首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
New LA-ICP-MS U–Pb detrital zircon ages from Ediacaran and Paleozoic siliciclastic rocks are used to constrain provenance and paleogeographic affinities of the Teplá-Barrandian unit (TBU) in the centre of the Bohemian Massif (Central Europe, Czech Republic). The samples taken span the period from ≤ 635 Ma to ~ 385 Ma and permit recognition of provenance changes that reflect changes in geotectonic regime. Detrital zircon age spectra of two Ediacaran, one Lower Cambrian and three Upper Ordovician samples resemble the ages known from the NW African proportion of Gondwana, particularly the Trans-Saharan belt, while three rocks from higher Lower Cambrian to Lowermost Ordovician strata contain detritus that may have been derived exclusively from local sources. The age spectrum of the Devonian rock is a combination of the NW Gondwanan and local features. These new findings in combination with a wide range of published data are in agreement with a Neoproterozoic subduction-related setting at the margin of Gondwana followed by a Cambrian/Early Ordovician rifting stage and an Ordovician passive margin setting. Furthermore the data are in favour of a position of the TBU at the Gondwanan margin throughout pre-Variscan times.  相似文献   

3.
We present a synopsis of detrital zircon U–Pb ages of sandstones from North Africa and neighboring Israel and Jordan, which allows us to identify zones with characteristic sediment provenance along the northern Gondwana margin (in present-day coordinates) in Cambrian–Ordovician times, and helps us to unravel the peri-Gondwana jigsaw puzzle. A special feature of the early Paleozoic cover sequence of North Africa is the eastward increase of 1.1–0.95 Ga detrital zircons, which become ubiquitous in the early Paleozoic sandstones of the Saharan Metacraton. Detrital zircons aged about 2.7–2.5, 2.15–1.75 and 0.75–0.53 Ga are also present. Early Paleozoic sandstones with similar provenance are known from peri-Gondwana terranes in the Eastern and Western Mediterranean and from NW Iberia. These terranes need not be transported from western Gondwana (Amazonia) as suggested previously. They were likely located to the north of the Saharan Metacraton during the early Paleozoic before they rifted off from Gondwana. Furthermore, we recognize an increase, as stratigraphic ages get younger, of ca. 1.0 Ga detrital zircons at some point between the Late Cambrian and late Middle Ordovician. We speculate that this might be linked to far-field tectonics and regional uplift in central Gondwana related to plate-tectonic reorganization along the Gondwana margin, leading to erosion of ca. 1.0 Ga basement and country rocks of the Transgondwanan supermountain and fluvial dispersal of detritus toward the Gondwana margin.  相似文献   

4.
The first results of U–Pb detrital zircons were obtained in three lithostratigraphic units of the Puncoviscana Complex in NW Argentina: Chachapoyas, Alto de la Sierra and Guachos Formations. The Chachapoyas Formation has a maximum sedimentation age of 569 Ma and a minimum age of 533 Ma, based on the U–Pb age of an intrusive porphyry granitic. The Alto de la Sierra Formation, composed by sandstones and volcaniclastic rocks, has a maximum age of 543 Ma. A maximum age of 517 Ma is here reported for the deposition of the Guachos Formation, the youngest unit. The contact between the Chachapoyas and Guachos formations is by a tectonic relation, and it's probably coincident with a stratigraphic unconformity between them (unconformity Tilcara I). The Lizoite Formation is overlying by an unconformity (Tilcara II unconformity) the Puncoviscana Complex, and represents the basal unit of the Mesón Group. The provenance zircon data for that formation indicate a maximum depositional age of 513 Ma.  相似文献   

5.
We present data on the composition of metasedimentary rocks from the greenstone belt of the Onot terrane (Sharyzhalgay uplift) and results of U–Pb dating (SHRIMP II) and Lu–Hf isotope study of detrital zircon from garnet–staurolite schists. The metasedimentary rocks of the Onot greenstone belt are dominated by garnet- and staurolite-bearing schists alternating with amphibolites (metabasalts) in the upper part of the section. Compositionally the protoliths of garnet–staurolite schists correspond to sedimentary rocks, ranging from siltstone to pelitic mudstone. The trace-element characteristics of the garnet–staurolite schists indicate that the terrigenous material was derived from three different rock types, such as tonalite–trondhjemite plagiogneisses (elevated Gd/Yb ratios), mafic rocks (elevated Cr/Th ratios and reduced Th/Sc ratios), and felsic igneous rocks formed by crustal melting (the presence of a Eu minimum), which agrees with the set of potential source rocks from the Onot terrane. The age of predominant detrital zircon reflects the erosion of mainly Neoarchean igneous rocks; this fact, combined with the poor rounding of zircon and tectonically active sedimentation conditions accompanied by mafic volcanism, suggests that the probably depositional age is ca. 2.7 Ga. Older source rocks (2.80–3.35 Ga) contributed to the sediment deposition along with the Neoarchean ones. According to the Hf isotope composition of detrital zircon from the garnet–staurolite schists, the source provenances had different crustal prehistories. The source provenances include Paleoarchean and juvenile Neoarchean crust and rocks formed by the mixing of melts from ancient and juvenile crustal sources.  相似文献   

6.
《Gondwana Research》2014,25(3-4):1127-1151
The origin and tectonic settings of metasedimentary sequences in the Central Asian Orogenic Belt have been a matter of debate regarding their contributions with some proposals of being microcontinents or accreted material, largely due to a lack of high resolution geochronological data. This paper reports detrital zircon U–Pb age and Hf isotopic data for the previously mapped Precambrian metasedimentary rocks from the Beishan orogenic collage, southern Altaids. Our data show that Precambrian ages dominate all the analyzed samples, but two samples yield Paleozoic zircons which suggest that they were not deposited in the Precambrian. The late Paleoproterozoic–early Mesoproterozoic group (~ 2000–1300 Ma) is the largest age population among the six samples analyzed. This age population (~ 2000–1300 Ma) corresponds to the assembly and subsequent break-up of the Columbia supercontinent. Only one sample (11SYS01) yields Neoproterozoic ages (with two peaks at 930 and 785 Ma), which shows a possible affinity with the Tarim Craton. Hence, the age spectra presented here are generally different from that of the Tarim Craton and the metasedimentary rocks from the Central Tienshan. Our data show that the Tarim Craton is not the main source area for the metasedimentary rocks from the Beishan orogenic collage, but instead multiple source areas may have contributed to the Beishan collage. Combining our new results with published data, we favor an allochthonous origin for the metasedimentary sequences which may be associated with major thrust tectonics. Therefore, a long-lived arc accretionary model is proposed for the tectonic evolution of the Beishan orogenic collage.  相似文献   

7.
ABSTRACT

This article presents detailed mapping results and the first U–Pb zircon dating and sedimentological characterization of the Zacatecas Conglomerate, which belongs to the Palaeogene red beds of central Mexico, deposited in fault-bounded basins during the Late Cretaceous to Eocene Laramide orogeny. The conglomerate was divided into five depositional facies associations according to their clast-type abundances and interlayered volcanic rocks. The lowermost member has a maximum depositional age based on young zircon grain ages varying from ca. 63 to 81 Ma. It is unconformably overlain by a continuous sequence characterized by a conglomerate rich in granite clasts at the bottom, with an interlayered tuff dated at 37.64 ± 0.36 Ma. Near the top, another tuff was dated at 30.84 ± 0.47 Ma, and a sandstone has a maximum depositional age of ca. 31.5 Ma. Normal grading, massive textures, channels, channel-form sandstone bodies, and upward-finning successions suggest that the Zacatecas Conglomerate is of fluvial origin. Late Jurassic to Early Cretaceous ages from zircons in plutonic rocks and sandstones bracket possible source regions for the Zacatecas Conglomerate. One possible source is Late Jurassic-Early Cretaceous granite derived from the Alisitos-Guerrero arc of western Mexico. Another possible source is the Tuna Manza Diorite, now exposed 250 km southeast of the study area. The lack of pre-Jurassic grains implies that possible sources such as the Nazas arc or the Potosí fan were not cropping out at that time, or at least that these areas were not affected by the fluvial system feeding the Zacatecas Conglomerate. It is possible that during the Palaeocene-early Oligocene the fluvial systems drained from west to east and from southeast to north, according to the above-mentioned constraints.  相似文献   

8.
The tectonic evolution of the Chinese Tianshan Belt which is located in the southern margin of the Central Asian Orogenic Belt remains controversial. In order to reveal the evolutionary history of this belt, we investigate metasedimentary rocks from the Tianshanmiao of Harlik domain and Xingxingxia area of central Tianshan domain in this study. The Permian siltstones from Xingxingxia contain six zircon populations with ages peak at 280, 815 and 910, 1590, 1855 and 2340 Ma, suggesting a diverse provenance. The 2544–2294 Ma ages correlate with the generation of continental nuclei in Tarim. The tectonothermal events during 1855, 1590, 910 and 815 Ma may correspond to the assembly and breakup of the Columbia and Rodinia supercontinents, respectively. Similar Precambrian age spectra and “event signature” curves suggest that the central Tianshan was most likely a part of the Tarim block in the Proterozoic. The detrital zircon U–Pb ages of Ordovician meta-greywackes from the Tianshanmiao sequence reveal six zircon populations with peaks at 460, 933, 1382, 1850, 2000 and 2462 Ma, among which the zircons with dominant age peaks (460 Ma and 930 Ma, more than 70%) are euhedral, low sphericity and exhibit clear oscillatory zoning, suggesting local derivation from the proximal Ordovician and Neoproterozoic granitoids. The range of εHf(t) values (−5.4 to +21) of zircon grains from Ordovician rocks suggests that these were derived from depleted mantle or through partial melting of juvenile crust, similar to the case for the Early Paleozoic magmatism in Chinese Altai. Our detrital zircon data suggest that the provenance of the Harlik was neither the Tarim nor the Junggar, and instead, we propose a connection with the Chinese Altai-Tuva–Mongol Arc along the southern margin of the Siberia craton at ∼500 Ma. The Harlik domain drifted southward and then collided with the central Tianshan in the Carboniferous-Permian as a result of the closure of Paleo-Tianshan Ocean.  相似文献   

9.
U–Pb detrital zircon geochronology from Lower Devonian quartz arenites of the northwestern margin of the Yangtze block yields dominant early Neoproterozoic (0.85–1.0 Ga), Pan-African (0.5–0.65 Ga) and middle Neoproterozoic (0.68–0.8 Ga) age populations and minor Mesoproterozoic to middle Mesoarchean (1.0–3.0 Ga) ages. Middle Mesoarchean to Mesoproterozoic rocks, however, are widespread in the South China block. Although Hf isotopic compositions show both juvenile crustal growth and crustal reworking for all the age groupings, the crust growth, essentially mantle-derived, occurred mainly around 3.1 Ga, 1.9 Ga and 1.0 Ga, respectively. Zircon typology and youngest grain ages indicate that this suite of quartz arenites was the product of multiphase reworking. Abundant magmatic zircon detritus with concordant U–Pb Grenvillian and Pan-African ages, together with accompanying various εHf(t) values, indicate an exotic provenance for the quartz arenite external to the South China block. Qualitative comparisons of age spectra for the late Neoproterozoic sediments of the Cathaysian Block, early Paleozoic sediments of pre-rift Tethyan Himalaya sequence in North India and lower Paleozoic sandstone from the Perth Basin in West Australia, show that they all have two the largest age clusters representing Grenvillian and Pan-African orogenic episodes. The resemblance of these age spectra and zircon typology suggests that the most likely source for the Lower Devonian quartz arenites of the South China block was the East African Orogen and Kuunga Orogen for their early Grenvillian and Pan-African populations, whereas the Hannan–Panxi arc, Jiangnan orogen, and the Yangtze block basements might have contributed to the detrital zircon grains of the Neoproterozoic and Pre-Grenvillian ages. Hf isotopic data indicate that the crustal evolution of the drainage area matches well with the episodic crust generation of Gondwana. These results imply that the previously suggested position of the SCB in Gondwana should be re-evaluated, and the South China block should be linked with North India and West Australia as a part of East Gondwana during the assembly of Gondwana, rather than a discrete continent block in the paleo-Pacific.  相似文献   

10.
ABSTRACT

The West Junggar terrane (WJT) is an outstanding laboratory for studying the tectonic evolution of the Junggar–Balkhash Ocean, because it contains widespread Paleozoic magmatism in different tectonic settings. We attempt to reconstruct the tectono-magmatic evolution of WJT through U–pb analysis of detrital zircons from three modern river sand samples from the Harabura, Baibuxie, and Aletengyemule rivers in the Barleik Mountains of the central WJT. A total of 232 concordant spots show Th/U ratios of 0.14–1.69, typical of igneous origin, and they contain abundant Paleozoic (96%) and few Precambrian (4%) ages, with major age populations at 450–530, 400–430, 320–380, and 265–320 Ma. The first two groups may be derived from the early subduction- and accretion-related magmatic rocks of the WJT, whereas the third group is congruent with magmatic activities related to the final subduction and basin-filling processes within a framework of the remnant Junggar–Balkhash Ocean. By combining with the regional data, the last group of magmatic events is referred to as post-subduction magmatism. The missing Mesozoic–Cenozoic magmatism clearly indicates a pre-Permian closure for the Junggar–Balkhash Ocean, nearly coeval with the closure of other oceans in the southwestern Palaeo-Asian Ocean.  相似文献   

11.
《Comptes Rendus Geoscience》2018,350(6):267-278
This study uses field observations and new U–Pb ages of detrital zircon grains from three samples to question the stratigraphic position of the Firgoun and Niamey siliciclastic sediments, presumed to be Neoproterozoic in age. Sharing several lithological similarities with the Late Cryogenian “Triad” of the Taoudenni, Gourma, and Volta basins, the uppermost siliciclastic sediments of the Firgoun and Niamey areas were likely also deposited during this period. This is corroborated by matrix-supported diamictites with faceted or striated pebbles as well as by structures resembling cryoturbation processes. However, the detrital zircon U–Pb age record that we present here for the lowermost deposits of Firgoun and Niamey provides mainly Paleoproterozoic ages, and very few Archean ages, altogether in a range from 1822 ± 9 to 3392 ± 9 Ma. Therefore, the new data only show that the Firgoun and Niamey sediments were deposited before about 1800 Ma. Nevertheless, the U–Th–Pb zircon age data allows examining the possible provenance of the sediments. We show that the latter was likely in the westerly close vicinity of the studied areas. The Archean zircons are likely inherited, and possibly originating from a more westerly source. The nearby source of the Niamey and Firgoun sediments suggests that a high topographic relief was still existing in the south-central part of the West African Craton in the Mid Neoproterozoic.  相似文献   

12.
The recognition of the coeval growth of zircon, orthopyroxene and garnet domains formed during the same metamorphic cycle has been attempted with detailed microanalyses coupled with textural analyses. A coronitic garnet-bearing granulite from the lower crust of Calabria has been considered. U–Pb zircon data and zircon, garnet and orthopyroxene chemistries, at different textural sites, on a thin section of the considered granulite have been used to test possible equilibrium and better constrain the geological significance of the U–Pb ages related to zircon separates from other rocks of the same structural level. The garnet is very rich in REE and is characterised by a decrease in HREE from core to outer core and an increase in the margin. Zircons show core–overgrowth structures showing different chemistries, likely reflecting episodic metamorphic new growth. Zircon grains in matrix, corona around garnet and within the inner rim of garnet, are decidedly poorer in HREE up to Ho than garnet interior. Orthopyroxene in matrix and corona is homogeneously poor in REE. Thus, the outer core of garnet and the analysed zircon grains grew or equilibrated in a REE depleted system due to the former growth of garnet core. Zircon ages ranging from 357 to 333 Ma have been determined in the matrix, whereas ages 327–320 Ma and around 300 Ma have been determined, respectively, on cores and overgrowths of zircons from matrix, corona and inner rim of garnet. The calculated DREEzrn/grt and DREEopx/grt are largely different from the equilibrium values of literature due to strong depletion up to Ho in zircon and orthopyroxene with respect to garnet. On the other hand, the literature data show large variability. In the case study, (1) the D zrn/grt values define positive and linear trends from Gd to Lu as many examples from literature do and the values from Er to Lu approach the experimental results at about 900 °C in the combination zircon dated from 339 to 305 Ma with garnet outer core, and (2) D opx/grt values define positive trends reaching values considered as suggestive of equilibrium from Er to Lu only with respect to the outer core of garnet. The presence of a zircon core dated 320 Ma in the inner rim of garnet suggests that it, as well as those dated at 325–320 Ma in the other textural sites and, probably, those dated at 339–336 Ma showing depletion of HREE, grew after the garnet core, which sequestered a lot of HREE and earlier than the HREE rich margin of garnet. The quite uniform REE contents in orthopyroxene from matrix and corona and the low and uniform contents of HREE in the zircon overgrowths dated at about 300 Ma allow to think that homogenisation occurred during or after the corona formation around this age. The domains dated around 325–320 Ma would approximate the stages of decompression, whereas the metamorphic peak probably occurred earlier than 339 Ma.  相似文献   

13.
Detrital zircon U–Pb ages, whole-rock Nd isotopic, and geochemical data of metasedimentary rocks from the Wutai Complex in the Central Zone, North China Craton, have been determined. Compositionally, these rocks are characterized by a narrow variation in SiO2/Al2O3 (2.78–3.96, except sample 2007-1), variable Eu anomalies, spanning a range from significantly negative Eu anomalies to slightly positive anomalies (Eu/Eu* = 0.58–1.12), and positive ε Nd (t) values (0.1–1.97). The 18 detrital zircons of one sample yielded age populations of 2.53 Ga, 2.60 Ga, and 2.70–2.85 Ga. Geochemical data reveal intermediate source weathering, varying degrees of K-metasomatism in the majority of these metasedimentary rocks, whereas other secondary disturbances seem to be negligible. Detailed analysis in detrital zircon U–Pb geochronology, whole-rock Nd isotope, and geochemistry shows that these metasedimentary rocks are derived from a mixed provenance. The predominant derivation is from the late Archean granitoids and metamorphic volcanics in the Wutai Complex, and there is also input of older continental remnants, except TTG gneisses, from the Hengshan and Fuping Complexes. The sediments were probably deposited in fore-arc or/and intra-arc basins within an arc system.  相似文献   

14.
《Gondwana Research》2013,23(3-4):928-942
New SHRIMP U–Pb ages of detrital zircon obtained from eight samples of Neoproterozoic to Lower Paleozoic graywackes, schists, microconglomerates and shales provide the maximum depositional age and a new zircon age pattern for the Schist–Graywacke Complex (SGC) from the Iberian Massif (SW Europe). The ages of the youngest zircon grains found in four samples provide a maximum depositional age of latest Ediacaran–Lower Cambrian for the complex. Lower-Middle Cambrian fossiliferous formations on top of the lithologies correctly attributed to the SGC constrain its minimum depositional age. Unexpectedly, two samples attributed to the SGC yielded Cambro-Ordovician zircon populations. These must belong to younger Lower Ordovician sedimentary successions that, up to now, have not been differentiated from those of the SGC. The new age patterns are mainly composed of Neoproterozoic (73%) and Paleoproterozoic (15%) ages, with minor Neoarchean (7%), Mesoarchean (2%), Mesoproterozoic (3%) and Cambrian (1%) ages for the latest Ediacaran–Lower Cambrian successions, and Neoproterozoic (46%) and Cambro-Ordovician (46%) ages, with minor Neoarchean (1%), Mesoarchean (0.5%), Paleoproterozoic (6%), Mesoproterozoic (0.5%) and Carboniferous (1%) ages for the Lower Ordovician successions. The presence of Mesoproterozoic zircon points to the Saharan Metacraton as a contributing source for these sediments. Cadomian granitoids could have been a local Neoproterozoic source. The Cambro-Ordovician zircons may also indicate that Cambro-Ordovician magmatism contributed as a source. Cambro-Ordovician volcanism, the most probable source of the Cambro-Ordovician zircons, would have been coeval with the deposition of the Lower Ordovician successions.  相似文献   

15.
U–Pb detrital zircon ages are reported from Puncoviscana Formation (late Neoproterozoic–Early Cambrian) and Mesón Group (Late Cambrian) greywackes of northwest Argentina, to constrain provenance and depositional environment.The new data are combined with previously-published detrital zircon ages, to show that Puncoviscana Formation age patterns contain two broad groups: late Mesoproterozoic–early Neoproterozoic (1150–850 Ma) and late Neoproterozoic–Early Cambrian (650–520 Ma); with their relative proportions varying inversely with youngest component age. The 1150–850 Ma age components are dominant in greywackes with oldest late Neoproterozoic components > 600 Ma. The former diminish considerably when late Neoproteozoic components become dominant and younger, to 520 Ma. A northernmost greywacke sample from Purmamarca, Jujuy, is distinctive: whilst its zircon age pattern partly resembles other Puncoviscana Formation samples, it contains no Cambrian–late Neoproterozoic ages, the youngest ages being early Neoproterozoic. This may reflect an early, Neoproterozoic, passive-margin depocentre for the Formation, or an older (early Neoproterozoic) succession within it, which may predate the Brasiliano orogeny in Brazil. The youngest age components, c. 520 Ma, in a greywacke from Rancagua (Cachi, Salta province), dominate an almost unimodal pattern suggestive of contemporary volcanic sources at a late Early Cambrian depocentre. Detrital zircon age patterns of the Mesón Group (Lizoite Formation) have major Cambrian–latest Neoproterozoic components resembling those of the Puncoviscana Formation, but its Mesoproterozoic component is diminished, and there are no significant age components of this age. Small youngest components at c. 500 Ma suggest a maximum Late Cambrian stratigraphic age. The Puncoviscana Formation detrital zircon patterns suggest a provenance in a continental hinterland having a stabilised, extensive late Mesoproterozoic orogen (with minor Paleoproterozoic and Archean precursors), and a more variable late Neoproterozoic orogen containing an evolving sequence of less extensive subcomponents. A direct relationship with the Brazilian Shield is suggested; with sediment supplies originating within active-margin orogens of the interior and collisional orogens at the suture between African and South American cratons, but ultimate deposition in passive-margin environments of western Gondwanaland.  相似文献   

16.
The paper deals with the U–Pb data of zircon separated from three samples representative of mylonitic leucogranites, trondhjemites and pegmatites occurring along the Alpine tectonic zone between the Castagna and Sila Units in northern Calabria. These mylonites are associated to Variscan granitic-granodioritic biotite-rich augen gneisses derived from Neo-Proterozoic-Early Cambrian protoliths. Apparent ages ranging from Early Cambrian to post-Variscan have been obtained. Th, U and rare earth elements have been determined in two zircon domains of mylonitic leucogranite and trondhjemite giving different ages in order to get information relative to their geological significance. The pegmatite preserves intrusive contact with the augen gneisses and with the other mylonites; it turns out to be emplaced at 290–300 Ma, like the Variscan plutonites of the Castagna Unit. The deformation masks the original contacts of the mylonitic leucogranite and trondhjemite with the biotite-rich augen gneisses. The age-group averaging 540 Ma is interpreted as indicative of the emplacement of the protoliths and it coincides with the age previously determined for the emplacement of the protoliths of the biotite-rich augen gneisses. Zircon from the mylonitic pegmatite includes domains showing concordant and discordant ages younger than 290 Ma, thus reflecting various degrees of partial resetting and Pb-loss caused by post-Variscan events. Zircon from the mylonitic leucogranite and trondhjemite includes apparent ages between 300 and 280 Ma as well as ages younger than 250 Ma. Perturbation of U–Pb system by Alpine shearing appears evident; however, possibile effects caused by thermal input and hydrothermal fluid infiltration from the Variscan plutonites cannot be excluded.  相似文献   

17.
In situ U–Pb dating and Hf isotopic of detrital zircons from beach sediments of Yalong Bay were analyzed to trace sedimentary provenance and reveal the crustal evolution of Hainan Island in South China. The grain size distribution of the sediments displays a clear single-peak feature, indicating the sediments were formed under the same condition of hydrodynamic force. The detrital zircons had Th/U ratios of greater than 0.1, and REE pattern displayed a positive Ce anomaly and a negative Eu anomaly, indicating that these zircons are predominantly of magmatic origin. The U–Pb spectrum of detrital zircons mainly peaked at the Yanshanian (96–185 Ma), Hercynian–Indosinian (222–345 Ma) and Caledonian (421–477 Ma). A portion of the detrital zircons were of Neoproterozoic origin (728–1,003 Ma), which revealed that the basement in the eastern region of Hainan Island was mainly of Neoproterozoic, with rare Archean materials. The positive ε Hf(t) values (0 to +10.1) of the Neoproterozoic detrital zircons indicated that the juvenile crust grew in the southeastern Hainan Island mainly during the Neoproterozoic period. The Neoproterozoic orogeny in the southeastern part of the island (0.7–1.0 Ga) occurred later than in the northwestern region of the island (1.0–1.4 Ga). Importantly, the Grenvillian orogeny in the southeastern area of Hainan Island shared the same timing with that of the western Cathaysia Block; i.e., both areas concurrently underwent this orogenic event, thereby forming a part of the Rodinia supercontinent. Afterwards, the crust experienced remelting and reworking during the Caledonian Hercynian–Indosinianand Yanshanian accompanied by the growth of a small amount of juvenile crust.  相似文献   

18.
Sedimentological characteristics and zircon provenance dating of the Babulu Formation in the Fohorem area, Timor-Leste, provide new insights into depositional process, detailed sedimentary environment and the distribution of source rocks in the provenance. Detrital zircon sensitive high-resolution ion microprobe (SHRIMP) U–Pb ages range from Neoarchean to Triassic, with the main age pulses being Paleozoic to Triassic. In addition, the maximum deposition ages based on the youngest major age peak (ca 256–238 Ma) of zircon grains indicate that the basal sedimentation of the Babulu Formation occurred after the early Upper Triassic. The formation consists predominantly of mudstone with minor sandstone, limestone and conglomerate that were deposited in a deep marine environment. These deposits are composed of six lithofacies that can be grouped into three facies associations (FAs) based on the constituent lithofacies and bedding features: basin plain deposits (FA I), distal fringe lobe deposits (FA II) and medial to distal lobe deposits (FA III). The predominance of mudstone (FA I) together with intervening thin-bedded sandstones (FA II) suggest that the paleodepositional environment was a low energy setting with slightly basin-ward input of the distal part of the depositional lobes. Discrete and abrupt occurrences of thick-bedded sandstone (FA III) within the FA I mudstone suggests that sandstone originated from a collapse of upslope sediments rather than a progressive progradation of deltaic turbidites. This combined petrological and geochronological study demonstrates that the Babulu Formation in the Fohorem area of the Timor-Leste was initiated as a submarine lobe system in a relatively deep marine environment during the Upper Triassic and represents the extension of the Gondwana Sequence at the Australian margin.  相似文献   

19.
U–Pb (SHRIMP) determinations on detrital zircons from the Early Paleozoic Gelnica Terrane metasandstones and their Permian overlap sediments of the Inner Western Carpathian Southern Gemeric Unit define five age populations based on age-probability plots. The metasandstones were sampled for detrital zircons from six stratigraphic levels, four of them in the Late Cambrian/Ordovician Gelnica Terrane metasandstones and the two in Permian envelope sequence. The data set includes 84 U–Pb ages for individual detrital zircons. These ages are combined with the previously dated inherited zircons from the associated metavolcanites (n?=?31). The majority of the pre-Permian detrital and inherited zircons (95%) belong to the three main populations: population A—the Paleoproterozoic/Neoarchean ages ranging from 1.75 to 2.6?Ga; population B—the Mesoproterozoic ages with the range of 0.9 to 1.1?Ga; population C—the Neoproterozoic ages, ranging from 560 to 807?Ma. The detrital zircon age spectrum from the basal Permian sediments reflects the strong recycling from the underlying Gelnica Terrane, with the presence of the dominant Precambrian C and B populations (94% of total), including the minor populations A. The range of the detrital zircon ages from the Late Permian sandstones is wider, with additional population D, ranging from 497 to 450?Ma and population E with a time span from 369 to 301?Ma. Within the Late Permian detrital zircon assemblage, the Proterozoic population A?+?B?+?C form only 25% of total. The detrital zircon data suggest that the Gelnica Terrane belongs to the peri-Gondwanan terrane with a source area located on the northwestern margin of Gondwana close to Amazonia. This terrane should have travelled a long distance in the Phanerozoic times.  相似文献   

20.
U–Pb zircon dating is combined with petrology, Zr-in-rutile thermometry and mineral equilibria modelling to discuss zircon petrogenesis and the age of metamorphism in three units of the Variscan Vosges Mountains (NE France). The monotonous gneiss unit shows results at 700–500?Ma, but no Variscan ages. The varied gneiss unit preserves ages between 600 and 460?Ma and a Variscan group at 340–335?Ma. Zircon analyses from the felsic granulite unit define a continuous array of ages between 500 and 340?Ma. In varied gneiss samples, zoned garnet includes kyanite and rutile and is surrounded by matrix sillimanite and cordierite. In a pseudosection, it points to peak conditions of?~16 kbar/850?°C followed by isothermal decompression to 8–10 kbar/820–860?°C. In felsic granulite samples, the assemblage K-feldspar–garnet–kyanite–Zr-rich rutile is replaced by sillimanite and Zr-poor rutile. Modelling these assemblages supports minimum conditions of?~13 kbar/925?°C, and a subsequent P–T decrease to 6.5–8.5 kbar/800–820?°C. The internal structure and chemistry of zircons, and modelling of zircon dissolution/growth along the inferred P–T paths are used to discuss the significance of the U–Pb ages. In the monotonous unit, inherited zircon ages of 700–500?Ma point to sedimentation during the Late Cambrian, while medium-grade metamorphism did not allow the formation of Variscan zircon domains. In both the varied gneiss and felsic granulite units, zircons with a blurred oscillatory-zoned pattern could reflect solid-state recrystallization of older grains during HT metamorphism, whereas zircons with a dark cathodoluminescence pattern are thought to derive from crystallization of an anatectic melt during cooling at middle pressure conditions. The present work proposes that U–Pb zircon ages of ca. 340?Ma probably reflect the end of a widespread HT metamorphic event at middle crustal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号