used to represent the Carboniferous deposition. The depositional stages include, from bottom to top, 1) basal molassic, 2) first carbonate platform, 3) terrigenous with coeval intraplate volcanism, 4) second carbonate platform, and 5) post-carbonate terrigenous. These five stages provide evidence for an extensive transgression in central Inner Mongolia during the Late Carboniferous. Detrital zircon geochronological studies from five samples yielded five main age populations: ~ 310 Ma, ~ 350 Ma, 400–450 Ma, 800–1200 Ma and some Meso-Proterozoic to Neoarchean grains. The detrital zircon geochronological studies indicate that the provenances for these Late Carboniferous strata were mainly local magmatic rocks (Early Paleozoic arc magmatic rocks and Carboniferous intrusions) with subordinate input of Precambrian basement. Combining our sedimentological and provenance analyses with previous fossil comparison and paleomagnetic reconstruction, an inland sea was perceived to be the main paleogeographic feature for central Inner Mongolia during the Late Carboniferous. The inland sea developed on a welded continent after the collision between North China Craton and its northern blocks.  相似文献   

17.
A particular non-stromatolitic carbonate succession making up the third member of the Mesoproterozoic Gaoyuzhuang (高于庄) Formation might demonstrate that a stromatolite decline of the Mesoproterozoic occurring at ca. 1 450 Ma besides other three events of the Proterozoic,respectively,occurred at ca. 2 000 Ma,ca. 1 000 Ma,and ca. 675 Ma. The forming duration of this non-stromatolitic carbonate succession can be generally correlative to that of a similar depositional succession in North America,i.e. a non-stromatolitic carbonate succession made up by the Helena Formation of the Belt Supergroup,which suggests that the stromatolite decline occurring at ca. 1 450 Ma may be a global event. This information endows the non-stromatolitic carbonate succession making up the third member of the Gaoyuzhuang Formation in the Yanshan (燕山) area with important significance for the further understanding of Precambrian sedimentology. The Mesoproterozoic Gaoyuzhuang Formation in Yanshan area is a set of more than 1 000 m thick carbonate strata that can be divided into four members (or subformations). The first member (or the Guandi (官地) subformation) is marked by a set of stromatolitic dolomites overlying a set of transgressive sandstones; the second member (or the Sangshu'an (桑树鞍) subformation) is a set of manganese dolomites with a few stromatolites; the third member (or the Zhangjiayu (张家峪) subformation) is chiefly made up of leiolite and laminite limestones and is characterized by the development of molar-tooth structures in leiolite limestone; the fourth member (or the Huanxiusi (环秀寺) subformation) is composed of a set of dolomites of stromatolitic reefs or lithoherms. Sequence-stratigraphic divisions at two sections,i.e. the Jixian (蓟县) Section in Tianjin (天津) and the Qiangou (千沟) Section of Yanqing (延庆) County in Beijing (北京),demonstrate that a particularly non-stromatolitic succession making up the third member of the Mesoproterozoic Gaoyuzhuang Formation is developed in the Yanshan area of North China,in which lots of grotesque matground structures (wrinkle structures and palimpsest ripples) are developed in beds of leiolite limestone at the Qiangou Section and lots of molar-tooth structures are developed in beds of leiolite limestone at the Jixian Section. The time scale of the Gaoyuzhuang Formation is deduced as 200 Ma (from 1 600 Ma to 1 400 Ma). The duration of an obvious hiatus between the Gaoyuzhuang Formation and the underlying Dahongyu (大红峪) Formation is deduced as 50 Ma to 100 Ma,thus the forming duration of the GaoyuzhuangFormation is thought as 100 Ma (1 500 Ma to 1 400 Ma). Furthermore,the age of the subface of the third member of the Gaoyuzhuang Formation that is just in the mid position of the Gaoyuzhuang Formation can be deduced as about 1 450 Ma,which is the basis to infer a stromatolite decline of the Mesoproterozoic occurring at ca. 1 450 Ma. Importantly,several features of both the molar-tooth structure and the stromatolite,such as the particular forming environment,the important facies-indicative meaning,and the episodic distribution in the earth history,might express the evolutionary periodicity of the surface environment of the earth and can provide meaningful clues for the understanding of the Precambrian world,although their origin and forming mechanism is highly contentious. Therefore,like other three stromatolitic declines,respectively,occurring at ca. 675 Ma,ca. 1 000 Ma,and ca. 2 000 Ma,the identification of the stromatolite decline occurring at ca. 1 450 Ma during the Golden Age of stromatolites (2 800 Ma to 1 000 Ma) has important meaning for the further understanding of the evolving carbonate world of the Precambrian.  相似文献   

18.
A gas condensate from well ND1 in the Jizhong Depression of the Bohai Bay Basin, China is characterized by two-dimensional gas chromatography with flame ionization detector (GC × GC–FID) and time-of-flight mass spectrometry (GC × GC–TOFMS). This condensate is sourced from the fourth member of the Shahejie Formation (Es4) but reservoired in the Mesoproterozoic Wumishan Formation carbonate at a depth of 5641–6027 m and the reservoir temperature is 190–201 °C. It is the deepest and the highest temperature discovery in the basin to date. The API gravity of the condensate is 51° and the sulfur content is < 0.04%. A total of 4955 compounds were detected and quantified. Saturated hydrocarbons, aromatic hydrocarbons and non-hydrocarbon account for 94.8%, 5.1% and 0.02% of the condensate mass, respectively. Some long chain alkylated cyclic alkanes, decahydronaphthalenes and diamondoids are tentatively identified in this condensate. The C6–C9 light hydrocarbon parameters show that the gas condensate was generated at relatively high maturity but its generation temperature derived from the dimethylpentane isomer ratio seems far lower than the current reservoir temperature. Some light hydrocarbon parameters indicate evaporative fractionation may also be involved due to multiple-charging and mixing. The diamondoid concentrations and gas oil ratio (GOR) suggest that the ND1 condensate results from 53.3–55% cracking. Since significant liquids remain, the exploration potential of ultra-deep buried hill fields in the Bohai Bay Basin remains high.  相似文献   

19.
《Earth》2006,74(3-4):197-240
New data gathered during mapping of c. 3490–3240 Ma rocks of the Pilbara Supergroup in the Pilbara Craton show that most bedded chert units originated as epiclastic and evaporative sedimentary rocks that were silicified by repeated pulses of hydrothermal fluids that circulated through the footwall basalts during hiatuses in volcanism. For most cherts, fossil hydrothermal fluid pathways are preserved as silica ± barite ± Fe-bearing veins that cut through the footwall and up to the level of individual bedded chert units, but not above, indicating the contemporaneity of hydrothermal silica veining and bedded chert deposition at the end of volcanic eruptive events. Silica ± barite ± Fe-bearing vein swarms are accompanied by extensive hydrothermal alteration of the footwall to the bedded chert units, and occurred under alternating high-sulphidation and low-sulphidation conditions. These veins provided pathways to the surface for elements leached from the footwall (e.g., Si, Ba, Fe) and volcanogenic emissions from underlying felsic magma chambers (e.g., CO2, H2S/HS, SO2).Stratigraphic evidence of shallowing upward and subsequent deepening associated with the deposition of Warrawoona Group cherts is interpreted to relate to the emplacement of subvolcanic laccoliths and subsequent eruption and/or degassing of these magmas. Heat from these intrusions drove episodes of hydrothermal circulation. Listric normal faulting during caldera collapse produced basins with restricted circulation of seawater. Eruption of volcanogenic emissions into these restricted basins formed brine pools with concentration of the volcanogenic components, thereby providing habitats suitable for early life forms.Fossil stromatolites from two distinct stratigraphic units in the North Pole Dome grew in shallow water conditions, but in two very different geological settings with different morphologies. Stratiform and domical stromatolites in the stratigraphically lower, c. 3490 Ma, Dresser Formation of the Warrawoona Group are intimately associated with barite and chert precipitates from hydrothermal vents, suggesting that component microbes may have been chemoautotrophic hyperthermophiles. Evidence of shallow water to periodically exposed conditions, active growth faulting and soft sediment deformation indicates that the volcanogenic emissions were erupted into a shallow water, tectonically active caldera and concentrated therein to produce an extreme habitat for early life.Widespread conical and pseudocolumnar stromatolites in the c. 3400 Ma, Strelley Pool Chert at the base of the unconformably overlying Kelly Group occur in shallow marine platform carbonates. Silicification was the result of later hydrothermal circulation driven by heat from the overlying, newly erupted Euro Basalt. The markedly different morphology and geological setting of these only slightly younger stromatolites, compared with the Dresser Formation, suggests a diversity of microbial life on early Earth.The biogenicity of putative microfossils from this and younger hydrothermal silica veins in the Warrawoona Group remains controversial and requires further detailed study.  相似文献   

20.
梅冥相 《现代地质》2007,21(1):45-56
在燕山地区中元古代高于庄组一套厚度千余米的碳酸盐沉积序列中,第三段组成一个特别的非叠层石碳酸盐岩序列。两个剖面(天津蓟县剖面和北京延庆千沟剖面)的详尽观察与研究结果表明:高于庄组第三段的非叠层石碳酸盐岩沉积序列以灰岩序列为特征,厚度为300 m至600 m不等,在蓟县剖面发育有存在成因争论的臼齿状构造,在延庆千沟剖面发育奇形怪状的席底构造。该非叠层石碳酸盐岩沉积序列表明,在前寒武纪除了3次叠层石衰减事件(分别发生在2 000 Ma、1 000 Ma和675 Ma)外,在1 450 Ma左右还可能发生过一次叠层石衰减事件。再者,高于庄组第三段构成的非叠层石碳酸盐岩沉积序列,可以大致与北美地区的Belt超群中的Helena组非叠层石碳酸盐岩沉积序列相对比,从而表明了1 450 Ma左右的叠层石衰减事件因具有全球性而有重要意义。在漫长的前寒武纪,臼齿状构造常常集中发育在叠层石衰减事件之后,因此,尽管这两种沉积构造的成因还不完全清楚却成为了解前寒武纪世界的重要线索。1 450 Ma左右的叠层石衰减事件,正好处于叠层石发育的黄金时段(2 800 Ma至1 000 Ma),对该次事件的识别,有助于正确认识漫长而复杂多变的前寒武纪碳酸盐世界。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号