首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
The Inner Mongolia Highland (IMH), along the northern edge of the North China Craton, was considered to be a long-standing topographic highland, whose exhumation history remains elusive. The aim of this study is to reveal Late Paleozoic exhumation processes of the IMH based on an integrated analysis of stratigraphy, petrography of clastic rocks, and U–Pb ages and Hf isotopes of detrital zircons from Permian–Triassic succession in the middle Yanshan belt. The results of the study show that the Benxi Formation, which was originally regarded as a Late Carboniferous unit, proves to be Early Permian in age because it contains detrital zircons as young as ∼298 Ma. The Lower Shihezi Formation is demonstrated to be a unit whose age spans the boundary of the Middle and Upper Permian, constrained by a U–Pb age of 260 ± 2 Ma from a dacite layer. Clastic compositions of conglomerate and sandstone change markedly, characterised by the predominance of sedimentary components in the Benxi–Shanxi Formations, by large amounts of volcanic clastics in the Lower and Upper Shihezi Formations, and by the presence of both metamorphic and igneous clastics in the Sunjiagou–Ermaying Formations. Sedimentary clastics include chert, carbonate, sandstone and quartzite, which may have been derived from Proterozoic to Lower Paleozoic sedimentary covers. Volcanic clasts were directly related to volcanic eruptions, while granite and gneiss grains were sourced from exhumed Late Paleozoic intrusive rocks and basement rocks. Detrital zircon U–Pb ages can be divided into five populations: 2.6–2.4 Ga, 1.9–1.7 Ga, 400–360 Ma, 325–290 Ma and 270–250 Ma. Precambrian detrital zircons are typically subrounded to rounded in shape, implying a recycling origin. Late Paleozoic zircons show oscillatory zones and their Th/U ratios >0.4, suggesting a magmatic origin. Most Phanerozoic zircons have negative εHf(T) values of −3.2 to −25.5, which are compatible with those of Late Paleozoic plutons in the IMH. The results indicate that the IMH may have been covered with Proterozoic to Lower Paleozoic sedimentary strata, which then underwent subsequent erosion and served as provenances for adjacent Late Paleozoic basins. Vertical changes in both clastic compositions and detrital zircon ages in Permian–Triassic strata imply an unroofing process of the IMH. Three phases of the IMH uplift are distinguished. The first-phase uplift commenced 325–312 Ma and resulted from magmatic intrusion related to southward subduction of the Paleo-Asian Ocean. The second-phase uplift took place in the Middle Permian and may be attributed to crustal contraction related to the collision of the North China Craton and the Southern Mongolia terrane. The third-phase uplift happened at the end of the Permian, and may have been induced by upwelling of calc-alkali magma under an extensional setting.  相似文献   

2.
The North China Craton (NCC) is bounded by two Paleozoic accretionary arc terranes: the North Qinling terrane to the south and the Bainaimiao terrane to the north. The timing of arc accretion to the NCC and the architecture of the Bainaimiao arc remain unclear. During the building and accretion of the arcs along its margins, the NCC experienced a long sedimentary hiatus since the Ordovician, which ended with the deposition of bauxite-bearing sediments in the Late Carboniferous. In this paper we report the U–Pb and Hf isotopes of detrital zircons from the Late Carboniferous bauxite layer and use these data to constrain the tectonic evolution of the margin of the NCC. The detrital zircons yield a minimum U–Pb age of ca. 310 Ma and a prominent age peak at ca. 450 Ma. Zircon crystals with ages of ca. 330 Ma and ca. 1900 Ma are more common in the bauxite samples from the northern part of the NCC than in those from the central part. The εHf(t) values of the ca. 450 Ma detrital zircon crystals of the bauxite samples from the NCC are similar to those of the contemporaneous detrital zircon crystals from the North Qinling arc terrane to the south, but different from those of the contemporaneous detrital zircon crystals from the Bainaimiao arc terrane to the north. The ca. 450 Ma detrital zircon crystals in the ca. 310 Ma bauxite deposits are therefore interpreted to have been derived from the North Qinling arc terrane. The source of the ca. 330 Ma detrital zircon crystals of the bauxite deposits is interpreted to be the northern margin of the NCC, where intermediate-felsic plutons formed at ca. 330 Ma are common. The results from this study support the interpretation that the Paleozoic continental arc terranes and their concomitant back-arc basins were developed along the margins of the NCC before ca. 450 Ma, and the arc complexes were subsequently accreted to the craton in the Late Carboniferous. This was then followed by the formation of a walled continental basin within the NCC.  相似文献   

3.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

4.
The Eastern Cordillera of Peru represents one of the longest (> 1200 km) Paleozoic metamorphic and magmatic belts exposed along the western Andean margin of South America. In this study, we examine the tectonothermal evolution of a key segment of the metasedimentary basement of the Eastern Cordillera of Peru (the Huaytapallana Complex) and demonstrate that it has experienced a hitherto undocumented high-grade orogenic event at 260 Ma (latest Middle Permian) based on U–Pb and Th–Pb monazite age data from paragneisses and U–Pb dating of zircon rims from leucosomes. These ages are interpreted as recording crystallization and are consistent with 255 Ma rutile growth in lower-grade units. U–Pb apatite data (c. 260–230 Ma) in all units are consistent with slow cooling from this 260 Ma metamorphic peak. U–Pb zircon geochronology of pre-tectonic plutons yield ages ranging from c. 302 Ma to c. 260 Ma. These geochronological data are augmented by new U–Pb apatite age data from other segments along the Eastern Cordillera of Peru. A regional synthesis of existing geochronological constraints from the Eastern Cordillera of Peru demonstrates that the margin has experienced a polycyclic orogenic history. Deformation and magmatism occurred at c. 480 Ma and c. 435 Ma during the Famatinian orogenic cycle, was followed by a Late Silurian to Early Carboniferous (c. 420–350 Ma) magmatic and metamorphic gap, and terminated with Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma. These Famatinian and Gondwanide orogenic phases can be correlated into the Proto-Andean margin of Argentina and Chile and are thus of regional extent. The evolution of the Proto-Andean margin is thus best explained by changes in tectonic plate reorganization in a long-lived Paleozoic accretionary orogen which was undergoing phases of advance and retreat, resulting in magmatic pulses and orogenic phases which can be correlated along the length of the plate boundary.  相似文献   

5.
《Gondwana Research》2014,25(1):383-400
U–Pb geochronologic and Hf isotopic results of seven sandstones collected from Late Carboniferous through Early Triassic strata of the south-central part of the North China Craton record a dramatic provenance shift near the end of the Late Carboniferous. Detrital zircons from the Late Carboniferous sandstones are dominated by the Early Paleozoic components with positive εHf(t) values, implying the existence of a significant volume of juvenile crust at this age in the source regions. Moreover, there are also three minor peaks at ca. 2.5 Ga, 1.87 Ga and 1.1–0.9 Ga. Based on our new data, in conjunction with existing zircon ages and Hf isotopic data in the North China Craton (NCC), Central China Orogenic Belt (CCOB) and Central Asian Orogenic Belt (CAOB), it can be concluded that Early Paleozoic and Neoproterozoic detritus in the south-central NCC were derived from the CCOB. Zircons with ages of 1.9–1.7 Ga were derived from the NCC. However, the oldest components can't be distinguished, possibly from either the NCC or the CCOB, or both. In contrast, detrital zircons from the Permian and Triassic sandstones are characterized by three major groups of U–Pb ages (2.6–2.4 Ga, 1.9–1.7 Ga and Late Paleozoic ages). Specially, most of the Late Paleozoic zircons show negative εHf(t) values, similar to the igneous zircons from intrusive rocks of the Inner Mongolia Paleo-Uplift (IMPU), indicating that the Late Paleozoic detritus were derived from the northern part of the NCC. This provenance shift could be approximately constrained at the end of the Late Carboniferous and probably hints that tectonic uplift firstly occurred between the CCOB and the NCC as a result of the collision between the South and North Qinling microcontinental terranes, and then switched to the domain between the CAOB and the NCC. Additionally, on the basis of Lu–Hf isotopic data, we reveal the pre-Triassic crustal growth history for the NCC. In comparison among the three crustal growth curves obtained from modern river sands, our samples, and the Proterozoic sedimentary rocks, we realize that old components are apparently underestimated by zircons from the younger sedimentary rocks and modern river sands. Hence, cautions should be taken when using this method to investigate growth history of continental crust.  相似文献   

6.
The South Tian Shan, which is located along the southwestern margin of the Central Asian Orogenic Belt, is widely accepted as a collisional orogen between the Kazakhstan-Yili Block in the north and the Tarim Craton in the south, and the collision is thought to have occurred in either Late Paleozoic or Triassic. Regardless of the timing of the collision, the major magmatic events in the South Tian Shan Orogen should be related to subduction, collision and post-collision. We investigate this problem through U–Pb age of detrital zircons from the eastward-flowing Tekes River and its southern branches flowing through the northern slope of the Chinese South Tian Shan. A total of 500 analyses on 494 zircon grains from five sand samples yield an age range of 2590 to 268 Ma, but they are dominated by Paleozoic magmatic zircon grains, with some Precambrian population, but no Mesozoic and Cenozoic grains were detected. One of the samples from the Tekes River contains zircon grains from the Chinese South Tian Shan and other areas because the river receives its discharge from multiple sources. The other four samples were collected from four branches originating from the Chinese South Tian Shan only. From west to east, the sample from the Kayintemuzhate River shows two peak ages of 475 and 345 Ma, sample from the Muzhaerte (also called Xiate) River has peak ages of 422 and 290 Ma, sample from the Akeyazi River is characterized by a single peak age of 421 Ma, and sample from the Kekesu River shows a more complicated spectra with peak ages of 426, 398, 362, 327, and 285 Ma. When pooled together, the four samples yield four distinct age populations of 500–460, 450–390, 360–320, and 300–270 Ma, indicating the major magmatic events in the Chinese South Tian Shan. These results, combined with regional data, show an absence of Mesozoic magmatic events in the drainage areas of the Tekes River, and thus the South Tian Shan does not seem to be a Triassic orogen because of the lack of syn-collisional and post-collisional magmatism. The 300–270 magmatic event is thought to post-date the closure of the South Tian Shan Ocean, while the 360–320 and 450–390 Ma events were closely related to the northward subduction of the South Tian Shan Ocean. Our results strongly suggest a Late Carboniferous (320–300 Ma) collision between the Kazakhstan-Yili Block and the Tarim Craton. Possibly, the 500–460 Ma magmatism was related to subduction and closure of the Early Paleozoic Terskey Ocean.  相似文献   

7.
《Gondwana Research》2014,25(3-4):1203-1222
Reactivation of cratonic basement involves a number of processes including extension, compression, and/or lithospheric delamination. The northern margin of the North China Craton (NCC), adjacent to the Inner Mongolian Orogenic Belt, was reactivated in the Late Paleozoic to Early Mesozoic. During this period, the northern margin of the NCC underwent magmatism, N–S compression, regional exhumation, and uplift, including the formation of E–W-trending thick-skinned and thin-skinned south-verging folds and south-verging ductile shear zones. zircon U–Pb SHRIMP ages for mylonite protoliths in shear zones which show ages of 310–290 Ma (mid Carboniferous–Early Permian), constraining the earliest possible age of deformation. Muscovite within carbonate and quartz–feldspar–muscovite mylonites from the Kangbao–Weichang and Fengning–Longhua shear zones defines a stretching lineation and gives 40Ar/39Ar ages of 270–250 Ma, 250–230 Ma, 230–210 Ma, and 210–190 Ma. Deformation developed progressively from north to south between the Late Paleozoic and Triassic. Exhumation of lower crustal gneisses, high-pressure granulites, and granites occurred at the cratonic margin during post-ductile shearing (~ 220–210 Ma). An undeformed Early Jurassic (190–180 Ma) conglomerate overlies the deformed rocks and provides an upper age limit for reactivation and orogenesis. Deformation was induced by convergence between the southern Mongolia and North China cratonic blocks, and the location of this convergent belt controlled later deformation in the Yanshan Tectonic Province. This province formed as older E–W-trending Archean–Proterozoic sequences were reactivated along the northern margin of the NCC. This reactivation has features typical of cratonic basement reactivation: compression, crustal thickening, remelting of the mid to lower crust, and subsequent orogenesis adjacent to the orogenic belt.  相似文献   

8.
U–Pb dating and Hf isotopic analyses of zircons from various granitoids, combined with major and trace element analyses, were undertaken to determine the petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli–Erguna area of Inner Mongolia, China. The Neoproterozoic granitoids are mainly biotite monzogranites with zircon U–Pb ages of 894 ± 13 Ma and 880 ± 10 Ma, and they are characterised by enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, K) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs; e.g., Nb, Ta, Ti) and heavy rare earth elements (HREEs). The Late Devonian granitoids are dominantly syenogranites and mylonitised syenogranites with zircon U–Pb ages of 360 ± 4 Ma, and they form a bimodal magmatic association with subordinate gabbroic rocks of the same age. The Late Devonian syenogranites have A-type characteristics including high total alkalis, Zr, Nb, Ce and Y contents, and high FeOt/MgO, Ga/Al and Rb/Sr ratios. The Carboniferous granitoids are mainly tonalites, granodiorites and monzogranites with U–Pb ages varying from 319 to 306 Ma, and they show very strong adakitic characteristics such as high La/Yb and Sr/Y ratios but low Y and Yb contents. The Late Permian granitoids are dominated by monzogranites and syenogranites with zircon U–Pb ages ranging between 257 and 251 Ma. Isotopically, the εHf(t) values of the Neoproterozoic granitoids range from +4.3 to +8.3, and the two-stage model ages (TDM2) from 1.2 to 1.5 Ga. The Late Devonian granitoids are less radiogenic [εHf(t) from +12.0 to +12.8 and TDM2 from 545 to 598 Ma] than the Carboniferous [εHf(t) from +6.8 to +9.5 and TDM2 from 722 to 894 Ma] and Late Permian granitoids [εHf(t) from +6.1 to +9.4 and TDM2 in the range of 680–895 Ma]. These data indicate (1) the Neoproterozoic granitoids may have been generated by melting of a juvenile crust extracted from the mantle during the Mesoproterozoic, probably during or following the final stages of assembly of Rodinia as a result of the collision and amalgamation of Australia and the Tarim Craton; (2) the Late Devonian granitoids may have formed by partial melting of a new mantle-derived juvenile crust in a post-orogenic extensional setting; (3) the Carboniferous granitoids appear to have been produced by melting of garnet-bearing amphibolites within a thickened continental crust during and following the collision of the Songnen and Erguna–Xing’an terranes; and (4) the Late Permian granitoids may have been generated by melting of garnet-free amphibolites within the Neoproterozoic juvenile continental crust, probably in the post-collisional tectonic setting that followed the collision of the North China and Siberian cratons.  相似文献   

9.
The Yarlung Zangbo Suture Zone (YZSZ) is believed to be composed of material largely derived from the destruction of the Neo-Tethys that occurred from early Mesozoic to early Cenozoic. We report here geochronological and petrological data obtained for newly discovered alkaline gabbro blocks embedded in a mélange zone of the western YZSZ. Single zircon U–Pb analyses from one representative gabbro sample by SIMS (Secondary Ion Mass Spectrometry) yielded a combined crystallization age of about 363.7 ± 1.7 Ma (1σ). In situ Hf isotopic analyses yielded εHf(t) values of + 2.6 to + 5.5, suggesting an enriched mantle source. All of the gabbro samples show typical Ocean Island Basalt (OIB) affinity with little or no continental crust contamination. They also display strong geochemical similarities with the Hawaii basalts and the Xigaze seamount basalts suggestive of their intra-oceanic setting. These observations, in combination with the Early Carboniferous layered gabbros reported at Luobusa, indicate that these rocks could represent remnants of the Paleo-Tethys. We propose that a branch ocean separating the Western Qiangtang terrane and the Lhasa terrane from the Gondwana continent might have been present during the Late Devonian and the Early Carboniferous, providing new constrains on the configuration of Paleo-Tethys in Tibetan Plateau during early Late Paleozoic.  相似文献   

10.
This paper presents a great number of detrital zircon U–Pb ages from the Middle Triassic to the Middle Jurassic sediments in the Jiyuan basin, southern North China. The results represent age spectra from 2.9 Ga to 216 Ma, with five peaks at 2.5 Ga, 1.9 Ga, 840 Ma, 440 Ma, and 270 Ma and two grains of ∼220 Ma. The ages of 2.5 Ga and 1.9 Ga are mainly derived from the Precambrian basement of the North China Block, whereas the others are typical characteristics of the Qinling orogenic belt. An important observation is that the Qinling-sourced detrital zircons become older as the strata get younger. Samples from the Middle Triassic to early Late Triassic strata are characterized by the age peak at 270 Ma, whereas the Late Late Triassic to Early Middle Jurassic samples are dominated by age peaks at 840 Ma and 440 Ma and minor grains within 800–650 Ma. Two grains of ∼220 Ma are preserved in the Late Middle Jurassic sample, which may be contributed by the Carnian deep plutons. These signatures indicate that the unroofing pattern of the Qinling orogenic belt developed by the denudation of materials from young covers to old basements and the Carnian deep plutons. Integrated with the data reported from the Hefei Basin, it is well-established that the intensity of unroofing increased from the Qinling to the Dabie orogen in the Early Jurassic, and the denudation timing of the ultra-high pressure (UHP) and high pressure (HP) rocks or Carnian plutons changed successively from the Early Jurassic in the Dabie to the Late Middle Jurassic in the Qinling orogen.  相似文献   

11.
To better constrain the Early Paleozoic tectonic evolution of the western part of the Erguna–Xing’an Block, detrital zircon U–Pb dating was applied on the Ordovician to Devonian sedimentary strata along the southeast part of the China–Mongolia border. Most of the zircons from five sedimentary samples display fine-scale oscillatory growth zoning and Th/U ratios higher than 0.1, indicating a magmatic origin. All five Ordovician–Devonian samples display the similar age distribution patterns with age groups at ∼440 Ma, ∼510 Ma, ∼800 Ma, ∼950 Ma, and few Meso- to Paleo-Proterozoic and Neoarchean grains. This age distribution pattern is similar to those from adjacent blocks in the southeastern Central Asian Orogenic Belt. Considering previous tectonic studies, we propose bidirectional provenances from the Erguna–Xing’an Block and Baolidao Arc.Consequently, a new model was proposed to highlight the Early Paleozoic tectonic evolution of the western Erguna–Xing’an Block, which constrains two main Early Paleozoic tectonic events of the Xing-Meng Orogenic Belt: (a) pre-Late Cambrian collision between Erguna–Kerulen Block and Arigin Sum-Xilinhot-Xing’an Block; (b) the Early Paleozoic subduction of Paleo-Asian Ocean and pre-Late Devonian collision between Erguna–Xing’an Block and Songliao-Hunshandake Block.  相似文献   

12.
New zircon U–Pb data, along with the data reported in the literature, reveal five phases of magmatic activity in the Tengchong Terrane since the Early Paleozoic with spatial and temporal variations summarized as Cambrian–Ordovician (500–460 Ma) to the east, minor Triassic (245–206 Ma) in the east and west, abundant Early Cretaceous (131–114 Ma) in the east, extensive Late Cretaceous (77–65 Ma) in the central region, and Paleocene–Eocene (65–49 Ma) in the central and western Tengchong Terrane, in which the Cretaceous–Eocene magmatism migrated from east to west. The increased zircon εHf(t) of the Early Cretaceous granitoids from − 12.3 to − 1.4 at ca. 131–122 Ma to − 4.6 to + 7.1 at ca. 122–114 Ma, identified for the first time in this study, and the magmatic flare-up at ca. 53 Ma in the central and western Tengchong Terrane indicate increased contributions from mantle- or juvenile crust-derived components. The spatial and temporal variations and changing magmatic compositions over time in the Tengchong Terrane closely resemble those of the Lhasa Terrane in southern Tibet. Such similarities, together with the data of stratigraphy and paleobiogeography, enable us to propose that the Tengchong Terrane in SW Yunnan is most likely linked with the Lhasa Terrane in southern Tibet, both of which experienced similar tectonomagmatic histories since the Early Paleozoic.  相似文献   

13.
We conducted field investigations, whole-rock geochemical, Sr-Nd and zircon U-Pb-Lu-Hf isotopic analyses on a suite of intrusive complex in the southern Nalati Range, SW Chinese Tianshan in order to better understand the Paleozoic tectonic and magmatic evolution of the belt. The intrusive complex comprises weakly foliated diorite, low-grade altered diabase, and deformed monzogranite; these plutonic rocks were in turn crosscut by undeformed coarse-grained diorite, granodiorite as well as granite stock. Foliated Late Silurian diorites (421 ± 4 Ma) show arc-type geochemical features, slightly negative whole-rock εNd(t) value (− 1.7; TDM-Nd = 1.52 Ga) and variably positive zircon εHf(t) values (2.34 to 7.27; TDM-Hf: 0.95– 1.26 Ga). Deformed Early Devonian porphyritic monzogranites (411 ± 4 Ma) show geochemical features similar to A-type granite, and their zircon εHf(t) values range from − 6.63 to 1.02, with TDM-Hf ages of 1.82 to 1.33 Ga. Metamorphosed Early Devonian diabases (ca. 410 Ma) have OIB-like REE patterns, εNd(t) values of − 2.0 ~  0.8 and TDM-Nd ages of 1.37– 1.25 Ga. The undeformed Early Carboniferous diorite and granodiorite (353– 344 Ma) exhibit arc-type geochemical features, positive εHf(t) values of 6.11– 7.91 with TDM-Hf ages of 0.97– 0.86 Ga, and positive εNd(t) value of 1.9 with TDM-Nd age of 1.04 Ga. The Early Permian granite stock (292 ± 5 Ma) has highly differentiated REE pattern, slightly negative εNd(t) value (− 4.4) and variable zircon εHf(t) values of − 9.73– 6.36. Combining with available data, Early Paleozoic (500– 410 Ma) arc-related magmatic rocks occurring on both sides of the suture zone along the southern Nalati Range, likely resulted from a bi-directional subduction of the Paleo-Tianshan Ocean beneath the Yili Block to the north and the Central Tianshan to the south. Occurrences of A-type granites and OIB-like diabases (ca. 410 Ma) along the Nalati Range likely indicate a hot extensional regime probably induced by the break off of the northward subducting slab of the Paleo-Tianshan Ocean. The closure of the Paleo-Tianshan Ocean and subsequent amalgamation during Early Carboniferous resulted in the regional deformation and metamorphism of the Early Paleozoic arc-related magmatic rocks. From Early to Late Carboniferous, a magmatic arc that corresponded to the well-developed Late Paleozoic Balkhash-Yili active continental margin, superimposed upon the southern Yili Block, most likely resulted from the southward subduction of the Junggar-North Tianshan Ocean. After the closure of the North Tianshan Ocean in Late Carboniferous, the study area was dominated by post-orogenic magmatism.  相似文献   

14.
《Gondwana Research》2014,26(4):1627-1643
The Tianshan Orogenic Belt, which is located in the southwestern part of the Central Asian Orogenic Belt (CAOB), is an important component in the reconstruction of the tectonic evolution of the CAOB. In order to examine the evolution of the Tianshan Orogenic Belt, we performed detrital zircon U–Pb dating analyses of sediments from the accretionary mélange from Chinese southwestern Tianshan in this study. A total of 542 analyzed spots on 541 zircon grains from five samples yield Paleoarchean to Devonian ages. The major age groups are 2520–2400 Ma, 1890–1600 Ma, 1168–651 Ma, and 490–390 Ma. Provenance analysis indicates that, the Precambrian detrital zircons were probably mainly derived from the paleo-Kazakhstan continent formed before the Early Silurian by amalgamation of the Kazakhstan–Yili microplate, the Chinese central Tianshan terrane and the Kyrgyz North and Middle Tianshan blocks, while detrital zircons with Paleozoic ages mainly from igneous rocks of the continental arc generated by the northward subduction of the south Tianshan paleocean. The age data correspond to four tectono-thermal events that took place in these small blocks, i.e., the continental nucleus growth during the Late Neoarchean–early Paleoproterozoic (~ 2.5 Ga), the evolution of the supercontinents Columbia (2.1–1.6 Ga) and Rodinia (1.3–0.57 Ga), and the arc magmatism related with the Phanerozoic orogeny. The Precambrian zircons show a similar age pattern as the Tarim and the Cathaysia cratons and the Eastern India–Eastern Antarctica block but differ from those of Siberia distinctly. Therefore, the Tianshan region blocks and the Kazakhstan–Yili microplate have a close affinity to the eastern paleo-Gondwana fragments, but were not derived from the Siberia craton as proposed by some previous researchers. These blocks were likely generated by rifting accompanying Rodinia break-up in late Precambrian times.The youngest ages of the detrital zircons from the subduction mélange show a maximum depositional age of ca. 390 Ma. It is coeval with the end of an earlier arc magmatic pulse (440–390 Ma) but a bit older than a younger one at 360–320 Ma and nearly 70–80 Ma older than the HP–UHP metamorphism in the subduction zone (320–310 Ma).  相似文献   

15.
The Charysh–Terekta–Ulagan–Sayan suture zone was regarded as a tectonic boundary separating two distinct subduction–accretion systems in the Central Asian Orogenic Belt (CAOB). In the north, magmatic arcs, such as the Gorny Altai terrane, formed in the southwestern periphery of the Siberian continent, whereas in the south, arc-prism systems, such as the Altai–Mongolian terrane, formed around the so-called Kazakhstan–Baikal composite continent with Gondwana affinity. When did these two systems amalgamate and whether the metamorphic complexes in the suture zone represent Precambrian micro-continental slivers are critical for our understanding of the accretionary orogenesis and crustal growth rate in the CAOB. A combined geochemical and detrital zircon U–Pb–Hf isotopic study was conducted on the meta-sedimentary rocks from the Ulagan (also referred to Bashkaus) and Teletsk Complexes in the suture zone. The results indicate that the protoliths of these rocks were dominated by immature sediments deposited in a time period between 500 and 420 Ma. Thus, Precambrian micro-continental slivers may not exist in the suture zone and even in the whole Altai Orogen.The meta-sedimentary rocks from the Ulagan Complex yield geochemical compositions between those of common intermediate and felsic igneous rocks, implying that these kinds of rocks possibly served as dominant sources. Detrital zircons from this complex consist of a major population of ca. 620–500 Ma, a subordinate one of ca. 931–671 Ma and rare grains of ca. 2899–1428 Ma. This age spectrum is compatible with the magmatic records of the western Mongolia. We propose that the Ulagan Complex possibly represents part of a subduction–accretion complex built upon an active continental margin of the western Mongolia in the early Paleozoic. The remarkable similarities in source nature, provenance, and depositional setting to the early Paleozoic meta-sedimentary rocks from the northern Altai–Mongolian terrane imply that the Ulagan Complex was possibly fragmented from this terrane.The meta-sedimentary rocks from the Teletsk Complex show similar detrital zircon populations but contain higher proportions of mafic sediments and have more depleted whole-rock Nd isotopic compositions. Our data suggest that the detritus mostly came from the same source as that for the Ulagan Complex but those from the Gorny Altai terrane also contributed. This implies that the Gorny Altai and Altai-Mongolian terranes possibly amalgamated prior to the early Devonian rather than in the middle Devonian to early Carboniferous as previously thought. Thus, the widespread Devonian to early Carboniferous magmatism within these two terranes was possibly generated in a similar tectonic setting. Moreover, the dominant Neoproterozoic to early Paleozoic detrital zircons from the Teletsk Complex yield largely varied ɛHf(t) values of − 23.8 to 12.4, indicating that crustal growth and reworking are both important in the accretionary orogenesis.  相似文献   

16.
Numerous small dismembered ophiolite fragments occur in South Mongolia, but they are very poorly studied. The lack of age data and geochemical analysis hampers our understanding of the Paleozoic tectonic evolution of the region. We conducted detailed studies on the Manlay ophiolitic complex and Huree volcanic rocks south of the Main Mongolian Lineament (MML) to provide some constraints on these rocks. The Manlay ophiolite consists of dunite, harzburgite, pyroxenite, gabbro, plagiogranite, basalt and chert, locally with chromite mineralization in dunite. The gabbro and plagiogranite yielded SHRIMP zircon weighted mean 206Pb/238U ages of 509 ± 5 Ma and 482 ± 4 Ma, respectively. The basalt and dolerite samples of this complex show enrichment in LREE and LILE and negative Nb, Ta and Ti anomalies, and the chrome spinel from the chromitite lens in the dunite is characterized by high Cr# and low TiO2 contents. These features suggest a supra-subduction zone (SSZ) origin for the ophiolitic complex. The Huree volcanic rocks, ranging from basalt to dacite, display enrichment in LREE and LILE, weak Eu anomalies and distinctly negative Nb, Ta and Ti anomalies, consistent with those of typical magmas in a subduction environment. An andesite sample from this arc yielded a SHRIMP 206Pb/238U zircon age of 487 ± 5 Ma, which is the oldest reliable age for an island arc in South Mongolia. Recognition of an Early Paleozoic ophiolitic complex and a coeval island arc indicates that South Mongolia underwent a period of active volcanism during Late Cambrian to Ordovician. Additionally, the tuff overlying the ophiolitic complex and a granite intruding the ophiolite have SHRIMP zircon U–Pb ages of 391 ± 5 Ma and 304 ± 4 Ma, respectively. Combining the available data, we propose that the Early Paleozoic subduction–accretionary complexes likely constitute the basement of the Late-Paleozoic arc formations and correlate with the Lake Zone in western Mongolia.  相似文献   

17.
The North China Craton (NCC) has been considered to be part of the supercontinent Columbia. The nature of the NCC western boundary, however, remains strongly disputed. A key question in this regard is whether or not the Alxa Block is a part of the NCC. It is located in the vicinity of the inferred boundary, and therefore could potentially resolve the issue of the NCC's relationship to the Columbia supercontinent. Some previous studies based on the Alxa Block's geological evolution and detrital zircon ages suggested that it is likely not a part of the NCC. The lack of evidence from key igneous rock units, however, requires further constraints on the tectonic affinity of the western NCC and Alxa Block and on the timing of their amalgamation.In this study, new zircon U–Pb age and Hf–O isotopes and whole-rock geochemical and Sr–Nd–Pb isotopic data for the Paleozoic granitoids in or near the eastern Alxa Block were used to constrain the petrogenesis of these rocks and the relationship between the Alxa Block and NCC. Secondary ion mass spectrometry (SIMS) U–Pb zircon dating indicates that the Bayanbulage, Hetun, Diebusige and South Diebusige granitoids were formed at ca. 423 Ma, 345 Ma, 345 Ma and 337 Ma, respectively. The Late Silurian (Bayanbulage) quartz diorites have variable SiO2 (58.0–67.9 wt.%), and low Sr/Y (20–24) values, while the Early Carboniferous (Hetun, Diebusige and South Diebusige) monzogranites have high SiO2 (71.5–76.7 wt.%) and Sr/Y (40–94) values. The Late Silurian quartz diorites display relatively homogeneous and high zircon δ18O (8.5–9.1‰) and εHf(t) (− 8.6 to − 5.3) values, high whole-rock εNd(t) values (− 9.2 to − 7.6) and highly radiogenic Pb isotopes (206Pb/204Pb = 18.13–18.25), whereas the Early Carboniferous monzogranites exhibit relatively low and variable zircon δ18O (5.7–7.2‰) and εHf(t) (− 23.1 to − 7.4) values, low whole-rock initial 87Sr/86Sr (0.7043–0.7070) and εNd(t) (− 19.1 to − 13.5) values and variable Pb isotopes (206Pb/204Pb = 16.06–18.22). The differences in whole rock Nd model ages and Pb isotope compositions of the Paleoproterozoic–Permian rocks in either side of the west fault of the Bayanwulashan–Diebusige complexes suggest that the Alxa Block is not a part of the NCC, and that the western boundary of the NCC is probably located on this fault. Furthermore, the linear distribution of the Early Paleozoic–Early Carboniferous granitoids, the high zircon δ18O values of the Late Silurian quartz diorites, the Early Devonian metamorphism and the foreland basin system formed during the collision between the Alxa Block and the NCC indicate that a Paleozoic cryptic suture zone likely existed in this area and records the amalgamation of the Alxa Block and North China Craton. Together with detrital zircon data, the initial collision was considered to have possibly occurred in Late Ordovician.  相似文献   

18.
U–Pb detrital zircon studies in the Rio Fuerte Group, NW Mexico, establish its depositional tectonic setting and its exotic nature in relation to the North American craton. Two metasedimentary samples of the Rio Fuerte Formation yield major age clusters at 453–508 Ma, 547–579 Ma, 726–606 Ma, and sparse quantities of older zircons. The cumulative age plots are quite different from those arising from lower Paleozoic miogeoclinal rocks of southwestern North America and of Cordilleran Paleozoic exotic terranes such as Golconda and Robert Mountains. The relative age-probability plots are similar to some reported from the Mixteco terrane in southern Mexico and from some lower Paleozoic Gondwanan sequences, but they differ from those in the Gondwanan-affinity Oaxaca terrane. Major zircon age clusters indicate deposition in an intraoceanic basin located between a Late Ordovician magmatic arc and either a peri-Gondwanan terrane or northern Gondwanaland. The U–Pb magmatic ages of 151 ± 3 Ma from a granitic pluton and 155 ± 4 Ma from a granitic sill permit a revision of the stratigraphic and tectonic evolution of the Rio Fuerte Group. A regional metamorphism event predating the Late Jurassic magmatism is preliminarily ascribed to the Late Permian amalgamation of Laurentia and Gondwana. The Late Jurassic magmatism, deformation, and regional metamorphism are related to the Nevadan Orogeny.  相似文献   

19.
The Central Asian Orogenic Belt (CAOB), as one of the largest accretionary orogens in the world, was built up through protracted accretion and collision of a variety of terranes due to the subduction and closure of the Paleo-Asian Ocean in the Neoproterozoic to Early Mesozoic. Located in the Uliastai continental margin of the southeastern CAOB, the Chagan Obo Temple area is essential for understanding the tectonic evolution of the southeastern part of the CAOB and its relation with the “Hegenshan Ocean”. In this study, detrital zircon U-Pb geochronology coupled with Hf isotopic analysis was performed on Paleozoic sedimentary strata in this area. Most detrital zircons from the studied samples possess oscillatory zoning and have Th/U ratios of 0.4-1.73, indicative of an igneous origin. Detrital zircons from the Ordovician to Devonian sedimentary strata yield a predominant age group at 511-490 Ma and subordinate age groups at 982-891 Ma, 834-790 Ma and ~ 574 Ma, and have a large spread of εHf(t) values (-20.77 to + 16.94). Carboniferous and Early Permian samples yield zircon U-Pb ages peaking at ~ 410 Ma and ~ 336 Ma, and have dominantly positive εHf(t) values (+ 1.30 to + 14.86). Such age populations and Hf isotopic signatures match those of magmatic rocks in the Northern Accretionary Orogen and the Mongolian arcs. A marked shift of provenance terranes from multiple sources to a single source and Hf isotope compositions from mixed to positive values occurred at some time in the Carboniferous. Such a shift implies that the Northern Accretionary Orogen was no longer a contributor of detritus in the Carboniferous to Early Permian, due to the opening of the “Hegenshan Ocean” possibly induced by the slab rollback of the subducting Paleo-Asian Ocean.  相似文献   

20.
Volcanoplutonic complexes in NE Vietnam have recently been interpreted as intraplate products of the Emeishan plume. Alternatively, mafic–ultramafic rocks have been considered as dismembered Palaeotethyan ophiolites juxtaposed along a tectonic mélange zone. New U–Pb zircon geochronological and geochemical datasets presented here suggest a complex geological history that records collision between the Indochina–South China blocks. Mafic–ultramafic rocks exposed within a tectonic mélange (Song Hien Tectonic Zone) include sub-alkaline pillow basalts that define two geochemically distinct ophiolitic suites (SH-1: N-MORB-like, SH-2: transitional E-MORB-like). Both suites have geochemical signatures suggestive of crustal contamination, compatible with a volcanic passive margin/rift setting. We suggest that SH-1 basalts may correlate with the Devonian–Carboniferous Jinshajiang–Ailaoshan–Song Ma branch of the Palaeotethys and form part of the associated Dian–Qiong belt, whereas SH-2 basalts are co-magmatic with Middle–Late Permian mafic–ultramafic intrusive rocks (dolerites, gabbros, peridotites) that developed in a rift basin, most likely on the margin of the down-going South China plate during west-vergent subduction beneath Indochina. During continental orogenesis and thrust stacking, these ophiolitic rocks were juxtaposed with other lithotectonic blocks within the Song Hien Tectonic Zone. Post-collisional relaxation led to the development of a rift basin (Song Hien rift) comprising Late Permian–Triassic volcano-sedimentary strata including < 270–265 Ma terrigenous sandstones, < 252 Ma mudstones, and c. 254–248 Ma felsic effusives. Granites and granodiorites were emplaced across NE Vietnam between c. 252 and 245 Ma in a syn- to post-collisional setting. The Late Permian–Early Triassic felsic magmatic rocks best correlate with coeval rocks in SW Guangxi and the Central and Western Ailaoshan fold belts (China) and the Truong Son fold belt (Vietnam); together they signal the final to post-collisional stages of Indochina–South China collision. We demonstrate that the analysed magmatic rocks in the Lo-Gam–Song Hien domains of NE Vietnam are not genetically linked to the Emeishan Large Igneous Province in the Yangtze block of South China, as has been previously widely proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号