首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Qinling Orogenic Belt marks the link between the South China and North China Blocks and is an important region to understand the geological evolution of the Chinese mainland as well as the Asian tectonic collage. However, the tectonic affinity and geodynamic evolution of the South Qinling Tectonic Belt (SQTB), a main unit of the Qinling Orogenic Belt, remains debated. Here we present detailed geological, geochemical and zircon U–Pb–Hf isotopic studies on the Zhangjiaba, Xinyuan, Jiangjiaping, Guangtoushan and Huoshaodian plutons from the Guangtoushan granitoid suite (GGS) in the western segment of the SQTB. Combining geology, geochronology and whole-rock geochemistry, we identify four distinct episodes of magmatism as: (1) ~ 230–228 Ma quartz diorites and granodiorites, (2) ~ 224 Ma fine-grained granodiorites and monzogranites, (3) ~ 218 Ma porphyritic monzogranites and (4) ~ 215 Ma high-Mg# quartz diorites and granodiorites as well as coeval muscovite monzogranites. The ~ 230–228 Ma quartz diorites and granodiorites were generated by magma mixing between a mafic melt from mantle source and a granodioritic melt derived from partial melting of Neoproterozoic rocks in the lower continental crust related to a continental arc regime. The ~ 224 Ma fine-grained granodiorites and monzogranites were formed through partial melting of a transitional source with interlayers of basaltic rocks and greywackes in the deep zones of the continental arc. The ~ 218 Ma porphyritic monzogranites originated from partial melting of metamorphosed greywackes in lower crustal levels, suggesting underthrusting of middle or upper crustal materials into lower crustal depths. The ~ 215 Ma high-Mg# quartz diorites and granodiorites (with Mg# values higher than 60) were derived from an enriched mantle altered by sediment-derived melts. Injection of hot mantle-derived magmas led to the emergence of the ~ 215 Ma S-type granites at the final stage.Integrating our studies with previous data, we propose that the Mianlue oceanic crust was still subducting beneath the SQTB during ~ 248–224 Ma, and final closure of the Mianlue oceanic basin occurred between ~ 223 Ma and ~ 218 Ma. After continental collision between the South China Block and the SQTB, slab break-off occurred, following which the SQTB transformed into post-collisional extension setting.  相似文献   

2.
The Central Asian Orogenic Belt (CAOB) formed mainly in the Paleozoic due to the closure of the Paleo-Asian oceanic basins and accompanying prolonged accretion of pelagic sediments, oceanic crust, magmatic arcs, and Precambrian terranes. The timing of subduction–accretion processes and closure of the Paleo-Asian Ocean has long been controversial and is addressed in a geochemical and isotopic investigation of mafic rocks, which can yield important insight into the geodynamics of subduction zone environments. The Xilingol Complex, located on the northern subduction–accretion zone of the CAOB, mainly comprises strongly deformed quartzo-feldspathic gneisses with intercalated lenticular or quasi-lamellar amphibolite bodies. An integrated study of the petrology, geochemistry, and geochronology of a suite of amphibolites from the complex constrains the nature of the mantle source and the tectono-metamorphic events in the belt. The protoliths of these amphibolites are gabbros and gabbroic diorites that intruded at ca. 340–321 Ma with positive εHf(t) values ranging from + 2.89 to + 12.98. Their TDM1 model ages range from 455 to 855 Ma and peak at 617 Ma, suggesting that these mafic rocks are derived from a depleted continental lithospheric mantle. The primitive magma was generated by variable degrees of partial melting of spinel-bearing peridotites. Fractionation of olivine, clinopyroxene and hornblende has played a dominant role during magma differentiation with little or no crustal contamination. The mafic rocks are derived from a Late Neoproterozoic depleted mantle source that was subsequently enriched by melts affected by slab-derived fluids and sediments, or melts with a sedimentary source rock. The Carboniferous mafic rocks in the northern accretionary zone of the CAOB record a regional extensional event after the Early Paleozoic subduction of the Paleo-Asian Ocean. Both addition of mantle-derived magmas and recycling of oceanic crust played key roles in significant Late Carboniferous (ca. 340–309 Ma) vertical crustal growth in the CAOB. Amphibolite–facies metamorphism (P = 0.34–0.52 GPa, T = 675–708 °C) affected these mafic rocks in the Xilingol Complex at ca. 306–296 Ma, which may be related to the crustal thickening by northward subduction of a forearc oceanic crust beneath the southern margin of the South Mongolian microcontinent. The final formation of the Solonker zone may have lasted until ca. 228 Ma.  相似文献   

3.
《Precambrian Research》2007,152(1-2):27-47
Metasomatism above subduction zones is an important process that produces heterogeneous mantle and thus a diversity of igneous rocks. In the Panzhihua district, on the western margin of the Yangtze Block (SW China), two Neoproterozoic mafic intrusions, one olivine gabbro and one hornblende gabbro, have identical ages of 746 ± 10 and 738 ± 23 Ma. Both of the gabbros are tholeiitic in composition and have arc-like geochemical compositions. The hornblende gabbros have K2O concentrations ranging from 0.70 to 1.69 wt.% and show enrichment of Rb, Ba, U, Th and Pb and depletion of Nb,Ta and Ti. They have variable 87Sr/86Sr ratios (0.7045–0.7070) with constant ɛNd(t) values (−0.12 to −0.93). The olivine gabbros have relatively low K2O (0.19–0.43 wt.%), are depleted in Rb and Th relative to Ba and U, and have obvious negative Nb–Ta and Zr–Hf anomalies on primitive mantle-normalized trace element diagrams. Their ɛNd(t) values range from −0.64 to −1.73 and initial 87Sr/86Sr ratios from 0.7070 to 0.7075. Both types of gabbro experienced fractional crystallization of clinopyroxene, plagioclase, amphibole and minor Fe–Ti oxide. The parental magmas of the olivine and hornblende gabbros were formed by about 20% partial melting of garnet–spinel lherzolite and spinel lherzolite, respectively. According to trace elemental ratios, the hornblende gabbros were probably derived from a source strongly modified by subducted slab fluids, whereas the olivine gabbros came from a mantle source modified by subducted slab melts. The close association of the olivine gabbros and hornblende gabbros suggests that a steep subduction zone existed along the western margin of the Yangtze Block during Neoproterozoic time. Thus, the giant Neoproterozoic magmatic event in South China was subduction-related.  相似文献   

4.
LA-ICPMS U-Pb zircon dating of the Sanpinggou, Gangou and Fengzishan granitoids in the Douling Group of the Eastern Qinling yields ages of 760-685 Ma, which represents a strong tectono-magmatic event in the southern Qinling during the late Neoproterozoic. Geochemical data show that these intrusions have wide compositions ranging from minor gabbros through diorites to granodiorites. They are relatively enriched in LILE, poor in HFSE and strongly depleted in Nb and Ta, displaying affinities of Ⅰ-type granites formed in an active continental margin with oceanic subduction. In contrast to granitoids, gabbros and enclaves in the granitoids have higher REE abundances, relatively flat REE patterns, lower LILE, slightly higher HFSE and more depletion in Nb and Ta. All these suggest that the gabbros were formed by partial melting of the upper mantle above the subduction zone and the granitoids by the partial melting of the lower crust. Combined with regional geological data, the subduction-related granitoids in  相似文献   

5.
Wadi El-Markh gabbro–diorite complex is composed of pyroxene hornblende gabbros, hornblende gabbros, diorites and quartz diorites. According to their bulk rock geochemistry and mineral chemistry, the gabbroic and dioritic rocks represent fractionates along a single line of descent and crystallized from a calc-alkaline mafic magma. When compared to the primitive mantle, all members of the gabbroic–dioritic rock suite are enriched in the large ion lithophile elements relative to the high field strength elements and display distinctive negative Nb and P2O5 anomalies. This signals an arc setting. Fractionation modeling involving the major elements reveals that the hornblende gabbros were generated from the parent pyroxene hornblende gabbros by 61.86% fractional crystallization. The diorites were produced from the hornblende gabbros by fractional crystallization with a 58.97% residual liquid, whereas the quartz diorites were formed from the diorites by 26.58% fractional crystallization. According to geothermobarometry based on amphibole mineral chemistry, the most primitive pyroxene hornblende gabbros crystallized at ~830 °C/~5 kbar. The crystallization conditions of the quartz diorites were estimated at ~570 °C/~2 kbar. In consequence the Wadi El-Markh gabbro–diorite complex represents a single magmatic suite of which fractionates crystallized in progressively shallower levels of an arc crust.  相似文献   

6.
鲁西中生代高镁闪长岩的地球化学特征及其成因探讨   总被引:9,自引:2,他引:9  
鲁西中生代侵入岩包括辉长岩,闪长岩,花岗闪长岩和花岗岩,以闪长岩最为常见。莱芜和沂南等地的闪长岩具有高Mg#(0.45~0.69),Cr(<278μg/g)的特点,并富集大离子亲石元素(LILE)和亏损高场强元素(HFSE),其总体成分特点类似于北美苏必利尔省的太古代高镁闪长岩和产于现代俯冲带的高镁安山岩。不过鲁西高镁闪长岩的HREE含量相对较高(Yb=1.1~1.9μg/g),La/Yb比值相对较低(6.7~20),其成分更接近于Piip型高镁安山岩。鲁西高镁闪长岩代表了华北地台早期拉张环境下的岩浆活动,可能是受深俯冲扬子大陆下地壳释放的埃达克质熔体交代的岩石圈地幔直接熔融的产物。  相似文献   

7.
We discuss here the mineralogical and geochemical characteristics of mafic intrusive rocks from the Nagaland-Manipur Ophiolites (NMO) of Indo-Myanmar Orogenic Belt, northeast India to define their mantle source and tectonic environment. Mafic intrusive sequence in the NMO is characterized by hornblende-free (type-I) and hornblende-bearing (type-II) rocks. The type-I is further categorized as mafic dykes (type-Ia) of tholeiitic N-MORB composition, having TiO2 (0.72–1.93 wt.%) and flat REE patterns (LaN/YbN = 0.76–1.51) and as massive gabbros (type-Ib) that show alkaline E-MORB affinity, having moderate to high Ti content (TiO2 = 1.18 to 1.45 wt.%) with strong LREE-HREE fractionations (LaN/YbN = 4.54–7.47). Such geochemical enrichment from N-MORB to E-MORB composition indicates mixing of melts derived from a depleted mantle and a fertile mantle/plume source at the spreading center. On the other hand, type-II mafic intrusives are hornblende bearing gabbros of SSZ-type tholeiitic composition with low Ti content (TiO2 = 0.54 wt.%–0.86 wt.%) and depleted LREE pattern with respect to HREE (LaN/YbN = 0.37–0.49). They also have high Ba/Zr (1.13–2.82), Ba/Nb (45.56–151.66) and Ba/Th (84.58–744.19) and U/Th ratios (0.37–0.67) relative to the primitive mantle, which strongly represents the melt composition generated by partial melting of depleted lithospheric mantle wedge contaminated by hydrous fluids derived from subducting oceanic lithosphere in a forearc setting. Their subduction related origin is also supported by presence of calcium-rich plagioclase (An16.6–32.3). Geothermometry calculation shows that the hornblende bearing (type-II) mafic rocks crystallized at temperature in range of 565°–625 °C ± 50 (at 10 kbar). Based on these available mineralogical and geochemical evidences, we conclude that mid ocean ridge (MOR) type mafic intrusive rocks from the NMO represent the section of older oceanic crust which was generated during the divergent process of the Indian plate from the Australian plate during Cretaceous period. Conversely, the hornblende-bearing gabbros (type-II) represent the younger oceanic crust which was formed at the forearc region by partial melting of the depleted mantle wedge slightly modified by the hydrous fluids released from the subducting oceanic slab during the initial stage of subduction of Indian plate beneath the Myanmar plate.  相似文献   

8.
Early–Middle Jurassic igneous rocks (190–170 Ma) are distributed in an E–W-trending band within the Nanling Tectonic Belt, and have a wide range of compositions but are only present in limited volumes. This scenario contrasts with the uniform but voluminous Middle–Late Jurassic igneous rocks (165–150 Ma) in this area. The Early–Middle Jurassic rocks include oceanic-island basalt (OIB)-type alkali basalts, tholeiitic basalts and gabbros, bimodal volcanic rocks, syenites, A-type granites, and high-K calc–alkaline granodiorites. Geochemical and isotopic data indicate that alkaline and tholeiitic basalts and syenites were derived from melting of the asthenospheric mantle, with asthenosphere-derived magmas mixing with variable amounts of magmas derived from melting of metasomatized lithospheric mantle. In comparison, A-type granites in the study area were probably generated by shallow dehydration-related melting of hornblende-bearing continental crustal rocks that were heated by contemporaneous intrusion of mantle-derived basaltic magmas, and high-K calc-alkaline granodiorites resulted from the interaction between melts from upwelling asthenospheric mantle and the lower crust. The Early–Middle Jurassic magmatic event is spatially variable in terms of lithology, geochemistry, and isotopic systematics. This indicates that the deep mantle sources of the magmas that formed these igneous rocks were significantly heterogeneous, and magmatism had a gradual decrease in the involvement of the asthenospheric mantle from west to east. These variations in composition and sourcing of magmas, in addition to the spatial distribution and the thermal structure of the crust–mantle boundary during this magmatic event, indicates that these igneous rocks formed during a period of rifting after the Indosinian Orogeny rather than during subduction of the paleo-Pacific oceanic crust.  相似文献   

9.
The initiation timing and mechanism of lithospheric thinning of the North China Craton (NCC) was still controversial. Late Triassic igneous rocks especially mantle derived mafic rocks would provide constrains on Early Mesozoic lithospheric mantle geodynamics and initiation of lithospheric thinning. This paper reports Late Triassic magmatic rocks, including lamprophyre, diorite dykes and biotite monzogranite cropped out in Qingchengzi district of Liaodong peninsula, northeastern NCC. LA–ICPMS zircon U–Pb dating yield ages of 210–227 Ma and 224 Ma for lamprophyres and biotite monzogranite respectively. Lamprophyre is ultrapotassic, strongly enriched in REE and LILEs, depleted in HFSEs, and negative Hf isotopes, which are discriminating signatures of crustal source, but distinguishingly high compatible element contents indicate the primary magma originated from mantle source—a fertile one. Lamprophyre derived from partial melting of an enriched lithospheric mantle, which was modified by slab-derived hydrous fluids/melts associated with deep subduction between the Yangtze Craton and the NCC. The diorite displays distinct features with relatively enriched Nb, Ta, HREE and depleted Th, U, which suggest it derived from a relatively depleted source. The depletion was caused by break-off of the Yangtze slab during deep subduction introducing asthenospheric mantle into the source. The biotite monzogranite shows adakitic affinity, and originated from partial melting of the thickened lower crust with addition of small proportion of mantle material. The recognition of Late Triassic magmatism implies extensional tectonic settings in Liaodong peninsula and suggests initiation of lithospheric thinning of North China Craton in eastern segment might begin early in Late Triassic.  相似文献   

10.
The intermediate–mafic–ultramafic rocks in the Jianzha Complex (JZC) at the northern margin of the West Qinling Orogenic Belt have been interpreted to be a part of an ophiolite suite. In this study, we present new geochronological, petrological, geochemical and Sr–Nd–Hf isotopic data and provide a different interpretation. The JZC is composed of dunite, wehrlite, olivine clinopyroxenite, olivine gabbro, gabbro, and pyroxene diorite. The suite shows characteristics of Alaskan-type complexes, including (1) the low CaO concentrations in olivine; (2) evidence of crystal accumulation; (3) high calcic composition of clinopyroxene; and (4) negative correlation between FeOtot and Cr2O3 of spinels. Hornblende and phlogopite are ubiquitous in the wehrlites, but minor orthopyroxene is also present. Hornblende and biotite are abundant late crystallized phases in the gabbros and diorites. The two pyroxene-bearing diorite samples from JZC yield zircon U–Pb ages of 245.7 ± 1.3 Ma and 241.8 ± 1.3 Ma. The mafic and ultramafic rocks display slightly enriched LREE patterns. The wehrlites display moderate to weak negative Eu anomalies (0.74–0.94), whereas the olivine gabbros and gabbros have pronounced positive Eu anomalies. Diorites show slight LREE enrichment, with (La/Yb)N ratios ranging from 4.42 to 7.79, and moderate to weak negative Eu anomalies (Eu/Eu1 = 0.64–0.86). The mafic and ultramafic rocks from this suite are characterized by negative Nb–Ta–Zr anomalies as well as positive Pb anomalies. Diorites show pronounced negative Ba, Nb–Ta and Ti spikes, and typical Th–U, K and Pb peaks. Combined with petrographic observations and chemical variations, we suggest that the magmatism was dominantly controlled by fractional crystallization and crystal accumulation, with limited crustal contamination. The arc-affinity signature and weekly negative to moderately positive εNd(t) values (−2.3 to 1.2) suggest that these rocks may have been generated by partial melting of the juvenile sub-continental lithospheric mantle that was metasomatized previously by slab-derived fluids. The lithologies in the JZC are related in space and time and originated from a common parental magma. Geochemical modeling suggests that their primitive parental magma had a basaltic composition. The ultramafic rocks were generated through olivine accumulation, and variable degrees of fractional crystallization with minor crustal contamination produced the diorites. The data presented here suggest that the subduction in West Qinling did not cease before the early stage of the Middle Triassic (∼242 Ma), a back-arc developed in the northern part of West Qinling during this period, and the JZC formed within the incipient back-arc.  相似文献   

11.
Metamorphosed during the Variscan orogeny, sediments of the ca. 560 Ma M?ynowiec Formation and ca. 530 Ma Stronie Formation in the Bystrzyckie and Orlickie Mountains (Central Sudetes, Poland) contain metabasites with a range of basaltic compositions. Immobile trace element and Nd isotope features allow distinction of dominant, either E-MORB-like (Group 1: Zr/Nb 9–20, εNd530 +2.6 to +6.7) or mildly enriched N-MORB-like tholeiites (Group 2: Zr/Nb 21–27, εNd530 +0.2 to +6.7), and scarce but genetically important OIB-like alkaline (Group 3: Zr/Nb 5, εNd530 +2.2) or depleted tholeiitic rocks (Group 4: Zr/Nb 67, εNd530 +7.9). Neither the radiogenic age nor age relationships between these four groups are known. However, field evidence suggests that the metabasites are younger than the M?ynowiec Formation and that their emplacement must have been coeval with the accumulation of the Stronie Formation sediments. The OIB affinity of Group 3 is interpreted to reflect an enriched mantle (EM)-type asthenopheric source whilst the groups of tholeiitic rocks indicate involvement of depleted (locally slightly residual) MORB-type mantle (DMM). Several geochemical signatures, the decoupling between Nd isotope and trace element characteristics, and melting models indicate variable enrichment of the DMM-like source, here ascribed to asthenosphere-derived OIB-like melts (Group 1 and 2) and a contribution from a supra-subduction zone (Group 2 and 4). Based on contrasting back-arc basin (BAB)- and within-plate-like affinities of the metabasites, and on petrogenetic constraints from the spatially related infill of the Stronie Formation rift basin, the studied magmatic episode is suggested be related to cessation of the supra-subduction zone activity, presumably induced by ridge-trench collision. This event might have led to slab break-off, the development of a transform plate boundary, opening of a slab window and upward migration of sub-slab enriched asthenosphere. Decompression melting of the upwelling asthenosphere could then have produced OIB-like melts which segregated and infiltrated into the mantle of the former subduction zone, with randomly distributed slab-derived components. In an extensional regime, magmas generated at shallow levels from heterogeneous mantle regions were emplaced within sedimentary rocks of the overlying rift basin. The vestiges of subduction-related processes and within-plate style of mantle enrichment suggest that the metabasites could be related to final stages of the Cadomian orogeny and incipient Early Palaeozoic rifting of Gondwana that heralded the opening of the Rheic Ocean.  相似文献   

12.
Mafic granulite and spinel lherzolite xenoliths from Cenozoic alkaline basalts near Al-Ashkhara, eastern Oman, have been selected for a systematic mineralogical, geochemical and Sr–Nd–Pb isotopic study. This is the only place in E Arabia where samples of both lower crust and upper mantle can be examined. Lower crustal xenoliths consist of two mineralogically and chemically distinct groups: gabbronorite (subequal abundances of ortho- and clino-pyroxene and plagioclase) and plagioclase pyroxenite (dominant pyroxene and subordinate plagioclase). Temperature estimates for lower crustal xenoliths using the two pyroxene geothermometer (T-Wells) yield 810–865 °C. The mineral assemblage (spinel–pyroxene–plagioclase) and Al content in pyroxene indicate that plagioclase-bearing xenoliths equilibrated at 5–8 kbar (13 and 30 km depth) in the lower crust. εNd and 87Sr/86Sr calculated at 700 Ma for Al-Ashkhara lower crustal xenoliths (+ 6.4 to + 6.6; 87Sr/86Sr = 0.7028 to 0.7039) are consistent with the interpretation that juvenile, mafic melts were added to the lower crust during Neoproterozoic time and that there was no discernible contribution from pre-Neoproterozoic crust. Upper mantle xenoliths consist of both dry and hydrous (phlogopite-bearing) lherzolites. These peridotites are more Fe-rich than expected for primitive mantle or melt residues and probably formed by pervasive circulation of melts that have refertilized pre-existing mantle peridotites. Mineral equilibration temperatures range from 990 to 1070 °C. Isotopic compositions calculated at 700 Ma are εNd = + 6.8 to + 7.8 and 87Sr/86Sr = 0.7016 to 0.7025, indicating depleted upper mantle. Pb isotopic compositions indicate that the metasomatism was relatively recent, perhaps related to Paleogene tectonics and basanite igneous activity. Nd model ages for the spinel peridotite xenoliths range between 0.59 and 0.65 Ga. The xenolith data suggest that eastern Arabian lower crust is of hotspot origin, in contrast to western Arabian lower crust, which mostly formed at a convergent plate margin. Geochemical and isotopic differences between lower crust and upper mantle indicate that these are unrelated, possibly because delamination replaced the E Arabian mantle root in Neoproterozoic time.  相似文献   

13.
Using the HyMap instrument, we have acquired visible and near infrared hyperspectral data over the Maqsad area of the Oman ophiolite (~ 15 × 60 km). This survey allowed us to identify and map the distribution of clinopyroxene-rich cumulates (inter-layered clinopyroxenites and wehrlites) whose occurrence was previously undocumented in this area. The cumulates reach several hundred meters in thickness and crop out at distances exceeding 15 km on both sides of the Maqsad former spreading centre. They occur either in mantle harzburgites, as km-sized layered intrusions surrounded by fields of pegmatitic dykes consisting of orthopyroxene-rich pyroxenite and gabbronorites, or at the base of the crustal section where they are conformably overlain by cumulate gabbros. These ultramafic cumulates crystallized from silica- and Mg-rich melts derived from a refractory mantle source (e.g. high Cr#, low [Al2O3], low [TiO2]). These melts are close to high-Ca boninites, although, strictly speaking, not perfect equivalents of present-day, supra-subduction zone, boninites. Chemical stratigraphy reveals cycles of replenishment, mixing and fractional crystallization from primitive (high Mg#) melts, typical of open magma chambers and migration of inter-cumulus melts. The TiO2 content of clinopyroxene is always low (≤ 0.2 wt.%) but quite variable compared to the associated pegmatites that are all derived from a source ultra-depleted in high field strength elements (HFSE). This variability is not caused by fractional crystallization alone, and is best explained by hybridization between the ultra-depleted melts (parent melts of the pegmatites) and the less depleted mid-ocean ridge basalts (MORB) parent of the dunitic–troctolitic–gabbroic cumulates making up the crustal section above the Maqsad diapir.We propose that, following a period of magma-starved spreading, the Maqsad mantle diapir, impregnated with tholeiitic melts of MORB affinity, reached shallow depths beneath the ocean ridge. This diapir induced melting of the formerly accreted and hydrothermally altered lithosphere. At this stage, these boninitic-like lithospheric melts crystallized as pegmatitic dykes. As the diapir continued to rise, the amount of MORB reaching shallow depths increased, together with the surrounding temperature, leading to the formation of magma chambers where the crystallization of layered cumulates became possible. These cumulates remained rich in pyroxene and devoid of plagioclase as long as the contribution of MORB-derived melts was moderate relative to the lithospheric-derived melts. As the contribution of MORB to the refilling of the magma chamber increased, gabbroic cumulates started to crystallize.  相似文献   

14.
The northern Noorabad area in western Iran contains several gabbro and basalt bodies which were emplaced along the Zagros suture zone. The basalts show pillow and flow structures with amygdaloidal textures, and the gabbroic rocks show massive and foliated structures with coarse to fine-grained textures. The SiO2 contents of the gabbros and basalts are similar and range from 46.1–51.0 wt.%, and the Al2O3 contents vary from 12.3–18.8 wt.%, with TiO2 contents of 0.4–3.0 wt.%. The Nb concentrations of some gabbros and basalts are high and can be classified as Nb-enriched arc basalts. The positive εNd(t) values (+3.7 to +9.8) and low 87Sr/86Sr(initial) ratios (0.7031–0.7071) of both bodies strongly indicate a depleted mantle source and indicate that the rocks were formed by partial melting of a depleted lithospheric mantle and interaction with slab fluids/melts. The chemical composition of trace elements, REE pattern and initial 87Sr/86Sr-143Nd/144Nd ratios show that the rocks have affinities to tholeiitic magmatic series and suggest an extensional tectonic regime over the subduction zone for the evolution of these rocks. We propose an extensional tectonic regime due to the upwelling of metasomatized mantle after the late Cretaceous collision in the Harsin-Noorabad area. These rocks can be also considered as Eocene back arc magmatic activity along the Zagros suture zone in this area.  相似文献   

15.
Neoproterozoic juvenile crust is exposed in the Eastern Desert of Egypt, between the Nile and the Red Sea, forming the basement to Cambrian and younger sedimentary strata in the northernmost part of the Arabian–Nubian Shield (ANS). In order to reveal how the crust of this vast region was formed, four examples of widespread Neoproterozoic (653–595 Ma) calc-alkaline and alkaline intrusive rocks in the northwestern most exposures, in the NE Desert of Egypt (NED) were studied. Single zircon Hf–O isotopic compositions of these intrusives were used to characterize the Neoproterozoic syn- and post-collisional granitoids in the NED. The ~ 653 Ma Um Taghir syn-tectonic granodiorite (I-type) displays isotopic characteristics of a depleted mantle source, such as high εHf(t) (+ 9.1 to + 11.2) and mantle δ18O (mean = + 5.12‰). In contrast, the ca. ~ 600 Ma post-collision A-type granites (Al-Missikat, Abu Harba, and Gattar) show slightly higher δ18O values (+ 5.15 to 6.70) and slightly lower εHf(t) values (+ 6.3 to + 10.6, mean = + 8.6). We interpret these isotopic data to reflect melting of a juvenile Neoproterozoic mantle source that assimilated slightly older Neoproterozoic crustal material during magma mixing. The involvement of crustal component is also supported by Hf-crustal model ages (0.67–0.96 Ga) and by the occurrence of xenocrystic zircons with U–Pb ages older than the crystallization ages, indicating melting of predominantly Late Neoproterozoic crustal protoliths.  相似文献   

16.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

17.
The Neoproterozoic peridotite-chromitite complexes in the Central Eastern Desert of Egypt, being a part of the Arabian-Nubian Shield, are outcropped along the E–W trend from Wadi Sayfayn, Wadi Bardah, and Jabal Al-Faliq to Wadi Al-Barramiyah, from east to west. Their peridotites are completely serpentinized, and the abundance of bastite after orthopyroxene suggests harzburgite protoliths with subordinate dunites, confirmed by low contents of Al2O3, CaO and clinopyroxene (< 3 vol%) in bulk peridotites. The primary olivine is Fo89.3–Fo92.6, and the residual clinopyroxene (Cpx) in serpentinites contains, on average, 1.1 wt% Al2O3, 0.7 wt% Cr2O3, and 0.2 wt% Na2O, similar in chemistry to that in Izu-Bonin-Marian forearc peridotites. The wide range of spinel Cr-number [Cr/(Cr + Al)], 0.41–0.80, with low TiO2 (0.03 wt%), MnO (0. 3 wt%) and YFe [(Fe3 +/(Cr + Al + Fe3 +) = 0.03 on average)] for the investigated harzburgites-dunites is similar to spinel compositions for arc-related peridotites. The partial melting degrees of Bardah and Sayfayn harzburgites range mainly from 20 to 25% and 25 to 30% melting, respectively; this is confirmed by whole-rock chemistry and Cpx HREE modelling (~ 20% melting). The Barramiyah peridotite protoliths are refractory residues after a wide range of partial melting, 25–40%, where more hydrous fluids are available from the subducting slab. The Neoproterozoic mantle heterogeneity is possibly ascribed mainly to the wide variations of partial melting degrees in small-scale areas, slab-derived inputs and primordial mantle compositions. The Sayfayn chromitites were possibly crystallized from island-arc basaltic melts, followed by crystallization of Barramiyah chromitites from boninitic melt in the late stage of subduction. The residual Cpx with a spoon-shape REE pattern is rich in both LREE and fluid-mobile elements (e.g., Pb, B, Li, Ba, Sr), but poor in HFSE (e.g., Ta, Nb, Zr, Th), similar to Cpx in supra-subduction zone (SSZ) settings, where slab-fluid metasomatism is a prevalent agent. The studied chromitites and their host peridotites represent a fragment of sub-arc mantle, and originated in an arc-related setting. The systematic increase in the volume of chromitite pods with the increasing of their host-peridotite thickness from Northern to Southern Eastern Desert suggests that the thickness of wall rocks is one factor controlling the chromitite size. The factors controlling the size of Neoproterozoic chromitite pods are the thickness, beside the composition, of the host refractory peridotites, compositions and volumes of the supplied magmas, the amount of slab-derived fluids, and possibly the partial melting degree of the host peridotites.  相似文献   

18.
《Gondwana Research》2014,25(2):842-858
The northern margin of the Alxa block (NMAB), located in the southernmost part of the Altaids, is important for understanding the tectonic processes associated with the closure of the Paleo-Asian ocean. In this study, we report results from our studies on two ophiolitic belts (the Enger Us and Quagan Qulu ophiolitic belts) to constrain the tectonic evolution of the Altaids. The tectonic blocks in the Enger Us ophiolite are mainly composed of ultramafic and mafic rocks, with a matrix comprising highly deformed Carboniferous clastic rocks and tuffs. Zircons from a pillow lava sample yielded SHRIMP zircon U–Pb age of 302 ± 14 Ma. Massive and pillow basalts in the Enger Us ophiolite exhibit N-MORB geochemical affinities, displaying high TiO2 and low K2O contents with tholeiitic signatures. They are characterized by depletion of light rare earth elements (LREEs) without fractionation of high field strength elements (HFSEs) and negative Nb–Ta anomalies. It is inferred that the magmas of these rocks were derived from a depleted mantle source in a mid-ocean ridge setting. The Quagan Qulu ophiolite is composed of tectonic blocks, including ultramafic, gabbros and siliceous rocks, and matrix, including deformed clastic rocks and limestones. Zircons in a gabbro sample from the Quagan Qulu ophiolite yielded SHRIMP zircon U–Pb age of 275 ± 3 Ma. The gabbros show high MgO contents, compatible elements (Ni, Co, Sc, and V), and Al2O3/TiO2 ratios, but low TiO2 and SiO2 contents. They are enriched in large-ion lithophile elements (LILEs) and depleted in LREEs and HFSEs, indicating that they were derived from an extremely depleted mantle source which was infiltrated by a subduction-derived fluid or melt. Our geochemical data suggest that gabbros in the Quagan Qulu ophiolite were formed in a back-arc basin setting. A synthesis of evidence from geochemistry, regional geology, and paleobiogeography support the notion that the Enger Us ophiolitic belt represents the major suture of the Paleo-Asian Ocean in the NMAB and the Quagan Qulu ophiolitic belt represents a back-arc basin. These two ophiolitic belts, together with the Zongnaishan–Shalazhashan arc have been suggested to be a late Paleozoic ocean-arc–back-arc basin system in the southernmost part of the Altaids. The geochronological data suggest that the subduction process occurred even in the early Permian, indicating that the final closure of the Paleo-Asian Ocean might have taken place later than the early Permian.  相似文献   

19.
The Neoproterozoic Wadi Ranga metavolcanic rocks, South Eastern Desert of Egypt, constitute a slightly metamorphosed bimodal sequence of low-K submarine tholeiitic mafic and felsic volcanic rocks. The mafic volcanic rocks are represented by massive and pillow flows and agglomerates, composed of porphyritic and aphyric basalts and basaltic andesites that are mostly amygdaloidal. The felsic volcanic rocks embrace porphyritic dacites and rhyolites and tuffs, which overlie the mafic volcanic rocks. The geochemical characteristics of Wadi Ranga volcanic rocks, especially a strong Nb depletion, indicate that they were formed from subduction-related melts. The clinopyroxene phenocrysts of basalts are more akin to those crystallizing from island-arc tholeiitic magmas. The tholeiitic nature of the Wadi Ranga volcanics as well as their LREE-depleted or nearly flat REE patterns and their low K2O contents suggest that they were developed in an immature island arc setting. The subchondritic Nb/Ta ratios (with the lowest ratio reported for any arc rocks) and low Nb/Yb ratios indicate that the mantle source of the Wadi Ranga mafic volcanic rocks was more depleted than N-MORB-source mantle. Subduction signature was dominated by aqueous fluids derived from slab dehydration, whereas the role of subducted sediments in mantle-wedge metasomatization was subordinate, implying that the subduction system was sediment-starved and far from continental clastic input. The amount of slab-derived fluids was enough to produce hydrous magmas that follow the tholeiitic but not the calc-alkaline differentiation trend. With Mg# > 64, few samples of Wadi Ranga mafic volcanic rocks are similar to primitive arc magmas, whereas the other samples have clearly experienced considerable fractional crystallization.The low abundances of trace elements, together with low K2O contents of the felsic metavolcanic rocks indicate that they were erupted in a primitive island arc setting. The felsic volcanic rocks are characterized by lower K/Rb ratios compared to the mafic volcanic rocks, higher trace element abundances (~ 2 to ~ 9 times basalt) on primitive arc basalt-normalized pattern and nearly flat chondrite-normalized REE patterns, which display a negative Eu anomaly. These features are largely consistent with fractional crystallization model for the origin of the felsic volcanic rocks. Moreover, SiO2-REE variations for the Wadi Ranga volcanic rocks display steadily increasing LREE over the entire mafic to felsic range and enriched La abundances in the felsic lavas relative to the most mafic lavas, features which are consistent with production of the felsic volcanic rocks through fractional crystallization of basaltic melts. The relatively large volume of Wadi Ranga silicic volcanic rocks implies that significant volume of silicic magmas can be generated in immature island arcs by fractional crystallization and indicates the significant role of intra-oceanic arcs in the production of Neoproterozoic continental crust. We emphasize that the geochemical characteristics of these rocks such as their low LILE and nearly flat REE patterns can successfully discriminate them from other Egyptian Neoproterozoic felsic volcanic rocks, which have higher LILE, Zr and Nb and fractionated REE patterns.  相似文献   

20.
《Precambrian Research》2006,144(1-2):19-38
The magmatic and tectonic history of the Yangtze Block and its possible affinity with other Neoproterozoic arc terranes are important elements in the reconstruction of Neoproterozoic plate tectonics. The Yanbian Terrane in the western margin of the Yangtze Block is a typical arc assemblage composed of a flysch-type sedimentary sequence intruded by gabbroic and granodioritic plutons. The sedimentary sequence consists chiefly of tuffaceous material with interlayered chert, sandstone, and pillow basalts. Laser ablation ICP-MS U–Pb dating of detrital zircons from the sandstones yield ages as young as 840 Ma. The Gaojiacun and Lengshuiqing mafic intrusions are dated at 812 ± 3 Ma and 806 ± 4 Ma, respectively, using the SHRIMP zircon U–Pb technique. Geochemical data show that both the Gaojiacun and Lengshuiqing intrusions have arc signatures, with ɛNd(t) values of +1.5 to +6.0, initial 87Sr/86Sr ratios of 0.705–0.706 and pronounced negative Nb–Ta and Zr–Hf anomalies. Their geochemical variations are best explained by fractional crystallization without major crustal contamination. The Yanbian Terrane represents a typical arc assemblage formed on the western edge of the Yangtze Block during Neoproterozoic time. The sedimentary sequence was deposited in an oceanic setting, probably in a back arc basin environment. The depleted, subduction-modified lithospheric mantle wedge above the subduction zone was the source of melts from which the mafic plutons were crystallized. This scenario suggests subduction of oceanic lithosphere eastward (present-day orientation) underneath the Yangtze Block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号